Proposed Grade Discrimination Model Combining Classification and Grade Regression

Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification models may not be sufficiently accurate for grading based on fine features, such as in the simultaneous output of high estimated probabiliti...

Full description

Saved in:
Bibliographic Details
Published inAgricultural Information Research Vol. 33; no. 2; pp. 109 - 116
Main Authors Iwadate, Kenji, Ninomiya, Kazunori, Ozawa, Katsuya, Suzuki, Ikuo
Format Journal Article
LanguageEnglish
Japanese
Published Japanese Society of Agricultural Informatics 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification models may not be sufficiently accurate for grading based on fine features, such as in the simultaneous output of high estimated probabilities for multiple distant grades. Here we propose a classification model combining conventional classification and grade regression for grade discrimination and verified its effectiveness by using the grade discrimination of onion peelings as a test case. The model reduced misclassification to distant grades without decreasing discrimination accuracy, relative to conventional classification and regression models.
AbstractList Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification models may not be sufficiently accurate for grading based on fine features, such as in the simultaneous output of high estimated probabilities for multiple distant grades. Here we propose a classification model combining conventional classification and grade regression for grade discrimination and verified its effectiveness by using the grade discrimination of onion peelings as a test case. The model reduced misclassification to distant grades without decreasing discrimination accuracy, relative to conventional classification and regression models.
Author Suzuki, Ikuo
Iwadate, Kenji
Ozawa, Katsuya
Ninomiya, Kazunori
Author_xml – sequence: 1
  fullname: Iwadate, Kenji
  organization: Kitami Institute of Technology
– sequence: 2
  fullname: Ninomiya, Kazunori
  organization: Shibuya Seiki Co., Ltd
– sequence: 3
  fullname: Ozawa, Katsuya
  organization: Kitamirai Agricultural Cooperative
– sequence: 4
  fullname: Suzuki, Ikuo
  organization: Kitami Institute of Technology
BookMark eNo9kM1OwzAQhC1UJErphSfIGSnFa8eJfeCAAhSkIn4E58ix18UotSu7F96eoJaeVrvz7Wg052QSYkBCLoEuODT8Wvu04HwBVJ2QKUgJpWCgJmRKFdSlqiQ7I_OcfU8pq2QlRDMlb68pbmNGWyyTtljc-WyS3_igdz6G4jlaHIo2bnoffFgX7aBHA-fNXtbh_-8d1wlHKYYLcur0kHF-mDPy-XD_0T6Wq5flU3u7Kg0woUoF0DhAZ2lDWS2avq-p7oV0zCFg5aTUlTNSKLSurmtWMW0bwRin1jDFLJ-Rq72vSTHnhK7bjsF1-umAdn99dGMfHefjqkb4Zg9_551e4xHVaefNgP8oO_DHu_nSqcPAfwFuHmvZ
Cites_doi 10.1109/CVPR.2016.91
10.3390/app10103443
10.1016/j.jksuci.2018.06.002
10.1016/0020-0190(89)90102-6
10.1007/978-3-319-24574-4_28
10.1109/ICCV.2015.123
ContentType Journal Article
Copyright 2024 Japanese Society of Agricultural Informatics
Copyright_xml – notice: 2024 Japanese Society of Agricultural Informatics
DBID AAYXX
CITATION
DOI 10.3173/air.33.109
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1881-5219
EndPage 116
ExternalDocumentID 10_3173_air_33_109
article_air_33_2_33_109_article_char_en
GroupedDBID 23M
2WC
5GY
ABDBF
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
KQ8
OK1
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c1259-9117f1efd0702657bb60ab58f2fe1e4f88a4fc859edf666242ad752230dc292d3
ISSN 0916-9482
IngestDate Mon Jul 29 07:38:10 EDT 2024
Thu Aug 01 16:57:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1259-9117f1efd0702657bb60ab58f2fe1e4f88a4fc859edf666242ad752230dc292d3
OpenAccessLink https://www.jstage.jst.go.jp/article/air/33/2/33_109/_article/-char/en
PageCount 8
ParticipantIDs crossref_primary_10_3173_air_33_109
jstage_primary_article_air_33_2_33_109_article_char_en
PublicationCentury 2000
PublicationDate 2024/07/01
2024-7-1
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024/07/01
  day: 01
PublicationDecade 2020
PublicationTitle Agricultural Information Research
PublicationTitleAlternate Agricultural Information Research
PublicationYear 2024
Publisher Japanese Society of Agricultural Informatics
Publisher_xml – name: Japanese Society of Agricultural Informatics
References Glorot, X. and Y. Bengio (2010) Understanding the difficulty of training deep feedforward neural networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9: 249–256.
Prajit, R., Z. Barret and L. V. Quoc (2017) Searching for Activation Functions, eprint arXiv: 1710.05941, 〈http://arxiv.org/abs/1710.05941〉 2023年12月25日参照.
Gao, B., C. Xing, C. Xie, J. Wu and X. Geng (2016) Deep Label Distribution Learning with Label Ambiguity, eprint arXiv: 1611.01731v2, 〈https://arxiv.org/abs/1611.01731v2〉2023年12月25日参照.
Kamada, T. and S. Kawai (1989) An algorithm for drawing general undirected graphs. Information Processing Letters, 31 (1): 7–15.
Nair, V. and G. E. Hinton (2010) Rectified Linear Units Improve Restricted Boltzmann Machines, Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807–814.
Agarap, A. F. (2018) Deep Learning using Rectified Linear Units (ReLU), eprint arXiv: 1803.08375, 〈http://arxiv.org/abs/1803.08375〉2023年12月25日参照.
Diganta, M. (2019) Mish: A Self Regularized Non-Monotonic Neural Activation, eprint arXiv: 1908.08681, 〈http://arxiv.org/abs/1908.08681〉2023年12月25日参照.
Redmon, J., S. Divvala, R. Girshick and A. Farhadi (2016) You Only Look Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788.
Bhargava, A. and A. Bansal (2021) Fruits and vegetables quality evaluation using computer vision: A review, Journal of King Saud University—Computer and Information Sciences, 33 (3): 243–257.
Glorot, X., A. Bordes and Y. Bengio (2011) Deep Sparse Rectifier Neural Networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 15: 315–323.
He, K., X. Zhang, S. Ren and J. Sun (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), 1026–1034.
Naranjo-Torres, J., M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes and A. Valenzuela (2020) A Review of Convolutional Neural Network Applied to Fruit Image Processing, Applied Sciences, 10 (10): 3443.
Cuturi, M. (2013) Sinkhorn Distances: Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS 2013), 26: 2292–2300.
Ronneberger, O., P. Fischer and T. Brox (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), 234–241.
Vladimir, N. V. (1963) Pattern recognition using generalized portrait method, Automation and Remote Control, 24: 774–780.
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 3
– ident: 13
  doi: 10.1109/CVPR.2016.91
– ident: 11
  doi: 10.3390/app10103443
– ident: 2
  doi: 10.1016/j.jksuci.2018.06.002
– ident: 5
– ident: 4
– ident: 1
– ident: 12
– ident: 10
– ident: 9
  doi: 10.1016/0020-0190(89)90102-6
– ident: 15
– ident: 14
  doi: 10.1007/978-3-319-24574-4_28
– ident: 6
– ident: 7
– ident: 8
  doi: 10.1109/ICCV.2015.123
SSID ssib002484557
ssj0069023
ssib001106415
ssib002221917
Score 2.309045
Snippet Image processing techniques based on neural networks enable highly accurate discrimination in fruit and vegetable sorting. However, conventional classification...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 109
SubjectTerms automatic sorting
convolutional neural network
deep learning
image recognition
Title Proposed Grade Discrimination Model Combining Classification and Grade Regression
URI https://www.jstage.jst.go.jp/article/air/33/2/33_109/_article/-char/en
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Agricultural Information Research, 2024/07/01, Vol.33(2), pp.109-116
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLamtIf2UNFNhS6K1F4zjR3HcY4ItYJWXWhB4hY5XhCDOlMNEyHmd_EDeV7iJIgD5WKNvIw8ft_4LX4LQh8raXROMpnmhjcplYKlvChxKnDJRK55pVwyne8_2N4R_XpcHE8mVwOvpXbVTOX61riS-1AV-oCuNkr2PygbvxQ64DPQF1qgMLR3ovEvW-LgXFuTklDaZtKUvkqXI6otc2YtA38bVwTC17-0nkF-2FrM_brf-sR7w86HourOybLPyxGiltzCzlkvoupCWLNBiPKZnfZPHTbk-TLEnK3b-WIZx36uxUUYWJ23l5E3_GnXrS-kvX_WLoYmCUKj-2pgF8DmbfnM6HhqZepb9yxHBknM0or6UkRT7a9jzjGoyuFSDfe1T5wRcEkGly_OqgEfxz6G8yaLAHnJpqoQp8tpnk_jklHK7UDQGibVeV4T28DMuuu3AXGAvwfoIYHrzd6r3w4Gb4-gZQ-VVJDAbijFnBZFNAuwKnNFCOPv90l07T4_9bsciU2PZqA5dF6HThA63ERPgwaT7PhdPkOTmXiOnvQnr1-ggw6YiQNYMgZm4oCZRGAmY2AmAMywrgfmS3T05fPh7l4aanekEkTmyvLQ0mBtFLAUwoqyaVgmmoIbYjTW1HAuqJG8qLQyoEGDoChUCbpAnilJKqLyV2hjvpjr1yghChdSYoVBRqCaUgEsxzBVSeZekfkW-tAdTf3Pp2gBatX2ADsKwgFuIeZPLc65I5W377vwDXrc_zneoo3VstXvQIJdNe8dYK4BttGizw
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposed+Grade+Discrimination+Model+Combining+Classification+and+Grade+Regression&rft.jtitle=Agricultural+Information+Research&rft.au=Iwadate%2C+Kenji&rft.au=Ninomiya%2C+Kazunori&rft.au=Ozawa%2C+Katsuya&rft.au=Suzuki%2C+Ikuo&rft.date=2024-07-01&rft.pub=Japanese+Society+of+Agricultural+Informatics&rft.issn=0916-9482&rft.eissn=1881-5219&rft.volume=33&rft.issue=2&rft.spage=109&rft.epage=116&rft_id=info:doi/10.3173%2Fair.33.109&rft.externalDocID=article_air_33_2_33_109_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-9482&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-9482&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-9482&client=summon