Vector‐Valued Nonconforming Finite Element for Surface Flows
ABSTRACT In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vecto...
Saved in:
Published in | Proceedings in applied mathematics and mechanics Vol. 25; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.03.2025
|
Online Access | Get full text |
ISSN | 1617-7061 1617-7061 |
DOI | 10.1002/pamm.202400116 |
Cover
Loading…
Abstract | ABSTRACT
In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vector‐valued Laplace problem, which includes the symmetrical strain rate tensor, an important operator for modeling flow problems. The approximation of the strain rate tensor with the Crouzeix–Raviart element leads to oscillations in the velocity field due to a nontrivial kernel. We derive a stabilized form of the equation and present optimal error bounds in the H1$H^1$‐norm for the Crouzeix–Raviart finite element. The theoretical findings are supported by numerical results. |
---|---|
AbstractList | In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vector‐valued Laplace problem, which includes the symmetrical strain rate tensor, an important operator for modeling flow problems. The approximation of the strain rate tensor with the Crouzeix–Raviart element leads to oscillations in the velocity field due to a nontrivial kernel. We derive a stabilized form of the equation and present optimal error bounds in the ‐norm for the Crouzeix–Raviart finite element. The theoretical findings are supported by numerical results. ABSTRACT In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vector‐valued Laplace problem, which includes the symmetrical strain rate tensor, an important operator for modeling flow problems. The approximation of the strain rate tensor with the Crouzeix–Raviart element leads to oscillations in the velocity field due to a nontrivial kernel. We derive a stabilized form of the equation and present optimal error bounds in the H1$H^1$‐norm for the Crouzeix–Raviart finite element. The theoretical findings are supported by numerical results. |
Author | Mehlmann, Carolin |
Author_xml | – sequence: 1 givenname: Carolin orcidid: 0000-0001-7329-5178 surname: Mehlmann fullname: Mehlmann, Carolin email: carolin.mehlmann@ovgu.de organization: Otto von Guericke University Magdeburg |
BookMark | eNqFj8FKw0AURQepYFvdus4PJL43M5mmG6GU1gqtCmq3YTp5I5FkpkxSSnd-gt_ol5hSEXeu3n2Xey-cAes574ixa4QEAfjNVtd1woFLAER1xvqocBSPQGHvj75gg6Z57_KoBPTZ7ZpM68PXx-daVzsqogfvjHfWh7p0b9G8dGVL0ayimlwbdXb0vAtWG4rmld83l-zc6qqhq587ZK_z2ct0ES8f7-6nk2VskKcQG5GSVBu0WhcypYxD92sLBTeKaCxAExiZkRIoIBPGosmkECBpM7bcoBiy5LRrgm-aQDbfhrLW4ZAj5Ef6_Eif_9J3hfRU2JcVHf5J50-T1Qo5piC-Ac8MYHM |
Cites_doi | 10.1137/21M1403126 10.4171/ifb/405 10.1090/mcom/3551 10.1002/pamm.202300207 10.1137/17M1146038 10.1002/nme.6317 10.1137/18M1166183 10.1016/bs.hna.2019.06.002 10.1051/m2an/197307R300331 10.1007/s00211‐015‐0787‐5 10.1515/jnma-2020-0017 10.1137/18M1176464 10.1051/m2an:2003020 10.1090/mcom/3179 10.1017/jfm.2012.317 10.1137/19M1284592 10.1007/s10208‐012‐9119‐7 10.1137/23M1583995 10.1093/imanum/drz018 10.1029/2022MS003010 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 The Author(s). published by Wiley‐VCH GmbH. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/pamm.202400116 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1617-7061 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pamm_202400116 PAMM12150 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 463061012 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 50Y 50Z 51W 51X 52M 52N 52O 52P 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OK1 P2W P2X P4D Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGYGG AMVHM CITATION |
ID | FETCH-LOGICAL-c1250-c35e46b1faad45e8205e4af0d2c6ee930ae0c48e6313083cf1c843304eb9f2c13 |
IEDL.DBID | DR2 |
ISSN | 1617-7061 |
IngestDate | Tue Jul 01 05:17:57 EDT 2025 Thu Mar 27 11:05:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1250-c35e46b1faad45e8205e4af0d2c6ee930ae0c48e6313083cf1c843304eb9f2c13 |
