Bessel‐Beam Direct Write of the Etch Mask in a Nano‐Film of Alumina for High‐Efficiency Si Solar Cells

Large surface area applications such as high efficiency >26% solar cells require surface patterning with 1–10 μm periodic patterns at high fidelity over areas (before up scaling to ) to perform at, or exceed, the Lambertian (ray optics) limit of light trapping. Herein, a pathway is shown to high‐...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials
Main Authors Katkus, Tomas, Ng, Soon Hock, Mu, Haoran, Le, Nguyen Hoai An, Stonytė, Dominyka, Khajehsaeidimahabadi, Zahra, Seniutinas, Gediminas, Baltrukonis, Justas, Ulčinas, Orestas, Mikutis, Mindaugas, Sabonis, Vytautas, Nishijima, Yoshiaki, Rienäcker, Michael, Römer, Udo, Krügener, Jan, Peibst, Robby, John, Sajeev, Juodkazis, Saulius
Format Journal Article
LanguageEnglish
Published 29.08.2024
Online AccessGet full text

Cover

Loading…
Abstract Large surface area applications such as high efficiency >26% solar cells require surface patterning with 1–10 μm periodic patterns at high fidelity over areas (before up scaling to ) to perform at, or exceed, the Lambertian (ray optics) limit of light trapping. Herein, a pathway is shown to high‐resolution sub‐1 μm etch mask patterning by ablation using direct femtosecond laser writing performed at room conditions (without the need for a vacuum‐based lithography approach). A Bessel beam is used to alleviate the required high surface tracking tolerance for ablation of 0.3–0.8 μm diameter holes in 40 nm alumina –mask at high writing speed, 7.5 cm s −1 ; a patterning rate 1 cm 2 per 20 min. Plasma etching protocol was optimized for a zero‐mesa formation of photonic‐crystal‐trapping structures and smooth surfaces at the nanoscale level. The maximum of minority carrier recombination time of 2.9 ms was achieved after the standard wafer passivation etch; resistivity of the wafer was 3.5 Ω cm. Scaling up in area and throughput of the demonstrated approach is outlined.
AbstractList Large surface area applications such as high efficiency >26% solar cells require surface patterning with 1–10 μm periodic patterns at high fidelity over areas (before up scaling to ) to perform at, or exceed, the Lambertian (ray optics) limit of light trapping. Herein, a pathway is shown to high‐resolution sub‐1 μm etch mask patterning by ablation using direct femtosecond laser writing performed at room conditions (without the need for a vacuum‐based lithography approach). A Bessel beam is used to alleviate the required high surface tracking tolerance for ablation of 0.3–0.8 μm diameter holes in 40 nm alumina –mask at high writing speed, 7.5 cm s −1 ; a patterning rate 1 cm 2 per 20 min. Plasma etching protocol was optimized for a zero‐mesa formation of photonic‐crystal‐trapping structures and smooth surfaces at the nanoscale level. The maximum of minority carrier recombination time of 2.9 ms was achieved after the standard wafer passivation etch; resistivity of the wafer was 3.5 Ω cm. Scaling up in area and throughput of the demonstrated approach is outlined.
Author Baltrukonis, Justas
Mikutis, Mindaugas
Peibst, Robby
Ng, Soon Hock
Mu, Haoran
Khajehsaeidimahabadi, Zahra
Juodkazis, Saulius
Stonytė, Dominyka
Le, Nguyen Hoai An
Rienäcker, Michael
Katkus, Tomas
Ulčinas, Orestas
Römer, Udo
Sabonis, Vytautas
Seniutinas, Gediminas
Krügener, Jan
Nishijima, Yoshiaki
John, Sajeev
Author_xml – sequence: 1
  givenname: Tomas
  surname: Katkus
  fullname: Katkus, Tomas
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia
– sequence: 2
  givenname: Soon Hock
  surname: Ng
  fullname: Ng, Soon Hock
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia
– sequence: 3
  givenname: Haoran
  surname: Mu
  fullname: Mu, Haoran
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia
– sequence: 4
  givenname: Nguyen Hoai An
  surname: Le
  fullname: Le, Nguyen Hoai An
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia
– sequence: 5
  givenname: Dominyka
  surname: Stonytė
  fullname: Stonytė, Dominyka
  organization: Laser Research Center Physics Faculty Vilnius University Saulėtekio Ave. 10 10223 Vilnius Lithuania
– sequence: 6
  givenname: Zahra
  surname: Khajehsaeidimahabadi
  fullname: Khajehsaeidimahabadi, Zahra
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia
– sequence: 7
  givenname: Gediminas
  surname: Seniutinas
  fullname: Seniutinas, Gediminas
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia
– sequence: 8
  givenname: Justas
  surname: Baltrukonis
  fullname: Baltrukonis, Justas
  organization: Altechna R&D Mokslininku str. 6A 08412 Vilnius Lithuania
– sequence: 9
  givenname: Orestas
  surname: Ulčinas
  fullname: Ulčinas, Orestas
  organization: Altechna R&D Mokslininku str. 6A 08412 Vilnius Lithuania
– sequence: 10
  givenname: Mindaugas
  surname: Mikutis
  fullname: Mikutis, Mindaugas
  organization: Altechna R&D Mokslininku str. 6A 08412 Vilnius Lithuania
– sequence: 11
  givenname: Vytautas
  surname: Sabonis
  fullname: Sabonis, Vytautas
  organization: Altechna R&D Mokslininku str. 6A 08412 Vilnius Lithuania
– sequence: 12
  givenname: Yoshiaki
  surname: Nishijima
  fullname: Nishijima, Yoshiaki
  organization: Department of Electrical and Computer Engineering Graduate School of Engineering Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
– sequence: 13
  givenname: Michael
  surname: Rienäcker
  fullname: Rienäcker, Michael
  organization: Next Generation Solar Cells Institut für Solarenergieforschung Hameln (ISFH) Am Ohrberg 1 31860 Emmerthal Germany
– sequence: 14
  givenname: Udo
  surname: Römer
  fullname: Römer, Udo
  organization: Next Generation Solar Cells Institut für Solarenergieforschung Hameln (ISFH) Am Ohrberg 1 31860 Emmerthal Germany
– sequence: 15
  givenname: Jan
  surname: Krügener
  fullname: Krügener, Jan
  organization: Institute of Electronic Materials and Devices Leibniz Universität Hannover Schneiderberg 32 30167 Hannover Germany
– sequence: 16
  givenname: Robby
  surname: Peibst
  fullname: Peibst, Robby
  organization: Next Generation Solar Cells Institut für Solarenergieforschung Hameln (ISFH) Am Ohrberg 1 31860 Emmerthal Germany, Institute of Electronic Materials and Devices Leibniz Universität Hannover Schneiderberg 32 30167 Hannover Germany
– sequence: 17
  givenname: Sajeev
  surname: John
  fullname: John, Sajeev
  organization: Department of Physics University of Toronto 60 St. George Street Toronto ON M5S 1A7 Canada
– sequence: 18
  givenname: Saulius
  orcidid: 0000-0003-3542-3874
  surname: Juodkazis
  fullname: Juodkazis, Saulius
  organization: Optical Sciences Centre ARC Training Centre in Surface Engineering for Advanced Materials (SEAM) Swinburne University of Technology Hawthorn Victoria 3122 Australia, Laser Research Center Physics Faculty Vilnius University Saulėtekio Ave. 10 10223 Vilnius Lithuania, WRH Program International Research Frontiers Initiative (IRFI) Tokyo Institute of Technology Nagatsuta‐cho, Midori‐ku Yokohama Kanagawa 226‐8503 Japan
BookMark eNo9kLtOwzAYhS1UJNrCyuwXSPl9ycVjW1qKVGAoiDFy4t_U4CTIDkM3HoFn5ElIBWI6RzqX4ZuQUdu1SMglgxkD4FfaYDPjwCVAztgJGbOU5wnPZDEavBRFwrI0OyOTGF8BGAMmxsQvMEb0359fC9QNvXYB654-B9cj7Szt90hXfb2ndzq-UddSTe912w31tfPNsTH3H41rNbVdoBv3sh-ilbWudtjWB7pzdNd5HegSvY_n5NRqH_HiT6fkab16XG6S7cPN7XK-TWrGZZ9YzHVeKCMzaWyFaaUwg6pALlWqcm6EgkJyUfFKWGMtQGVAqWFrpBYiY2JKZr-_dehiDGjL9-AaHQ4lg_LIqjyyKv9ZiR9aDmDG
Cites_doi 10.1038/asiamat.2010.82
10.1021/nl401544y
10.1103/PhysRevA.78.023825
10.1021/nl2045777
10.1063/1.4809982
10.1007/s003390100893
10.1080/0010751042000275259
10.1038/s41560-023-01255-2
10.1038/ncomms1528
10.1039/C5EE03380B
10.1016/j.optlastec.2022.108647
10.1016/j.jclepro.2018.07.159
10.1063/1.4768689
10.1016/j.optlastec.2014.04.009
10.1016/j.solmat.2018.06.020
10.1038/s41586-023-06948-y
10.3390/mi14030550
10.1103/PhysRevApplied.9.044009
10.1364/OE.27.015205
10.1080/23746149.2018.1548305
10.29026/oea.2022.210086
10.1038/s41598-020-68704-w
10.1038/nenergy.2017.32
10.1063/1.4802442
10.1016/0921-5107(89)90284-5
10.1016/j.cap.2020.01.013
10.1149/1.2086322
10.1021/acsnano.6b01875
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adem.202400711
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
ExternalDocumentID 10_1002_adem_202400711
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAYXX
AAZKR
ABCUV
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F5P
G-S
GNP
HGLYW
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
ID FETCH-LOGICAL-c124t-fe7a789d464dfbe5b9e60b8e2495972d3908423b2b3fdff00bd099c12d4a33613
ISSN 1438-1656
IngestDate Wed Sep 04 12:47:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c124t-fe7a789d464dfbe5b9e60b8e2495972d3908423b2b3fdff00bd099c12d4a33613
ORCID 0000-0003-3542-3874
ParticipantIDs crossref_primary_10_1002_adem_202400711
PublicationCentury 2000
PublicationDate 2024-08-29
PublicationDateYYYYMMDD 2024-08-29
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-29
  day: 29
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2024
References e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Kumaravelua G. (e_1_2_10_35_1) 2006; 47
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
Yamamoto K. (e_1_2_10_16_1) 2003; 7
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_3_1
  doi: 10.1038/asiamat.2010.82
– ident: e_1_2_10_17_1
  doi: 10.1021/nl401544y
– ident: e_1_2_10_10_1
  doi: 10.1103/PhysRevA.78.023825
– ident: e_1_2_10_29_1
  doi: 10.1021/nl2045777
– ident: e_1_2_10_2_1
– ident: e_1_2_10_23_1
  doi: 10.1063/1.4809982
– ident: e_1_2_10_27_1
  doi: 10.1007/s003390100893
– ident: e_1_2_10_25_1
  doi: 10.1080/0010751042000275259
– ident: e_1_2_10_6_1
  doi: 10.1038/s41560-023-01255-2
– ident: e_1_2_10_12_1
  doi: 10.1038/ncomms1528
– ident: e_1_2_10_4_1
  doi: 10.1039/C5EE03380B
– ident: e_1_2_10_32_1
  doi: 10.1016/j.optlastec.2022.108647
– volume: 47
  start-page: 128
  year: 2006
  ident: e_1_2_10_35_1
  publication-title: Fuel Energy Abstracts
  contributor:
    fullname: Kumaravelua G.
– ident: e_1_2_10_5_1
  doi: 10.1016/j.jclepro.2018.07.159
– ident: e_1_2_10_28_1
  doi: 10.1063/1.4768689
– ident: e_1_2_10_20_1
  doi: 10.1016/j.optlastec.2014.04.009
– ident: e_1_2_10_24_1
– ident: e_1_2_10_26_1
  doi: 10.1016/j.solmat.2018.06.020
– volume: 7
  start-page: 12
  year: 2003
  ident: e_1_2_10_16_1
  publication-title: JSAP Int.
  contributor:
    fullname: Yamamoto K.
– ident: e_1_2_10_19_1
  doi: 10.1038/s41586-023-06948-y
– ident: e_1_2_10_21_1
  doi: 10.3390/mi14030550
– ident: e_1_2_10_18_1
  doi: 10.1103/PhysRevApplied.9.044009
– ident: e_1_2_10_31_1
– ident: e_1_2_10_30_1
  doi: 10.1364/OE.27.015205
– ident: e_1_2_10_9_1
  doi: 10.1080/23746149.2018.1548305
– ident: e_1_2_10_14_1
  doi: 10.29026/oea.2022.210086
– ident: e_1_2_10_15_1
– ident: e_1_2_10_13_1
  doi: 10.1038/s41598-020-68704-w
– ident: e_1_2_10_7_1
– ident: e_1_2_10_8_1
  doi: 10.1038/nenergy.2017.32
– ident: e_1_2_10_22_1
  doi: 10.1063/1.4802442
– ident: e_1_2_10_34_1
  doi: 10.1016/0921-5107(89)90284-5
– ident: e_1_2_10_36_1
  doi: 10.1016/j.cap.2020.01.013
– ident: e_1_2_10_33_1
  doi: 10.1149/1.2086322
– ident: e_1_2_10_11_1
  doi: 10.1021/acsnano.6b01875
SSID ssj0011013
Score 2.4629304
Snippet Large surface area applications such as high efficiency >26% solar cells require surface patterning with 1–10 μm periodic patterns at high fidelity over areas...
SourceID crossref
SourceType Aggregation Database
Title Bessel‐Beam Direct Write of the Etch Mask in a Nano‐Film of Alumina for High‐Efficiency Si Solar Cells
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcoED4lMsX_IBiUOUxU3cJD52l64qpOVAd6W9VXZso6jZBLHpYTnxE_iN_BJm7NQJqIeFi1Wl46TyvIyfp89jQt4WzAg8hiqeykzEPM2m8M6xIraaz5gtreUl7kY--5QtL_jHy9nlZHIzUi1tO3VUft-7r-R_vArXwK-4S_YfPBtuChfgM_gXWvAwtLfy8TEW_q6DXuHYyKs-hkWw6h4EAAtwTXQmrzeY3ZAYUdvQ6bSqrxwdhShVNdLJDlH8EQwWrsiE26G5qqIVLoWjE1PX12NeO99JCcxQ3zACMuxHIUR12W22XpcUZEmYiPYZ6xaAuGzLzYABNy9KAOlIN-Tg-2V7Y9BYVtG8GScuEo6Z2D674WMth1iLxX_8VNTH3yR3oru90d1Xi8VtA0d4Q6RH02Ee2_13_9f0FkSHvkBzssb-69D_Drmb5GKGatAPn0PlMSBF7mTt8Bt39T5Z8v7P54_4zIiYnD8kD_oVBZ17eDwiE9M8JvdHdSafkNoD5dePnwgR6iFCHURoaylAhCJEKEKEVg2VFCEC5ggOtOjBQQEcFMEBXw2woKuKOlhQB4un5OJ0cX6yjPtjNuISyF0XW5PLvBCaZ1xbZWZKmIypwuCp5CJPdCpYAaRbJSq12lrGlIZlBfTVXKbwcqfPyEHTNuY5oZprlhoupkpzaHkBU4KCcWJWKGD6-SF5txus9VdfTWW93y0vbm35ktwb0PWKHHTftuY1EMVOvXEu_Q1QkWP6
link.rule.ids 315,786,790,27955,27956
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bessel%E2%80%90Beam+Direct+Write+of+the+Etch+Mask+in+a+Nano%E2%80%90Film+of+Alumina+for+High%E2%80%90Efficiency+Si+Solar+Cells&rft.jtitle=Advanced+engineering+materials&rft.au=Katkus%2C+Tomas&rft.au=Ng%2C+Soon+Hock&rft.au=Mu%2C+Haoran&rft.au=Le%2C+Nguyen+Hoai+An&rft.date=2024-08-29&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002%2Fadem.202400711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202400711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon