PSO Enhanced and Deep ANN Control for Voltage Regulation and Harmonic Mitigation in Electrical Distribution Networks
Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and de...
Saved in:
Published in | Asian Journal of Advanced Research and Reports Vol. 19; no. 8; pp. 101 - 126 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
07.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and deep artificial neural network (ANN) controllers for Dynamic Voltage Restorers (DVRs), featuring competitive Particle Swarm Optimisation (PSO) and a 7-layer deep ANN to optimise voltage regulation and harmonic suppression. Validated in MATLAB/Simulink on Nigeria’s Ibadan Distribution Network (IEEE 33-bus system) under multifault scenarios (three-phase sags, sag-induced faults, and combined disturbances), the framework achieved voltage stability (restoring voltage to ). It reduced total harmonic distortion (THD) to , outperforming conventional PI controllers (THD >8.5%) and standalone AI methods with 65% faster convergence. The ANN-DVR excelled in complex fault mitigation (THD: 1.78–2.26%), while the PSO-DVR offered computational efficiency (THD: 1.85–2.53%), together providing a robust solution for modern distribution grids requiring stringent power quality compliance. |
---|---|
AbstractList | Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and deep artificial neural network (ANN) controllers for Dynamic Voltage Restorers (DVRs), featuring competitive Particle Swarm Optimisation (PSO) and a 7-layer deep ANN to optimise voltage regulation and harmonic suppression. Validated in MATLAB/Simulink on Nigeria’s Ibadan Distribution Network (IEEE 33-bus system) under multifault scenarios (three-phase sags, sag-induced faults, and combined disturbances), the framework achieved voltage stability (restoring voltage to ). It reduced total harmonic distortion (THD) to , outperforming conventional PI controllers (THD >8.5%) and standalone AI methods with 65% faster convergence. The ANN-DVR excelled in complex fault mitigation (THD: 1.78–2.26%), while the PSO-DVR offered computational efficiency (THD: 1.85–2.53%), together providing a robust solution for modern distribution grids requiring stringent power quality compliance. Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std 519-2022 limits, driven by renewable integration and non-linear loads. To address these, this study proposed novel particle swarm-enhanced and deep artificial neural network (ANN) controllers for Dynamic Voltage Restorers (DVRs), featuring competitive Particle Swarm Optimisation (PSO) and a 7-layer deep ANN to optimise voltage regulation and harmonic suppression. Validated in MATLAB/Simulink on Nigeria’s Ibadan Distribution Network (IEEE 33-bus system) under multifault scenarios (three-phase sags, sag-induced faults, and combined disturbances), the framework achieved voltage stability (restoring voltage to ). It reduced total harmonic distortion (THD) to , outperforming conventional PI controllers (THD >8.5%) and standalone AI methods with 65% faster convergence. The ANN-DVR excelled in complex fault mitigation (THD: 1.78–2.26%), while the PSO-DVR offered computational efficiency (THD: 1.85–2.53%), together providing a robust solution for modern distribution grids requiring stringent power quality compliance. |
Author | Tyover, Ayakpam P. Ashigwuike, Evans C. |
Author_xml | – sequence: 1 givenname: Ayakpam P. orcidid: 0009-0002-0590-6293 surname: Tyover fullname: Tyover, Ayakpam P. – sequence: 2 givenname: Evans C. surname: Ashigwuike fullname: Ashigwuike, Evans C. |
BackLink | https://hal.science/hal-05203454$$DView record in HAL |
BookMark | eNpNkEtPAjEUhRujiYj8AxfduhhpO21nZkkAxQTB-No2dzotVIeWdAaM_14ehri6J-eee3PyXaFzH7xB6IaSuyJLeR8-IcY-I0z0t7RwOaU0P0MdJnKWpIzn5__0Jeo1jSuJIBkrqCQd1D6_zvHYL8FrU2HwFR4Zs8aD2QwPg29jqLENEX-EuoWFwS9msamhdcEfshOIq-Cdxk-udYuj7zwe10a30Wmo8cg1O1VuDquZab9D_Gqu0YWFujG9v9lF7_fjt-Ekmc4fHoeDaaLprnICQgJhvDTSpCCFYQWntqoyogvgFbcVZZXQpYDSyjzjwhqbayZlkUEmU1OkXXR7_LuEWq2jW0H8UQGcmgymau8RwUjKBd_SXZYfszqGponGng4oUXvQ6gBa7UGrE-j0F9ZudZk |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC BXJBU |
DOI | 10.9734/ajarr/2025/v19i81118 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2582-3248 |
EndPage | 126 |
ExternalDocumentID | oai_HAL_hal_05203454v1 10_9734_ajarr_2025_v19i81118 |
GroupedDBID | AAYXX CITATION M~E 1XC BXJBU |
ID | FETCH-LOGICAL-c1258-a56a024be6e3a65e2941fdd70c9a4d4fd12d5cb5abf68745fef8c26697a763e93 |
ISSN | 2582-3248 |
IngestDate | Sun Aug 10 06:46:13 EDT 2025 Thu Aug 14 00:02:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1258-a56a024be6e3a65e2941fdd70c9a4d4fd12d5cb5abf68745fef8c26697a763e93 |
ORCID | 0009-0002-0590-6293 |
OpenAccessLink | https://journalajarr.com/index.php/AJARR/article/download/1118/2626 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_hal_05203454v1 crossref_primary_10_9734_ajarr_2025_v19i81118 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-07 |
PublicationDateYYYYMMDD | 2025-08-07 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Asian Journal of Advanced Research and Reports |
PublicationYear | 2025 |
SSID | ssib050729160 |
Score | 2.2995722 |
Snippet | Modern electrical distribution networks face escalating power quality challenges, including voltage sags/swells and harmonic distortion exceeding IEEE Std... |
SourceID | hal crossref |
SourceType | Open Access Repository Index Database |
StartPage | 101 |
SubjectTerms | Humanities and Social Sciences |
Title | PSO Enhanced and Deep ANN Control for Voltage Regulation and Harmonic Mitigation in Electrical Distribution Networks |
URI | https://hal.science/hal-05203454 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILAgFi_JKFeKvSNYmdxI_RVFQhWibY0N4iO3FogGVVmw6NB_4X_lPu7DgJ04QYL25kRacm9-nucv7ujpDXXAalYIn2VBILj4WFhKtwCktUSAFORTGsd14so_kpe3vGz0ajXwPW0q5Rk_zHjXUl_6NV2AO9YpXsLTTbCYUNuAb9wgoahvWfdHz88f14Vq_sIb7lFOv1OF0usZDPMNCRRPjp4luDzJwPduy84x_P5ebcjL9ZVLbPhiU9zsxcnNYcbrt5WFgZjByu7TCaTU0F5jCmdYwCR-hr6x_NuUSXJLhytNH0Sn5dy_Px8aTD3XZVff6-qyxlyIT546PJMDURcEOMi3sLFnAI3yFiswZW37DnTLAYQC0Z2FO_zXRY1-zb4vrrVl_EIUOX9kVusOUK_hP4ufRFlYAlT3pP5073rznAjpYIH0QoKzOSMpSTdVL2yJ0AvkRwSMbi58yZLI6N131Ti949mC3QREGHRhDml_hhJ-iPAGhv5fL3Jp45uU_utUqjqUXVAzLS9UPSAKKoQxQF3VFEFAVE0RZRFBBFW0TRHlHmXoco2iOKVjXtEUWHiKIOUY_I6ZvZydHca-dyeDmEw4kneSQhtFM60qGMuA4E88uiiKe5kKxgZeEHBc8Vl6qMcJpCqcskh0BQxBK8mRbhY7JfX9T6CaFBGZfTnMdSRzkrkkKBlCRUSIHMsVPkAfHcy8rWtv1K9jctHZBX8Ea7W7F3-jx9l-EeEr5Cxtml__SWQp-Ruz26n5P9ZrPTLyAUbdRLA4bfGuyLUg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO+Enhanced+and+Deep+ANN+Control+for+Voltage+Regulation+and+Harmonic+Mitigation+in+Electrical+Distribution+Networks&rft.jtitle=Asian+Journal+of+Advanced+Research+and+Reports&rft.au=Tyover%2C+Ayakpam+P.&rft.au=Ashigwuike%2C+Evans+C.&rft.date=2025-08-07&rft.issn=2582-3248&rft.eissn=2582-3248&rft.volume=19&rft.issue=8&rft.spage=101&rft.epage=126&rft_id=info:doi/10.9734%2Fajarr%2F2025%2Fv19i81118&rft.externalDBID=n%2Fa&rft.externalDocID=10_9734_ajarr_2025_v19i81118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2582-3248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2582-3248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2582-3248&client=summon |