ORCID | 0000-0001-7329-5178 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400116 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1002_pamm_202400116 wiley_primary_10_1002_pamm_202400116_PAMM12150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings in applied mathematics and mechanics |
PublicationYear | 2025 |
References | 2017; 86 2019; 40 2023; 23 2021; 29 2016; 134 2024; 62 2022; 14 2003; 37 2012; 708 2020; 58 2018; 40 2020; 21 2022; 44 2024 2018; 56 2012; 12 1973; 7 2018; 20 2018; 16 2021; 90 2019; 121 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 44 start-page: A1807 issue: 4 year: 2022 end-page: A1832 article-title: Finite Element Discretization Methods for Velocity‐Pressure and Stream Function Formulations of Surface Stokes Equations publication-title: SIAM Journal on Scientific Computing – volume: 16 start-page: 1448 issue: 3 year: 2018 end-page: 1453 article-title: Erratum: The Interplay of Curvature and Vortices in Flow on Curved Surfaces publication-title: Multiscale Modeling & Simulation – volume: 134 start-page: 783 issue: 4 year: 2016 end-page: 822 article-title: A Stable Numerical Method for the Dynamics of Fluidic Membranes publication-title: Numerische Mathematik – volume: 40 start-page: 1652 issue: 3 year: 2019 end-page: 1701 article-title: Analysis of Finite Element Methods for Vector Laplacians on Surfaces publication-title: IMA Journal of Numerical Analysis – volume: 90 start-page: 1527 year: 2021 end-page: 1555 article-title: Inf‐sup Stability of the Trace P2‐P1 Taylor‐Hood Elements for Surface PDEs publication-title: Mathematics of Computation – volume: 86 start-page: 2613 year: 2017 end-page: 2649 article-title: A Continuous/Discontinuous Galerkin Method and a Priori Error Estimates for the Biharmonic Problem on Surfaces publication-title: Mathematics and Computing – volume: 12 start-page: 263 issue: 3 year: 2012 end-page: 293 article-title: Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces publication-title: Foundations of Computational Mathematics – volume: 121 start-page: 2503 year: 2019 end-page: 2533 article-title: Divergence–Free Tangential Finite Element Methods for Incompressible Flows on Surfaces publication-title: International Journal for Numerical Methods in Engineering – volume: 58 start-page: 2764 issue: 5 year: 2020 end-page: 2798 article-title: A Divergence‐Conforming Finite Element Method for the Surface Stokes Equation publication-title: SIAM Journal on Numerical Analysis – volume: 62 start-page: 248 issue: 1 year: 2024 end-page: 272 article-title: A Tangential and Penalty‐Free Finite Element Method for the Surface Stokes Problem publication-title: SIAM Journal on Numerical Analysis – volume: 40 start-page: A2492 issue: 4 year: 2018 end-page: A2518 article-title: A Finite Element Method for the Surface Stokes Problem publication-title: SIAM Journal on Scientific Computing – volume: 37 start-page: 63 year: 2003 end-page: 72 article-title: Discontinuous Galerkin and the Crouzeix–Raviart Element: Application to Elasticity publication-title: ESAIM – volume: 7 start-page: 33 issue: R3 year: 1973 end-page: 75 article-title: Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations. I publication-title: Revue française d'automatique informatique recherche opérationnelle. Mathématique – volume: 29 start-page: 245 issue: 3 year: 2021 end-page: 267 article-title: Error Analysis of Higher Order Trace Finite Element Methods for the Surface Stokes Equation publication-title: Journal of Numerical Mathematics – year: 2024 – volume: 56 start-page: 2406 issue: 4 year: 2018 end-page: 2429 article-title: A Trace Finite Element Method for Vector‐Laplacians on Surfaces publication-title: SIAM Journal on Numerical Analysis – volume: 708 start-page: 418 year: 2012 end-page: 438 article-title: A Finite Element Approach to Incompressible Two‐Phase Flow on Manifolds publication-title: Journal of Fluid Mechanics – volume: 21 start-page: 1 year: 2020 end-page: 103 – volume: 20 start-page: 353 year: 2018 end-page: 377 article-title: Incompressible Fluid Problems on Embedded Surfaces: Modeling and Variational Formulations publication-title: Interfaces and Free Boundaries – volume: 23 issue: 4 year: 2023 article-title: Surface Crouzeix‐Raviart Element for the Bochner Laplacian Equation publication-title: Proceeding In Applied Mathematics and Mechanics – volume: 14 issue: 12 year: 2022 article-title: Discretization of Sea Ice Dynamics in the Tangent Plane to the Sphere by a CD‐Grid‐Type Finite Element publication-title: Journal of Advances in Modeling Earth Systems – ident: e_1_2_7_7_1 doi: 10.1137/21M1403126 – ident: e_1_2_7_22_1 doi: 10.4171/ifb/405 – ident: e_1_2_7_15_1 doi: 10.1090/mcom/3551 – ident: e_1_2_7_17_1 doi: 10.1002/pamm.202300207 – ident: e_1_2_7_16_1 – ident: e_1_2_7_18_1 doi: 10.1137/17M1146038 – ident: e_1_2_7_9_1 doi: 10.1002/nme.6317 – ident: e_1_2_7_14_1 doi: 10.1137/18M1166183 – ident: e_1_2_7_6_1 doi: 10.1016/bs.hna.2019.06.002 – ident: e_1_2_7_21_1 doi: 10.1051/m2an/197307R300331 – ident: e_1_2_7_2_1 doi: 10.1007/s00211‐015‐0787‐5 – ident: e_1_2_7_8_1 doi: 10.1515/jnma-2020-0017 – ident: e_1_2_7_10_1 doi: 10.1137/18M1176464 – ident: e_1_2_7_20_1 doi: 10.1051/m2an:2003020 – ident: e_1_2_7_19_1 doi: 10.1090/mcom/3179 – ident: e_1_2_7_3_1 doi: 10.1017/jfm.2012.317 – ident: e_1_2_7_12_1 doi: 10.1137/19M1284592 – ident: e_1_2_7_5_1 doi: 10.1007/s10208‐012‐9119‐7 – ident: e_1_2_7_13_1 doi: 10.1137/23M1583995 – ident: e_1_2_7_4_1 doi: 10.1093/imanum/drz018 – ident: e_1_2_7_11_1 doi: 10.1029/2022MS003010 |
SSID | ssj0021630 |
Score | 2.284443 |
Snippet | ABSTRACT
In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved... In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
Title | Vector‐Valued Nonconforming Finite Element for Surface Flows |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400116 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20K134FuujzEJwNe1kZvLaCEUaipBS1JbuwrwCoqalbRBc-Ql-o1_iTNLG1o2Iy4QMJHdmcs5czj0XgMuQmInFvkAs9ELEfCFQIJVCkimphHRFym01ctzzugN2O3JHK1X8pT9ElXCzO6P4X9sNzsWs9W0aOuEvtpLcaiAdx3puW8GWZUV3lX8UMWSjqIg0MI18g1xL10ZMWuvD11BplaUWMBPtAr58wVJd8tTM56Ip3354N_7nC_bAzoKDwna5aPbBhs4OwHZcGbjODsH1sMjmf75_DPlzrhXsjTNzcrYM12AdjB4tVYWdUnsOzW14n09TLjWMnsevsyMwiDoPN120aLWApGE4GEnqauYJJ-VcMVcbWmCueYoVkZ7WIcVcY8kC7VGDeQGVqSMDZlMhWoQpkQ49BrVsnOkTAGloOIOvfNvWmNEUc27OYDzEZtZ9GnBSB1fLUCeT0lEjKb2TSWIjklQRqYMyfL88lvTbcWxNMvDpXwecgS1i-_kWmrJzUJtPc31hSMZcNMAmYf1GsZy-APUCy7w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46H9QH7-K85kHwKVuaZL28CENWpq5DdBu-lSRNQZzd2FYEn_wJ_kZ_iUlrq_NFxMeWBtKTy_edwznfAeDUI3phsSMQ82wPMUcI5MooQpJFMhKyIWJuqpGDrt3us6v7RpFNaGphcn2IMuBmTkZ2X5sDbgLS9S_V0DF_MqXkJgnSsuxFsGTaemde1W2pIEU03chqIjVQI0djV6HbiEl9fvwcLn3nqRnQ-OtAFFPM80sea-lM1OTLD_XGf_3DBlj7pKGwme-bTbCgki2wGpQartNtcD7IAvrvr28DPkxVBLujRDvPhuRquIP-g2GrsJWnn0P9Gt6lk5hLBf3h6Hm6A_p-q3fRRp_dFpDUJAcjSRuK2cKKOY9YQ2lmoJ95jCMibaU8irnCkrnKphr2XCpjS7rMREOU8GIiLboLKskoUXsAUk_TBidyTGdjRmPMuXbDuIf1wjvU5aQKzgpbh-NcVCPM5ZNJaCwSlhapgtx-v3wW3jSDwOhk4P2_DjgBy-1e0Ak7l93rA7BCTHvfLMXsEFRmk1Qdac4xE8fZrvoA94_PAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20gujCt1ifWQiu0k4yk9dGKLahPlKK2tJdmCeINS1tg-DKT_Ab_RJnkja2bkRcZshA5s6dnDOXe88F4Dyw1cZCj5o4cAMTe5SaPuPcZJgzTplDJdHVyFHLbXbwTc_pzVXx5_oQRcBNn4zsf60P-JDL6rdo6JC86EpynQNpWe4yWMEu9LVf1-8LASlbsY2sJFLhtOkp6JrJNkK7ujh_AZbmaWqGM-EmILMvzNNLnivphFbY2w_xxv8sYQtsTEmoUcu9ZhssiWQHrEeFgut4F1x2s3D-5_tHl_RTwY3WIFFXZ01xFdgZ4ZPmqkYjTz431LDxkI4kYcII-4PX8R7ohI3Hq6Y57bVgMkVxoMmQI7BLLUkIx45QvEA9Ewm5zVwhAgSJgAz7wkUK9HzEpMV8rGMhggbSZhbaB6VkkIgDYKBAkQaPe7qvMUYSEqIuYSSAats95BO7DC5mpo6HuaRGnIsn27G2SFxYpAxy8_3yWtyuRZFWyYCHf51wBlbb9TC-u27dHoE1W_f2zfLLjkFpMkrFiSIcE3qa-dQXx0LNuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector%E2%80%90Valued+Nonconforming+Finite+Element+for+Surface+Flows&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Mehlmann%2C+Carolin&rft.date=2025-03-01&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1002%2Fpamm.202400116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pamm_202400116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon |