Vector‐Valued Nonconforming Finite Element for Surface Flows

ABSTRACT In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vecto...

Full description

Saved in:
Bibliographic Details
Published inProceedings in applied mathematics and mechanics Vol. 25; no. 1
Main Author Mehlmann, Carolin
Format Journal Article
LanguageEnglish
Published 01.03.2025
Online AccessGet full text
ISSN1617-7061
1617-7061
DOI10.1002/pamm.202400116

Cover

Loading…
Abstract ABSTRACT In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vector‐valued Laplace problem, which includes the symmetrical strain rate tensor, an important operator for modeling flow problems. The approximation of the strain rate tensor with the Crouzeix–Raviart element leads to oscillations in the velocity field due to a nontrivial kernel. We derive a stabilized form of the equation and present optimal error bounds in the H1$H^1$‐norm for the Crouzeix–Raviart finite element. The theoretical findings are supported by numerical results.
AbstractList In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vector‐valued Laplace problem, which includes the symmetrical strain rate tensor, an important operator for modeling flow problems. The approximation of the strain rate tensor with the Crouzeix–Raviart element leads to oscillations in the velocity field due to a nontrivial kernel. We derive a stabilized form of the equation and present optimal error bounds in the ‐norm for the Crouzeix–Raviart finite element. The theoretical findings are supported by numerical results.
ABSTRACT In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In this contribution, we derive an error analysis for a vector‐valued Crouzeix–Raviart element. The derivation is performed on the vector‐valued Laplace problem, which includes the symmetrical strain rate tensor, an important operator for modeling flow problems. The approximation of the strain rate tensor with the Crouzeix–Raviart element leads to oscillations in the velocity field due to a nontrivial kernel. We derive a stabilized form of the equation and present optimal error bounds in the H1$H^1$‐norm for the Crouzeix–Raviart finite element. The theoretical findings are supported by numerical results.
Author Mehlmann, Carolin
Author_xml – sequence: 1
  givenname: Carolin
  orcidid: 0000-0001-7329-5178
  surname: Mehlmann
  fullname: Mehlmann, Carolin
  email: carolin.mehlmann@ovgu.de
  organization: Otto von Guericke University Magdeburg
BookMark eNqFj8FKw0AURQepYFvdus4PJL43M5mmG6GU1gqtCmq3YTp5I5FkpkxSSnd-gt_ol5hSEXeu3n2Xey-cAes574ixa4QEAfjNVtd1woFLAER1xvqocBSPQGHvj75gg6Z57_KoBPTZ7ZpM68PXx-daVzsqogfvjHfWh7p0b9G8dGVL0ayimlwbdXb0vAtWG4rmld83l-zc6qqhq587ZK_z2ct0ES8f7-6nk2VskKcQG5GSVBu0WhcypYxD92sLBTeKaCxAExiZkRIoIBPGosmkECBpM7bcoBiy5LRrgm-aQDbfhrLW4ZAj5Ef6_Eif_9J3hfRU2JcVHf5J50-T1Qo5piC-Ac8MYHM
Cites_doi 10.1137/21M1403126
10.4171/ifb/405
10.1090/mcom/3551
10.1002/pamm.202300207
10.1137/17M1146038
10.1002/nme.6317
10.1137/18M1166183
10.1016/bs.hna.2019.06.002
10.1051/m2an/197307R300331
10.1007/s00211‐015‐0787‐5
10.1515/jnma-2020-0017
10.1137/18M1176464
10.1051/m2an:2003020
10.1090/mcom/3179
10.1017/jfm.2012.317
10.1137/19M1284592
10.1007/s10208‐012‐9119‐7
10.1137/23M1583995
10.1093/imanum/drz018
10.1029/2022MS003010
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
DBID 24P
AAYXX
CITATION
DOI 10.1002/pamm.202400116
