Proposed Grade Discrimination Model Combining Classification and Grade Regression
Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification models may not be sufficiently accurate for grading based on fine features, such as in the simultaneous output of high estimated probabiliti...
Saved in:
Published in | Agricultural Information Research Vol. 33; no. 2; pp. 109 - 116 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Japanese Society of Agricultural Informatics
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification models may not be sufficiently accurate for grading based on fine features, such as in the simultaneous output of high estimated probabilities for multiple distant grades. Here we propose a classification model combining conventional classification and grade regression for grade discrimination and verified its effectiveness by using the grade discrimination of onion peelings as a test case. The model reduced misclassification to distant grades without decreasing discrimination accuracy, relative to conventional classification and regression models. |
---|---|
AbstractList | Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification models may not be sufficiently accurate for grading based on fine features, such as in the simultaneous output of high estimated probabilities for multiple distant grades. Here we propose a classification model combining conventional classification and grade regression for grade discrimination and verified its effectiveness by using the grade discrimination of onion peelings as a test case. The model reduced misclassification to distant grades without decreasing discrimination accuracy, relative to conventional classification and regression models. |
Author | Suzuki, Ikuo Iwadate, Kenji Ozawa, Katsuya Ninomiya, Kazunori |
Author_xml | – sequence: 1 fullname: Iwadate, Kenji organization: Kitami Institute of Technology – sequence: 2 fullname: Ninomiya, Kazunori organization: Shibuya Seiki Co., Ltd – sequence: 3 fullname: Ozawa, Katsuya organization: Kitamirai Agricultural Cooperative – sequence: 4 fullname: Suzuki, Ikuo organization: Kitami Institute of Technology |
BookMark | eNo9kM1OwzAQhC1UJErphSfIGSnFa8eJfeCAAhSkIn4E58ix18UotSu7F96eoJaeVrvz7Wg052QSYkBCLoEuODT8Wvu04HwBVJ2QKUgJpWCgJmRKFdSlqiQ7I_OcfU8pq2QlRDMlb68pbmNGWyyTtljc-WyS3_igdz6G4jlaHIo2bnoffFgX7aBHA-fNXtbh_-8d1wlHKYYLcur0kHF-mDPy-XD_0T6Wq5flU3u7Kg0woUoF0DhAZ2lDWS2avq-p7oV0zCFg5aTUlTNSKLSurmtWMW0bwRin1jDFLJ-Rq72vSTHnhK7bjsF1-umAdn99dGMfHefjqkb4Zg9_551e4xHVaefNgP8oO_DHu_nSqcPAfwFuHmvZ |
Cites_doi | 10.1109/CVPR.2016.91 10.3390/app10103443 10.1016/j.jksuci.2018.06.002 10.1016/0020-0190(89)90102-6 10.1007/978-3-319-24574-4_28 10.1109/ICCV.2015.123 |
ContentType | Journal Article |
Copyright | 2024 Japanese Society of Agricultural Informatics |
Copyright_xml | – notice: 2024 Japanese Society of Agricultural Informatics |
DBID | AAYXX CITATION |
DOI | 10.3173/air.33.109 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1881-5219 |
EndPage | 116 |
ExternalDocumentID | 10_3173_air_33_109 article_air_33_2_33_109_article_char_en |
GroupedDBID | 23M 2WC 5GY ABDBF ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 JSF KQ8 OK1 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c1259-9117f1efd0702657bb60ab58f2fe1e4f88a4fc859edf666242ad752230dc292d3 |
ISSN | 0916-9482 |
IngestDate | Mon Jul 29 07:38:10 EDT 2024 Thu Aug 01 16:57:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1259-9117f1efd0702657bb60ab58f2fe1e4f88a4fc859edf666242ad752230dc292d3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/air/33/2/33_109/_article/-char/en |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_3173_air_33_109 jstage_primary_article_air_33_2_33_109_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2024/07/01 2024-7-1 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024/07/01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural Information Research |
PublicationTitleAlternate | Agricultural Information Research |
PublicationYear | 2024 |
Publisher | Japanese Society of Agricultural Informatics |
Publisher_xml | – name: Japanese Society of Agricultural Informatics |
References | Glorot, X. and Y. Bengio (2010) Understanding the difficulty of training deep feedforward neural networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9: 249–256. Prajit, R., Z. Barret and L. V. Quoc (2017) Searching for Activation Functions, eprint arXiv: 1710.05941, 〈http://arxiv.org/abs/1710.05941〉 2023年12月25日参照. Gao, B., C. Xing, C. Xie, J. Wu and X. Geng (2016) Deep Label Distribution Learning with Label Ambiguity, eprint arXiv: 1611.01731v2, 〈https://arxiv.org/abs/1611.01731v2〉2023年12月25日参照. Kamada, T. and S. Kawai (1989) An algorithm for drawing general undirected graphs. Information Processing Letters, 31 (1): 7–15. Nair, V. and G. E. Hinton (2010) Rectified Linear Units Improve Restricted Boltzmann Machines, Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807–814. Agarap, A. F. (2018) Deep Learning using Rectified Linear Units (ReLU), eprint arXiv: 1803.08375, 〈http://arxiv.org/abs/1803.08375〉2023年12月25日参照. Diganta, M. (2019) Mish: A Self Regularized Non-Monotonic Neural Activation, eprint arXiv: 1908.08681, 〈http://arxiv.org/abs/1908.08681〉2023年12月25日参照. Redmon, J., S. Divvala, R. Girshick and A. Farhadi (2016) You Only Look Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. Bhargava, A. and A. Bansal (2021) Fruits and vegetables quality evaluation using computer vision: A review, Journal of King Saud University—Computer and Information Sciences, 33 (3): 243–257. Glorot, X., A. Bordes and Y. Bengio (2011) Deep Sparse Rectifier Neural Networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 15: 315–323. He, K., X. Zhang, S. Ren and J. Sun (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), 1026–1034. Naranjo-Torres, J., M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes and A. Valenzuela (2020) A Review of Convolutional Neural Network Applied to Fruit Image Processing, Applied Sciences, 10 (10): 3443. Cuturi, M. (2013) Sinkhorn Distances: Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS 2013), 26: 2292–2300. Ronneberger, O., P. Fischer and T. Brox (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), 234–241. Vladimir, N. V. (1963) Pattern recognition using generalized portrait method, Automation and Remote Control, 24: 774–780. 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 |
References_xml | – ident: 3 – ident: 13 doi: 10.1109/CVPR.2016.91 – ident: 11 doi: 10.3390/app10103443 – ident: 2 doi: 10.1016/j.jksuci.2018.06.002 – ident: 5 – ident: 4 – ident: 1 – ident: 12 – ident: 10 – ident: 9 doi: 10.1016/0020-0190(89)90102-6 – ident: 15 – ident: 14 doi: 10.1007/978-3-319-24574-4_28 – ident: 6 – ident: 7 – ident: 8 doi: 10.1109/ICCV.2015.123 |
SSID | ssib002484557 ssj0069023 ssib001106415 ssib002221917 |
Score | 2.309045 |
Snippet | Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification... |
SourceID | crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 109 |
SubjectTerms | automatic sorting convolutional neural network deep learning image recognition |
Title | Proposed Grade Discrimination Model Combining Classification and Grade Regression |
URI | https://www.jstage.jst.go.jp/article/air/33/2/33_109/_article/-char/en |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Agricultural Information Research, 2024/07/01, Vol.33(2), pp.109-116 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLamtIf2UNFNhS6K1F4zjR3HcY4ItYJWXWhB4hY5XhCDOlMNEyHmd_EDeV7iJIgD5WKNvIw8ft_4LX4LQh8raXROMpnmhjcplYKlvChxKnDJRK55pVwyne8_2N4R_XpcHE8mVwOvpXbVTOX61riS-1AV-oCuNkr2PygbvxQ64DPQF1qgMLR3ovEvW-LgXFuTklDaZtKUvkqXI6otc2YtA38bVwTC17-0nkF-2FrM_brf-sR7w86HourOybLPyxGiltzCzlkvoupCWLNBiPKZnfZPHTbk-TLEnK3b-WIZx36uxUUYWJ23l5E3_GnXrS-kvX_WLoYmCUKj-2pgF8DmbfnM6HhqZepb9yxHBknM0or6UkRT7a9jzjGoyuFSDfe1T5wRcEkGly_OqgEfxz6G8yaLAHnJpqoQp8tpnk_jklHK7UDQGibVeV4T28DMuuu3AXGAvwfoIYHrzd6r3w4Gb4-gZQ-VVJDAbijFnBZFNAuwKnNFCOPv90l07T4_9bsciU2PZqA5dF6HThA63ERPgwaT7PhdPkOTmXiOnvQnr1-ggw6YiQNYMgZm4oCZRGAmY2AmAMywrgfmS3T05fPh7l4aanekEkTmyvLQ0mBtFLAUwoqyaVgmmoIbYjTW1HAuqJG8qLQyoEGDoChUCbpAnilJKqLyV2hjvpjr1yghChdSYoVBRqCaUgEsxzBVSeZekfkW-tAdTf3Pp2gBatX2ADsKwgFuIeZPLc65I5W377vwDXrc_zneoo3VstXvQIJdNe8dYK4BttGizw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposed+Grade+Discrimination+Model+Combining+Classification+and+Grade+Regression&rft.jtitle=Agricultural+Information+Research&rft.au=Iwadate%2C+Kenji&rft.au=Ninomiya%2C+Kazunori&rft.au=Ozawa%2C+Katsuya&rft.au=Suzuki%2C+Ikuo&rft.date=2024-07-01&rft.pub=Japanese+Society+of+Agricultural+Informatics&rft.issn=0916-9482&rft.eissn=1881-5219&rft.volume=33&rft.issue=2&rft.spage=109&rft.epage=116&rft_id=info:doi/10.3173%2Fair.33.109&rft.externalDocID=article_air_33_2_33_109_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-9482&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-9482&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-9482&client=summon |