Self-supervised representation learning of filtration barrier in kidney

While the advance of deep learning has allowed to automate many tasks in bioimage analysis, quantifying key visual features of biological objects in an image, such as cells, organs, or tissues, is still a multi-step and laborious task. It requires image segmentation and definition of features of int...

Full description

Saved in:
Bibliographic Details
Published inFRONTIERS IN IMAGING Vol. 3
Main Authors Sergei, German, Unnersjö-Jess, David, Butt, Linus, Benzing, Thomas, Bozek, Katarzyna
Format Journal Article Publication
LanguageEnglish
Published 01.03.2024
Online AccessGet full text
ISSN2813-3315
2813-3315
DOI10.3389/fimag.2024.1339770

Cover

Abstract While the advance of deep learning has allowed to automate many tasks in bioimage analysis, quantifying key visual features of biological objects in an image, such as cells, organs, or tissues, is still a multi-step and laborious task. It requires image segmentation and definition of features of interest, which often might be image- and problem-specific. This approach requires image labeling and training of the segmentation method as well as manual feature design and implementation of dedicated procedures for their quantification. Here we propose a self-supervised learning (SSL) approach to encoding in microscopy images morphological features of molecular structures that play role in disease phenotype and patient clinical diagnosis. We encode super-resolution images of slit diaphragm (SD)—a specialized membrane between podocyte cells in kidney—in a high-dimensional embedding space in an unsupervised manner, without the need of image segmentation and feature quantification. We inspect the embedding space and demonstrate its relationship to the morphometric parameters of the SD estimated with a previously published method. The SSL-derived image representations additionally reflect the level of albuminuria—a key marker of advancement of kidney disease in a cohort of chronic kidney disease patients. Finally, the embeddings allow for distinguishing mouse model of kidney disease from the healthy subjects with a comparable accuracy to classification based on SD morphometric features. In a one step and label-free manner the SSL approach offers possibility to encode meaningful details in biomedical images and allow for their exploratory, unsupervised analysis as well as further fine-tuning for specialized supervised tasks.
AbstractList While the advance of deep learning has allowed to automate many tasks in bioimage analysis, quantifying key visual features of biological objects in an image, such as cells, organs, or tissues, is still a multi-step and laborious task. It requires image segmentation and definition of features of interest, which often might be image- and problem-specific. This approach requires image labeling and training of the segmentation method as well as manual feature design and implementation of dedicated procedures for their quantification. Here we propose a self-supervised learning (SSL) approach to encoding in microscopy images morphological features of molecular structures that play role in disease phenotype and patient clinical diagnosis. We encode super-resolution images of slit diaphragm (SD)—a specialized membrane between podocyte cells in kidney—in a high-dimensional embedding space in an unsupervised manner, without the need of image segmentation and feature quantification. We inspect the embedding space and demonstrate its relationship to the morphometric parameters of the SD estimated with a previously published method. The SSL-derived image representations additionally reflect the level of albuminuria—a key marker of advancement of kidney disease in a cohort of chronic kidney disease patients. Finally, the embeddings allow for distinguishing mouse model of kidney disease from the healthy subjects with a comparable accuracy to classification based on SD morphometric features. In a one step and label-free manner the SSL approach offers possibility to encode meaningful details in biomedical images and allow for their exploratory, unsupervised analysis as well as further fine-tuning for specialized supervised tasks.
Author Benzing, Thomas
Sergei, German
Unnersjö-Jess, David
Bozek, Katarzyna
Butt, Linus
Author_xml – sequence: 1
  givenname: German
  surname: Sergei
  fullname: Sergei, German
– sequence: 2
  givenname: David
  surname: Unnersjö-Jess
  fullname: Unnersjö-Jess, David
– sequence: 3
  givenname: Linus
  surname: Butt
  fullname: Butt, Linus
– sequence: 4
  givenname: Thomas
  surname: Benzing
  fullname: Benzing, Thomas
– sequence: 5
  givenname: Katarzyna
  surname: Bozek
  fullname: Bozek, Katarzyna
BackLink http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index
BookMark eNpNkM1OwzAQhC1UJErpC3DKC6SsfxI7R1RBQarEAThbtrOuTIMT2S2ob09KK8RpZ0ezK813TSaxj0jILYUF56q58-HTbBYMmFhQzhsp4YJMmaK85JxWk3_6isxz_gCAceEV1FOyesXOl3k_YPoKGdsi4ZAwY9yZXehj0aFJMcRN0fvCh26XTrY1KQVMRYjFNrQRDzfk0psu4_w8Z-T98eFt-VSuX1bPy_t16SiroHSVdUL6GqQ3UDvjKAorsG2NwIaOvgDHlBJKmoar1gsr66aiTDbUOmuBz0h5-pu_cdhbPaSxfDro3gR9trajQq3GemPtGWGnvEt9zgn93wUFfaSnf-npIz19psd_ADzUZz4
Cites_doi 10.1111/jcmm.16519
10.1101/2021.06.14.448284
10.1142/S0218001493000339
10.1016/j.kint.2020.10.039
10.1148/rycan.2021209039
10.1681/ASN.2018020139
10.7717/peerj-cs.1045
10.1038/s42255-020-0204-y
10.1038/s41592-020-01008-z
10.1016/j.kint.2023.03.013
10.1681/ASN.2017030270
10.1038/s41746-023-00811-0
10.1109/TMI.2022.3214766
10.1214/aoms/1177703732
10.1038/ki.2008.413
10.1371/journal.pcbi.1000974
10.1145/1390156.1390294
10.4103/digm.digm_16_18
ContentType Journal Article
Publication
DBID AAYXX
CITATION
ADTPV
BZJLE
D8T
STUKM
DOI 10.3389/fimag.2024.1339770
DatabaseName CrossRef
SwePub
SwePub Other
SWEPUB Freely available online
SwePub Other full text
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2813-3315
ExternalDocumentID oai_swepub_ki_se_850681
10_3389_fimag_2024_1339770
GroupedDBID 9T4
AAFWJ
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ADTPV
BZJLE
D8T
STUKM
ID FETCH-LOGICAL-c1250-c5bc47f607fa06cac1e4b4edda4e91f6040c288487a938df4b769512791bcbb03
ISSN 2813-3315
IngestDate Mon Sep 01 03:29:29 EDT 2025
Tue Jul 01 01:24:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1250-c5bc47f607fa06cac1e4b4edda4e91f6040c288487a938df4b769512791bcbb03
OpenAccessLink http://dx.doi.org/10.3389/fimag.2024.1339770
ParticipantIDs swepub_primary_oai_swepub_ki_se_850681
crossref_primary_10_3389_fimag_2024_1339770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-3-1
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-3-1
  day: 01
PublicationDecade 2020
PublicationTitle FRONTIERS IN IMAGING
PublicationYear 2024
References Bromley (B3) 1993
Zhao (B25) 2022; 42
Savjani (B16) 2021; 3
Van der Maaten (B21) 2008; 9
Chen (B6) 2020
Isensee (B15) 2021; 18
Huber (B13) 1964; 35
Bradski (B1) 2000
He (B10) 2020
Huang (B12) 2023; 6
Tesch (B19) 2021; 25
Butt (B5) 2021
Grill (B9) 2020
Hu (B11) 2021
David Unnersjö-Jess (B7) 2021; 99
Shurrab (B18) 2022; 8
Wang (B23) 2018; 4
Shamir (B17) 2010; 6
Vincent (B22) 2008
Zbontar (B24) 2021
Ichimura (B14) 2018; 30
Brähler (B2) 2018; 29
Deegens (B8) 2008; 74
Butt (B4) 2020; 2
Unnersjö-Jess (B20) 2023; 103
References_xml – volume: 25
  start-page: 7631
  year: 2021
  ident: B19
  article-title: Super-resolved local recruitment of cldn5 to filtration slits implicates a direct relationship with podocyte foot process effacement
  publication-title: J. Cell. Molec. Med
  doi: 10.1111/jcmm.16519
– year: 2000
  ident: B1
  article-title: “The opencv library,”
  publication-title: Dr. Dobb's Journal of Software Tools
– year: 2021
  ident: B5
  article-title: Deep learning-based segmentation and quantification of podocyte foot process morphology
  publication-title: bioRxiv
  doi: 10.1101/2021.06.14.448284
– volume-title: Advances in Neural Information Processing Systems
  year: 1993
  ident: B3
  article-title: “Signature verification using a "siamese" time delay neural network,”
  doi: 10.1142/S0218001493000339
– volume: 99
  start-page: 1010
  year: 2021
  ident: B7
  article-title: A fast and simple clearing and swelling protocol for 3D in-situ imaging of the kidney across scales
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2020.10.039
– year: 2020
  ident: B6
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: arXiv preprint arXiv:2002.05709
– year: 2021
  ident: B11
  article-title: Semi-supervised contrastive learning for label-efficient medical image segmentation
  publication-title: ArXiv preprint ArXiv:2109.07407
– volume: 3
  start-page: e209039
  year: 2021
  ident: B16
  article-title: nnU-Net: further automating biomedical image autosegmentation
  publication-title: Radiol. Imag. Cancer
  doi: 10.1148/rycan.2021209039
– volume: 30
  start-page: 96
  year: 2018
  ident: B14
  article-title: Morphological processes of foot process effacement in puromycin aminonucleoside nephrosis revealed by fib/sem tomography
  publication-title: JASN
  doi: 10.1681/ASN.2018020139
– volume: 8
  start-page: e1045
  year: 2022
  ident: B18
  article-title: Self-supervised learning methods and applications in medical imaging analysis: a survey
  publication-title: PeerJ Comput. Sci
  doi: 10.7717/peerj-cs.1045
– volume: 2
  start-page: 461
  year: 2020
  ident: B4
  article-title: A molecular mechanism explaining albuminuria in kidney disease
  publication-title: Nat. Metabol
  doi: 10.1038/s42255-020-0204-y
– year: 2020
  ident: B9
  article-title: Bootstrap your own latent: a new approach to self-supervised learning
  publication-title: arXiv preprint arXiv:2006.07733
– volume: 18
  start-page: 203
  year: 2021
  ident: B15
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 103
  start-page: 1120
  year: 2023
  ident: B20
  article-title: Deep learning-based segmentation and quantification of podocyte foot process morphology suggests differential patterns of foot process effacement across kidney pathologies
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2023.03.013
– volume: 29
  start-page: 138
  year: 2018
  ident: B2
  article-title: Opposing roles of dendritic cell subsets in experimental gn
  publication-title: J. Am. Soc. Nephrol
  doi: 10.1681/ASN.2017030270
– volume: 9
  start-page: 2579
  year: 2008
  ident: B21
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res
– volume: 6
  start-page: 74
  year: 2023
  ident: B12
  article-title: Self-supervised learning for medical image classification: a systematic review and implementation guidelines
  publication-title: Nature
  doi: 10.1038/s41746-023-00811-0
– volume: 42
  start-page: 633
  year: 2022
  ident: B25
  article-title: Le-uda: Label-efficient unsupervised domain adaptation for medical image segmentation
  publication-title: IEEE Trans. Med. Imag
  doi: 10.1109/TMI.2022.3214766
– year: 2021
  ident: B24
  article-title: Barlow twins: Self-supervised learning via redundancy reduction
  publication-title: arXiv preprint arXiv:2103.03230
– volume: 35
  start-page: 73
  year: 1964
  ident: B13
  article-title: Robust estimation of a location parameter
  publication-title: Ann. Mathem. Stat
  doi: 10.1214/aoms/1177703732
– year: 2020
  ident: B10
  article-title: Momentum contrast for unsupervised visual representation learning
  publication-title: arXiv preprint arXiv:1911.05722
– volume: 74
  start-page: 1568
  year: 2008
  ident: B8
  article-title: Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis
  publication-title: Kidney Int
  doi: 10.1038/ki.2008.413
– volume: 6
  start-page: e1000974
  year: 2010
  ident: B17
  article-title: Pattern recognition software and techniques for biological image analysis
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1000974
– start-page: 1096
  year: 2008
  ident: B22
  article-title: “Extracting and composing robust features with denoising autoencoders,”
  publication-title: Proceedings of the 25th International Conference on Machine Learning
  doi: 10.1145/1390156.1390294
– volume: 4
  start-page: 157
  year: 2018
  ident: B23
  article-title: Biological image analysis using deep learning-based methods: literature review
  publication-title: Dig. Med
  doi: 10.4103/digm.digm_16_18
SSID ssj0003313506
Score 2.2480567
Snippet While the advance of deep learning has allowed to automate many tasks in bioimage analysis, quantifying key visual features of biological objects in an image,...
SourceID swepub
crossref
SourceType Open Access Repository
Index Database
Title Self-supervised representation learning of filtration barrier in kidney
URI http://kipublications.ki.se/Default.aspx?queryparsed=id
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVaeuFSgdqqQEE-VL2sso1jr-0cAUEREr2UlbhFseNI4SOs2N0Lh_52ZmwnYelWKr1E0exqlPW8dWbGM_MI-ZqWmZJVahNhyxwCFICxsboGLGemZJVlzKcuLn7Ks6k4v5pcDWXNvrtkYcb2cW1fyf9YFWRgV-ySfYVle6UggHuwL1zBwnD9Jxv_crd1Ml_O8P8-d9iHMhu6idqOEcJXNdfNbRyQOzLlg6epa9rRTVO1qwe7pzjQAOmx8ePmznMY9VkY7NRsQiYdew06-RTpu-bXeOZ-JJNzF3jYn1XLBz7smAJYDol51z5GSpVndUoxBZGJoQYr7FSZZjzhPPRljt0aWdxq-bpNG4JknHla428ao_oxxM3glqbDK6o7ln_x5urrCSGSQS2F11GgjiLqeEveZUr5A_yL30P2DR6MTzzxav-coaMK1Xz_81FWvJaVmbLeD7ncIu9jAEEPAxq2yRvXfiA_XiCBriKBdkig9zUdkEAjEmjT0oCEj2R6enJ5fJZEiozEgmeaJnZirFC1TFVdptKWljlhhKuqUricgVykNtMaotIy57qqhVESfOpM5cxYY1L-iWy09637TKgC303ovJpwaYSCQNhZaXTlNNfaMal3yKhbgmIWJqEUf1_3HfItrFL_XZxjHkU3cOcKnJWo2e6r1O6RzQGAX8jG4mHp9sErXJgDn0058GZ-Ao96ZA8
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+representation+learning+of+filtration+barrier+in+kidney&rft.jtitle=Frontiers+in+imaging&rft.au=Sergei%2C+German&rft.au=Unnersj%C3%B6-Jess%2C+David&rft.au=Butt%2C+Linus&rft.au=Benzing%2C+Thomas&rft.date=2024-03-01&rft.issn=2813-3315&rft.eissn=2813-3315&rft.volume=3&rft_id=info:doi/10.3389%2Ffimag.2024.1339770&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimag_2024_1339770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2813-3315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2813-3315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2813-3315&client=summon