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1617-7061
EndPage n/a
ExternalDocumentID 10_1002_pamm_202400116
PAMM12150
Genre researchArticle
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 463061012
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
50Y
50Z
51W
51X
52M
52N
52O
52P
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OK1
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGYGG
AMVHM
CITATION
ID FETCH-LOGICAL-c1250-c35e46b1faad45e8205e4af0d2c6ee930ae0c48e6313083cf1c843304eb9f2c13
IEDL.DBID DR2
ISSN 1617-7061
IngestDate Tue Jul 01 05:17:57 EDT 2025
Thu Mar 27 11:05:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1250-c35e46b1faad45e8205e4af0d2c6ee930ae0c48e6313083cf1c843304eb9f2c13
ORCID 0000-0001-7329-5178
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400116
PageCount 6
ParticipantIDs crossref_primary_10_1002_pamm_202400116
wiley_primary_10_1002_pamm_202400116_PAMM12150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Proceedings in applied mathematics and mechanics
PublicationYear 2025
References 2017; 86
2019; 40
2023; 23
2021; 29
2016; 134
2024; 62
2022; 14
2003; 37
2012; 708
2020; 58
2018; 40
2020; 21
2022; 44
2024
2018; 56
2012; 12
1973; 7
2018; 20
2018; 16
2021; 90
2019; 121
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 44
  start-page: A1807
  issue: 4
  year: 2022
  end-page: A1832
  article-title: Finite Element Discretization Methods for Velocity‐Pressure and Stream Function Formulations of Surface Stokes Equations
  publication-title: SIAM Journal on Scientific Computing
– volume: 16
  start-page: 1448
  issue: 3
  year: 2018
  end-page: 1453
  article-title: Erratum: The Interplay of Curvature and Vortices in Flow on Curved Surfaces
  publication-title: Multiscale Modeling & Simulation
– volume: 134
  start-page: 783
  issue: 4
  year: 2016
  end-page: 822
  article-title: A Stable Numerical Method for the Dynamics of Fluidic Membranes
  publication-title: Numerische Mathematik
– volume: 40
  start-page: 1652
  issue: 3
  year: 2019
  end-page: 1701
  article-title: Analysis of Finite Element Methods for Vector Laplacians on Surfaces
  publication-title: IMA Journal of Numerical Analysis
– volume: 90
  start-page: 1527
  year: 2021
  end-page: 1555
  article-title: Inf‐sup Stability of the Trace P2‐P1 Taylor‐Hood Elements for Surface PDEs
  publication-title: Mathematics of Computation
– volume: 86
  start-page: 2613
  year: 2017
  end-page: 2649
  article-title: A Continuous/Discontinuous Galerkin Method and a Priori Error Estimates for the Biharmonic Problem on Surfaces
  publication-title: Mathematics and Computing
– volume: 12
  start-page: 263
  issue: 3
  year: 2012
  end-page: 293
  article-title: Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces
  publication-title: Foundations of Computational Mathematics
– volume: 121
  start-page: 2503
  year: 2019
  end-page: 2533
  article-title: Divergence–Free Tangential Finite Element Methods for Incompressible Flows on Surfaces
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 58
  start-page: 2764
  issue: 5
  year: 2020
  end-page: 2798
  article-title: A Divergence‐Conforming Finite Element Method for the Surface Stokes Equation
  publication-title: SIAM Journal on Numerical Analysis
– volume: 62
  start-page: 248
  issue: 1
  year: 2024
  end-page: 272
  article-title: A Tangential and Penalty‐Free Finite Element Method for the Surface Stokes Problem
  publication-title: SIAM Journal on Numerical Analysis
– volume: 40
  start-page: A2492
  issue: 4
  year: 2018
  end-page: A2518
  article-title: A Finite Element Method for the Surface Stokes Problem
  publication-title: SIAM Journal on Scientific Computing
– volume: 37
  start-page: 63
  year: 2003
  end-page: 72
  article-title: Discontinuous Galerkin and the Crouzeix–Raviart Element: Application to Elasticity
  publication-title: ESAIM
– volume: 7
  start-page: 33
  issue: R3
  year: 1973
  end-page: 75
  article-title: Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations. I
  publication-title: Revue française d'automatique informatique recherche opérationnelle. Mathématique
– volume: 29
  start-page: 245
  issue: 3
  year: 2021
  end-page: 267
  article-title: Error Analysis of Higher Order Trace Finite Element Methods for the Surface Stokes Equation
  publication-title: Journal of Numerical Mathematics
– year: 2024
– volume: 56
  start-page: 2406
  issue: 4
  year: 2018
  end-page: 2429
  article-title: A Trace Finite Element Method for Vector‐Laplacians on Surfaces
  publication-title: SIAM Journal on Numerical Analysis
– volume: 708
  start-page: 418
  year: 2012
  end-page: 438
  article-title: A Finite Element Approach to Incompressible Two‐Phase Flow on Manifolds
  publication-title: Journal of Fluid Mechanics
– volume: 21
  start-page: 1
  year: 2020
  end-page: 103
– volume: 20
  start-page: 353
  year: 2018
  end-page: 377
  article-title: Incompressible Fluid Problems on Embedded Surfaces: Modeling and Variational Formulations
  publication-title: Interfaces and Free Boundaries
– volume: 23
  issue: 4
  year: 2023
  article-title: Surface Crouzeix‐Raviart Element for the Bochner Laplacian Equation
  publication-title: Proceeding In Applied Mathematics and Mechanics
– volume: 14
  issue: 12
  year: 2022
  article-title: Discretization of Sea Ice Dynamics in the Tangent Plane to the Sphere by a CD‐Grid‐Type Finite Element
  publication-title: Journal of Advances in Modeling Earth Systems
– ident: e_1_2_7_7_1
  doi: 10.1137/21M1403126
– ident: e_1_2_7_22_1
  doi: 10.4171/ifb/405
– ident: e_1_2_7_15_1
  doi: 10.1090/mcom/3551
– ident: e_1_2_7_17_1
  doi: 10.1002/pamm.202300207
– ident: e_1_2_7_16_1
– ident: e_1_2_7_18_1
  doi: 10.1137/17M1146038
– ident: e_1_2_7_9_1
  doi: 10.1002/nme.6317
– ident: e_1_2_7_14_1
  doi: 10.1137/18M1166183
– ident: e_1_2_7_6_1
  doi: 10.1016/bs.hna.2019.06.002
– ident: e_1_2_7_21_1
  doi: 10.1051/m2an/197307R300331
– ident: e_1_2_7_2_1
  doi: 10.1007/s00211‐015‐0787‐5
– ident: e_1_2_7_8_1
  doi: 10.1515/jnma-2020-0017
– ident: e_1_2_7_10_1
  doi: 10.1137/18M1176464
– ident: e_1_2_7_20_1
  doi: 10.1051/m2an:2003020
– ident: e_1_2_7_19_1
  doi: 10.1090/mcom/3179
– ident: e_1_2_7_3_1
  doi: 10.1017/jfm.2012.317
– ident: e_1_2_7_12_1
  doi: 10.1137/19M1284592
– ident: e_1_2_7_5_1
  doi: 10.1007/s10208‐012‐9119‐7
– ident: e_1_2_7_13_1
  doi: 10.1137/23M1583995
– ident: e_1_2_7_4_1
  doi: 10.1093/imanum/drz018
– ident: e_1_2_7_11_1
  doi: 10.1029/2022MS003010
SSID ssj0021630
Score 2.284443
Snippet ABSTRACT In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved...
In the recent years, there has been an increasing interest in the analysis of finite element methods for vector‐valued flow problems on curved geometries. In...
SourceID crossref
wiley
SourceType Index Database
Publisher
Title Vector‐Valued Nonconforming Finite Element for Surface Flows
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400116
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20K134FuujzEJwNe1kZvLaCEUaipBS1JbuwrwCoqalbRBc-Ql-o1_iTNLG1o2Iy4QMJHdmcs5czj0XgMuQmInFvkAs9ELEfCFQIJVCkimphHRFym01ctzzugN2O3JHK1X8pT9ElXCzO6P4X9sNzsWs9W0aOuEvtpLcaiAdx3puW8GWZUV3lX8UMWSjqIg0MI18g1xL10ZMWuvD11BplaUWMBPtAr58wVJd8tTM56Ip3354N_7nC_bAzoKDwna5aPbBhs4OwHZcGbjODsH1sMjmf75_DPlzrhXsjTNzcrYM12AdjB4tVYWdUnsOzW14n09TLjWMnsevsyMwiDoPN120aLWApGE4GEnqauYJJ-VcMVcbWmCueYoVkZ7WIcVcY8kC7VGDeQGVqSMDZlMhWoQpkQ49BrVsnOkTAGloOIOvfNvWmNEUc27OYDzEZtZ9GnBSB1fLUCeT0lEjKb2TSWIjklQRqYMyfL88lvTbcWxNMvDpXwecgS1i-_kWmrJzUJtPc31hSMZcNMAmYf1GsZy-APUCy7w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46H9QH7-K85kHwKVuaZL28CENWpq5DdBu-lSRNQZzd2FYEn_wJ_kZ_iUlrq_NFxMeWBtKTy_edwznfAeDUI3phsSMQ82wPMUcI5MooQpJFMhKyIWJuqpGDrt3us6v7RpFNaGphcn2IMuBmTkZ2X5sDbgLS9S_V0DF_MqXkJgnSsuxFsGTaemde1W2pIEU03chqIjVQI0djV6HbiEl9fvwcLn3nqRnQ-OtAFFPM80sea-lM1OTLD_XGf_3DBlj7pKGwme-bTbCgki2wGpQartNtcD7IAvrvr28DPkxVBLujRDvPhuRquIP-g2GrsJWnn0P9Gt6lk5hLBf3h6Hm6A_p-q3fRRp_dFpDUJAcjSRuK2cKKOY9YQ2lmoJ95jCMibaU8irnCkrnKphr2XCpjS7rMREOU8GIiLboLKskoUXsAUk_TBidyTGdjRmPMuXbDuIf1wjvU5aQKzgpbh-NcVCPM5ZNJaCwSlhapgtx-v3wW3jSDwOhk4P2_DjgBy-1e0Ak7l93rA7BCTHvfLMXsEFRmk1Qdac4xE8fZrvoA94_PAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20gujCt1ifWQiu0k4yk9dGKLahPlKK2tJdmCeINS1tg-DKT_Ab_RJnkja2bkRcZshA5s6dnDOXe88F4Dyw1cZCj5o4cAMTe5SaPuPcZJgzTplDJdHVyFHLbXbwTc_pzVXx5_oQRcBNn4zsf60P-JDL6rdo6JC86EpynQNpWe4yWMEu9LVf1-8LASlbsY2sJFLhtOkp6JrJNkK7ujh_AZbmaWqGM-EmILMvzNNLnivphFbY2w_xxv8sYQtsTEmoUcu9ZhssiWQHrEeFgut4F1x2s3D-5_tHl_RTwY3WIFFXZ01xFdgZ4ZPmqkYjTz431LDxkI4kYcII-4PX8R7ohI3Hq6Y57bVgMkVxoMmQI7BLLUkIx45QvEA9Ewm5zVwhAgSJgAz7wkUK9HzEpMV8rGMhggbSZhbaB6VkkIgDYKBAkQaPe7qvMUYSEqIuYSSAats95BO7DC5mpo6HuaRGnIsn27G2SFxYpAxy8_3yWtyuRZFWyYCHf51wBlbb9TC-u27dHoE1W_f2zfLLjkFpMkrFiSIcE3qa-dQXx0LNuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector%E2%80%90Valued+Nonconforming+Finite+Element+for+Surface+Flows&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Mehlmann%2C+Carolin&rft.date=2025-03-01&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1002%2Fpamm.202400116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pamm_202400116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon