PSO Enhanced and Deep ANN Control for Voltage Regulation and Harmonic Mitigation in Electrical Distribution Networks

Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and de...

Full description

Saved in:
Bibliographic Details
Published inAsian Journal of Advanced Research and Reports Vol. 19; no. 8; pp. 101 - 126
Main Authors Tyover, Ayakpam P., Ashigwuike, Evans C.
Format Journal Article
LanguageEnglish
Published 07.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and deep artificial neural network (ANN) controllers for Dynamic Voltage Restorers (DVRs), featuring competitive Particle Swarm Optimisation (PSO) and a 7-layer deep ANN to optimise voltage regulation and harmonic suppression. Validated in MATLAB/Simulink on Nigeria’s Ibadan Distribution Network (IEEE 33-bus system) under multifault scenarios (three-phase sags, sag-induced faults, and combined disturbances), the framework achieved  voltage stability (restoring voltage to ). It reduced total harmonic distortion (THD) to , outperforming conventional PI controllers (THD >8.5%) and standalone AI methods with 65% faster convergence. The ANN-DVR excelled in complex fault mitigation (THD: 1.78–2.26%), while the PSO-DVR offered computational efficiency (THD: 1.85–2.53%), together providing a robust solution for modern distribution grids requiring stringent power quality compliance.
AbstractList Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and deep artificial neural network (ANN) controllers for Dynamic Voltage Restorers (DVRs), featuring competitive Particle Swarm Optimisation (PSO) and a 7-layer deep ANN to optimise voltage regulation and harmonic suppression. Validated in MATLAB/Simulink on Nigeria’s Ibadan Distribution Network (IEEE 33-bus system) under multifault scenarios (three-phase sags, sag-induced faults, and combined disturbances), the framework achieved  voltage stability (restoring voltage to ). It reduced total harmonic distortion (THD) to , outperforming conventional PI controllers (THD >8.5%) and standalone AI methods with 65% faster convergence. The ANN-DVR excelled in complex fault mitigation (THD: 1.78–2.26%), while the PSO-DVR offered computational efficiency (THD: 1.85–2.53%), together providing a robust solution for modern distribution grids requiring stringent power quality compliance.
Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and deep artificial neural network (ANN) controllers for Dynamic Voltage Restorers (DVRs), featuring competitive Particle Swarm Optimisation (PSO) and a 7-layer deep ANN to optimise voltage regulation and harmonic suppression. Validated in MATLAB/Simulink on Nigeria’s Ibadan Distribution Network (IEEE 33-bus system) under multifault scenarios (three-phase sags, sag-induced faults, and combined disturbances), the framework achieved voltage stability (restoring voltage to ). It reduced total harmonic distortion (THD) to , outperforming conventional PI controllers (THD >8.5%) and standalone AI methods with 65% faster convergence. The ANN-DVR excelled in complex fault mitigation (THD: 1.78–2.26%), while the PSO-DVR offered computational efficiency (THD: 1.85–2.53%), together providing a robust solution for modern distribution grids requiring stringent power quality compliance.
Author Tyover, Ayakpam P.
Ashigwuike, Evans C.
Author_xml – sequence: 1
  givenname: Ayakpam P.
  orcidid: 0009-0002-0590-6293
  surname: Tyover
  fullname: Tyover, Ayakpam P.
– sequence: 2
  givenname: Evans C.
  surname: Ashigwuike
  fullname: Ashigwuike, Evans C.
BackLink https://hal.science/hal-05203454$$DView record in HAL
BookMark eNpNkEtPAjEUhRujiYj8AxfduhhpO21nZkkAxQTB-No2dzotVIeWdAaM_14ehri6J-eee3PyXaFzH7xB6IaSuyJLeR8-IcY-I0z0t7RwOaU0P0MdJnKWpIzn5__0Jeo1jSuJIBkrqCQd1D6_zvHYL8FrU2HwFR4Zs8aD2QwPg29jqLENEX-EuoWFwS9msamhdcEfshOIq-Cdxk-udYuj7zwe10a30Wmo8cg1O1VuDquZab9D_Gqu0YWFujG9v9lF7_fjt-Ekmc4fHoeDaaLprnICQgJhvDTSpCCFYQWntqoyogvgFbcVZZXQpYDSyjzjwhqbayZlkUEmU1OkXXR7_LuEWq2jW0H8UQGcmgymau8RwUjKBd_SXZYfszqGponGng4oUXvQ6gBa7UGrE-j0F9ZudZk
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
BXJBU
DOI 10.9734/ajarr/2025/v19i81118
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2582-3248
EndPage 126
ExternalDocumentID oai_HAL_hal_05203454v1
10_9734_ajarr_2025_v19i81118
GroupedDBID AAYXX
CITATION
M~E
1XC
BXJBU
ID FETCH-LOGICAL-c1258-a56a024be6e3a65e2941fdd70c9a4d4fd12d5cb5abf68745fef8c26697a763e93
ISSN 2582-3248
IngestDate Sun Aug 10 06:46:13 EDT 2025
Thu Aug 14 00:02:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1258-a56a024be6e3a65e2941fdd70c9a4d4fd12d5cb5abf68745fef8c26697a763e93
ORCID 0009-0002-0590-6293
OpenAccessLink https://journalajarr.com/index.php/AJARR/article/download/1118/2626
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_05203454v1
crossref_primary_10_9734_ajarr_2025_v19i81118
PublicationCentury 2000
PublicationDate 2025-08-07
PublicationDateYYYYMMDD 2025-08-07
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-07
  day: 07
PublicationDecade 2020
PublicationTitle Asian Journal of Advanced Research and Reports
PublicationYear 2025
SSID ssib050729160
Score 2.2995722
Snippet Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std...
SourceID hal
crossref
SourceType Open Access Repository
Index Database
StartPage 101
SubjectTerms Humanities and Social Sciences
Title PSO Enhanced and Deep ANN Control for Voltage Regulation and Harmonic Mitigation in Electrical Distribution Networks
URI https://hal.science/hal-05203454
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILAgFi_JKFeKvSNYmdxI_RVFQhWibY0N4iO3FogGVVmw6NB_4X_lPu7DgJ04QYL25kRacm9-nucv7ujpDXXAalYIn2VBILj4WFhKtwCktUSAFORTGsd14so_kpe3vGz0ajXwPW0q5Rk_zHjXUl_6NV2AO9YpXsLTTbCYUNuAb9wgoahvWfdHz88f14Vq_sIb7lFOv1OF0usZDPMNCRRPjp4luDzJwPduy84x_P5ebcjL9ZVLbPhiU9zsxcnNYcbrt5WFgZjByu7TCaTU0F5jCmdYwCR-hr6x_NuUSXJLhytNH0Sn5dy_Px8aTD3XZVff6-qyxlyIT546PJMDURcEOMi3sLFnAI3yFiswZW37DnTLAYQC0Z2FO_zXRY1-zb4vrrVl_EIUOX9kVusOUK_hP4ufRFlYAlT3pP5073rznAjpYIH0QoKzOSMpSTdVL2yJ0AvkRwSMbi58yZLI6N131Ti949mC3QREGHRhDml_hhJ-iPAGhv5fL3Jp45uU_utUqjqUXVAzLS9UPSAKKoQxQF3VFEFAVE0RZRFBBFW0TRHlHmXoco2iOKVjXtEUWHiKIOUY_I6ZvZydHca-dyeDmEw4kneSQhtFM60qGMuA4E88uiiKe5kKxgZeEHBc8Vl6qMcJpCqcskh0BQxBK8mRbhY7JfX9T6CaFBGZfTnMdSRzkrkkKBlCRUSIHMsVPkAfHcy8rWtv1K9jctHZBX8Ea7W7F3-jx9l-EeEr5Cxtml__SWQp-Ruz26n5P9ZrPTLyAUbdRLA4bfGuyLUg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO+Enhanced+and+Deep+ANN+Control+for+Voltage+Regulation+and+Harmonic+Mitigation+in+Electrical+Distribution+Networks&rft.jtitle=Asian+Journal+of+Advanced+Research+and+Reports&rft.au=Tyover%2C+Ayakpam+P.&rft.au=Ashigwuike%2C+Evans+C.&rft.date=2025-08-07&rft.issn=2582-3248&rft.eissn=2582-3248&rft.volume=19&rft.issue=8&rft.spage=101&rft.epage=126&rft_id=info:doi/10.9734%2Fajarr%2F2025%2Fv19i81118&rft.externalDBID=n%2Fa&rft.externalDocID=10_9734_ajarr_2025_v19i81118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2582-3248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2582-3248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2582-3248&client=summon