Efficient integration of flexible multibody dynamics

The modelling of flexible multibody dynamics as finite dimensional Hamiltonian system subject to holonomic constraints constitutes a general framework for a unified treatment of rigid and elastic components. Internal constraints, which are associated with the kinematic assumptions of the underlying...

Full description

Saved in:
Bibliographic Details
Published inProceedings in applied mathematics and mechanics Vol. 6; no. 1; pp. 99 - 100
Main Authors Leyendecker, S., Betsch, P., Steinmann, P.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.12.2006
WILEY‐VCH Verlag
Online AccessGet full text
ISSN1617-7061
1617-7061
DOI10.1002/pamm.200610030

Cover

Abstract The modelling of flexible multibody dynamics as finite dimensional Hamiltonian system subject to holonomic constraints constitutes a general framework for a unified treatment of rigid and elastic components. Internal constraints, which are associated with the kinematic assumptions of the underlying continuous theory, as well as external constraints, representing the interconnection of different bodies by joints, can be accounted for in a likewise systematic way. The discrete null space method developed in [0] provides an energy‐momentum conserving integration scheme for the DAEs of motion of constrained mechanical systems. It relies on the elimination of the constraint forces from the discrete system along with a reparametrisation of the nodal unknowns. The resulting reduced scheme performs advantageously concerning different aspects: the constraints are fulfilled exactly, the condition number of the iteration matrix is independent of the time step and the dimension of the system is reduced to the minimal possible number saving computational costs. A six‐body‐linkage possessing a single degree of freedom is analysed as an example of a closed loop structure. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
AbstractList The modelling of flexible multibody dynamics as finite dimensional Hamiltonian system subject to holonomic constraints constitutes a general framework for a unified treatment of rigid and elastic components. Internal constraints, which are associated with the kinematic assumptions of the underlying continuous theory, as well as external constraints, representing the interconnection of different bodies by joints, can be accounted for in a likewise systematic way. The discrete null space method developed in [0] provides an energy‐momentum conserving integration scheme for the DAEs of motion of constrained mechanical systems. It relies on the elimination of the constraint forces from the discrete system along with a reparametrisation of the nodal unknowns. The resulting reduced scheme performs advantageously concerning different aspects: the constraints are fulfilled exactly, the condition number of the iteration matrix is independent of the time step and the dimension of the system is reduced to the minimal possible number saving computational costs. A six‐body‐linkage possessing a single degree of freedom is analysed as an example of a closed loop structure. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Author Steinmann, P.
Betsch, P.
Leyendecker, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Leyendecker
  fullname: Leyendecker, S.
  email: slauer@rhrk.uni-kl.de
  organization: Chair of Applied Mechanics, University of Kaiserlautern, Germany
– sequence: 2
  givenname: P.
  surname: Betsch
  fullname: Betsch, P.
  email: betsch@imr.mb.uni-siegen.de
  organization: Chair of Computational Mechanics, University of Siegen, Germany
– sequence: 3
  givenname: P.
  surname: Steinmann
  fullname: Steinmann, P.
  email: ps@rhrk.uni-kl.de
  organization: Chair of Applied Mechanics, University of Kaiserlautern, Germany
BookMark eNqFj0tLw0AUhQepYFvdus4fSJ1XZjLLUmsVGl8oWQ6TechoHiUTsfn3pkRKd67uOXC-C98MTOqmtgBcI7hAEOKbnaqqBYaQDY3AMzBFDPGYD31yki_ALITPYY8YgVNA18557W3dRb7u7EerOt_UUeMiV9q9L0obVd9l54vG9JHpa1V5HS7BuVNlsFd_dw7e79Zvq_t4-7R5WC23sUaYw7gQXCBDUYooYdgIbVJNGeUCFklKkRGcOA6FwoZDbJQrrNCaJBYnGDvGLZmDxfhXt00IrXVy1_pKtb1EUB6c5cFZHp0HQIzAjy9t_89aPi-z7JSNR9aHzu6PrGq_JOOEJzJ_3MicCf5ym-XylfwCnORrjA
Cites_doi 10.1002/nme.487
10.1002/pamm.200510080
10.1016/j.cma.2005.01.004
10.1007/BF02440162
10.1002/nme.486
10.1002/nme.1639
ContentType Journal Article
Copyright Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/pamm.200610030
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1617-7061
EndPage 100
ExternalDocumentID 10_1002_pamm_200610030
PAMM200610030
ark_67375_WNG_W697QDMW_R
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
50Y
50Z
51W
51X
52M
52N
52O
52P
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OK1
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
ABJNI
ADMLS
AEYWJ
AFWVQ
AGHNM
AGYGG
ALVPJ
AMVHM
AAYXX
CITATION
ID FETCH-LOGICAL-c1270-b9791d41814362d9cd8c464790b5841d973f709a2d702dafbe9cc35e2522f67e3
IEDL.DBID DR2
ISSN 1617-7061
IngestDate Tue Jul 01 03:55:50 EDT 2025
Wed Aug 20 07:27:04 EDT 2025
Wed Oct 30 09:57:17 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1270-b9791d41814362d9cd8c464790b5841d973f709a2d702dafbe9cc35e2522f67e3
Notes istex:3FB06F9A101133B034D403F6AB9388030F362B22
ArticleID:PAMM200610030
ark:/67375/WNG-W697QDMW-R
PageCount 2
ParticipantIDs crossref_primary_10_1002_pamm_200610030
wiley_primary_10_1002_pamm_200610030_PAMM200610030
istex_primary_ark_67375_WNG_W697QDMW_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12
December 2006
2006-12-00
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Proceedings in applied mathematics and mechanics
PublicationTitleAlternate Proc. Appl. Math. Mech
PublicationYear 2006
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_3_2
References_xml – ident: e_1_2_1_4_2
  doi: 10.1002/nme.487
– ident: e_1_2_1_7_2
  doi: 10.1002/pamm.200510080
– ident: e_1_2_1_2_2
  doi: 10.1016/j.cma.2005.01.004
– ident: e_1_2_1_5_2
  doi: 10.1007/BF02440162
– ident: e_1_2_1_3_2
  doi: 10.1002/nme.486
– ident: e_1_2_1_6_2
  doi: 10.1002/nme.1639
SSID ssj0021630
Score 1.615884
Snippet The modelling of flexible multibody dynamics as finite dimensional Hamiltonian system subject to holonomic constraints constitutes a general framework for a...
SourceID crossref
wiley
istex
SourceType Index Database
Publisher
StartPage 99
Title Efficient integration of flexible multibody dynamics
URI https://api.istex.fr/ark:/67375/WNG-W697QDMW-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.200610030
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwGMaD6EUPfovzix5ET9maNE2W43CbQ-jQ4dhuIWnSy3Qb-wD1rzdJ1-q8CEpPhaS0bz6eh_TNLwBcG4NilnIGdagpJERpWMcogzRlJHPLbirPtujSTp88DOPht138OR-iXHBzI8PP126ASzWvfUFDp_LV7yS3-m87qp2EUUQdPL_ZK_lR2JoNvyPSyjRktmRBbQxxbb36miptuQC_rbtVLzftPSCLF82zTEbV5UJV048fDMf_fMk-2F150aCRd54DsGHGh2AnKUGu8yNAWh4xYZUpKMAStiGDSRZkjqSpXkzgUxLVRL8HOj_dfn4M-u3W810Hrg5agKn78QwVZxxpYsWeWD3T3PECCCWMh8r6E6Q5izIWcok1C7GWmTI8TaPYYGveMspMdAI2x5OxOQWBZrhOlbsYIhrVJTGURymWLMbautMKuC0CLaY5T0Pk5GQsXBxEGYcKuPHtUBaTs5HLQmOxGHTvxYBy9tRMBqJXAdhH95fnicdGkpR3Z3-pdA628ercohBdgM3FbGkurSdZqCvf7z4B3JHWnQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9ROKgHv434uYPR02DrupUeiYCojCiB4K1Z1-6CAuEjUf96247N4MVEs9OSdtleX_f77e293wO4ktL1SUyJLRwR2BhzYVeRm9hBTHCiw248zbboBK0-fnjxs2xCXQuT6kPkATe9M8z7Wm9wHZCufKuGTqI3U0quCIDy1HUoYsU29PdXvZsrSCFFN0xNpAJqm6ihmW6jgyqr81dwqahN_L7KVw3gNHeAZ7ea5pkMy4s5L8efP1Qc__Usu7C9pKNWLfWfPViTo33YCnMt19kB4IZRmVDgZGXaEmotrXFiJVpMk79Ky2Ql8rH4sETa4H52CP1mo3fbspe9FuxY_3u2OSXUFVjhPVaQJqiWDMABJtThiqK4ghIvIQ6NkCAOElHCJY1jz5dI8bckINI7gsJoPJLHYAmCqgHXB3GxcKsRlgH1YhQRHwlFUEtwk1maTVJJDZaKJyOm7cByO5Tg2ixEPiyaDnUiGvHZoHPHBgElz_VwwLolQMa8v1yPPdXCMD87-cukS9ho9cI2a993Hk9hEy3bGDnuGRTm04U8VxRlzi-ME34BbVXavA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+integration+of+flexible+multibody+dynamics&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Leyendecker%2C+S.&rft.au=Betsch%2C+P.&rft.au=Steinmann%2C+P.&rft.date=2006-12-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=6&rft.issue=1&rft.spage=99&rft.epage=100&rft_id=info:doi/10.1002%2Fpamm.200610030&rft.externalDBID=10.1002%252Fpamm.200610030&rft.externalDocID=PAMM200610030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon