Reconstruct the Unknown Source on the Right Hand Side of Time Fractional Diffusion Equation with Caputo-Hadamard Derivative
The Caputo-Hadamard derivative was used to investigate the problem of functional recovery in this study. This problem is ill-posed, we propose a novel Quasi-reversibility for reconstructing the sought function and show that the regularization solution depends on space. After that, the convergence ra...
Saved in:
Published in | Electronic Journal of Applied Mathematics Vol. 2; no. 2; pp. 22 - 31 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
15.06.2024
|
Online Access | Get full text |
ISSN | 2980-2474 2980-2474 |
DOI | 10.61383/ejam.20242263 |
Cover
Loading…
Abstract | The Caputo-Hadamard derivative was used to investigate the problem of functional recovery in this study. This problem is ill-posed, we propose a novel Quasi-reversibility for reconstructing the sought function and show that the regularization solution depends on space. After that, the convergence rates are established under a priori and posterior choice rules of regularization parameters, respectively. |
---|---|
AbstractList | The Caputo-Hadamard derivative was used to investigate the problem of functional recovery in this study. This problem is ill-posed, we propose a novel Quasi-reversibility for reconstructing the sought function and show that the regularization solution depends on space. After that, the convergence rates are established under a priori and posterior choice rules of regularization parameters, respectively. |
Author | Quoc Nam, Danh Hua Hung, Ngo Ngoc Le, Dinh Long |
Author_xml | – sequence: 1 givenname: Ngo Ngoc orcidid: 0000-0002-4380-0257 surname: Hung fullname: Hung, Ngo Ngoc – sequence: 2 givenname: Danh Hua orcidid: 0000-0001-6742-2265 surname: Quoc Nam fullname: Quoc Nam, Danh Hua – sequence: 3 givenname: Dinh Long orcidid: 0000-0001-8805-4588 surname: Le fullname: Le, Dinh Long |
BookMark | eNp1kFtLAzEQhYMoWGtffc4f2JrbbpNH6cUKBaGX52XMxUbbbM1mW8Q_77YqiODTHL7hDHPOFToPVbAI3VDSLyiX_Na-wLbPCBOMFfwMdZiSJGNiIM5_6UvUq2v_RHKW50KJvIM-5lZXoU6x0QmntcWr8BqqQ8CLqona4iqc6Nw_rxOeQjB44U2LHV76rcWTCDr5KsAGj7xzTd1qPH5r4Ajxwac1HsKuSVU2BQNbiAaPbPT7dr-31-jCwaa2ve_ZRavJeDmcZrPH-4fh3SzTlAmeKVkMqAJjJFfECCcLqoQGIhnXBqwkYAXnAzfg3FJpiNOOSV5YoYBRohzvIvF1V8eqrqN1pfbp9GGK4DclJeWpw_LYYfnTYWvr_7Htom8jvP9n-AQ0RXdT |
CitedBy_id | crossref_primary_10_1007_s11075_024_01955_0 |
Cites_doi | 10.61383/ejam.20231239 10.1201/b18503 10.1016/j.chaos.2018.01.003 10.1515/156939403766493546 10.1016/j.cam.2006.10.026 10.61383/ejam.20231130 10.1007/s00009-020-01605-4 10.61383/ejam.20231237 10.1080/00207160.2019.1626012 10.1016/j.apnum.2013.12.002 10.1002/mma.9444 10.1080/00036811.2022.2102490 10.1007/s10255-020-0918-3 10.1186/1687-1847-2012-142 10.1007/s10915-020-01353-3 10.1115/1.3167616 10.4208/jcm.2107-m2020-0133 10.1515/1569394042215856 10.1016/j.amc.2018.12.063 10.1016/j.apm.2015.01.019 10.61383/ejam.20231231 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.61383/ejam.20242263 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2980-2474 |
EndPage | 31 |
ExternalDocumentID | 10_61383_ejam_20242263 |
GroupedDBID | AAYXX CITATION M~E |
ID | FETCH-LOGICAL-c1243-986719add8390d4f86194ca0823cdae80ae4337f733e18d0fcf2836e49a2109f3 |
ISSN | 2980-2474 |
IngestDate | Thu Apr 24 23:02:59 EDT 2025 Thu Jul 03 08:18:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1243-986719add8390d4f86194ca0823cdae80ae4337f733e18d0fcf2836e49a2109f3 |
ORCID | 0000-0002-4380-0257 0000-0001-8805-4588 0000-0001-6742-2265 |
OpenAccessLink | https://ejamjournal.com/index.php/ejam/article/download/ejam.20242263/ejam.20242263 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_61383_ejam_20242263 crossref_primary_10_61383_ejam_20242263 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-15 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Electronic Journal of Applied Mathematics |
PublicationYear | 2024 |
References | 4051 4052 4053 4054 4055 4056 4057 4058 4050 4048 4049 4040 4062 4041 4063 4042 4064 4043 4065 4044 4066 4045 4046 4047 4060 4061 4059 4039 |
References_xml | – ident: 4048 doi: 10.61383/ejam.20231239 – ident: 4043 doi: 10.1201/b18503 – ident: 4061 – ident: 4063 doi: 10.1016/j.chaos.2018.01.003 – ident: 4058 doi: 10.1515/156939403766493546 – ident: 4044 – ident: 4060 doi: 10.1016/j.cam.2006.10.026 – ident: 4049 doi: 10.61383/ejam.20231130 – ident: 4040 doi: 10.1007/s00009-020-01605-4 – ident: 4055 – ident: 4047 doi: 10.61383/ejam.20231237 – ident: 4054 doi: 10.1080/00207160.2019.1626012 – ident: 4057 doi: 10.1016/j.apnum.2013.12.002 – ident: 4051 doi: 10.1002/mma.9444 – ident: 4056 doi: 10.1080/00036811.2022.2102490 – ident: 4062 doi: 10.1007/s10255-020-0918-3 – ident: 4045 – ident: 4053 doi: 10.1186/1687-1847-2012-142 – ident: 4039 doi: 10.1007/s10915-020-01353-3 – ident: 4041 – ident: 4042 doi: 10.1115/1.3167616 – ident: 4050 – ident: 4052 – ident: 4066 doi: 10.4208/jcm.2107-m2020-0133 – ident: 4059 doi: 10.1515/1569394042215856 – ident: 4064 doi: 10.1016/j.amc.2018.12.063 – ident: 4065 doi: 10.1016/j.apm.2015.01.019 – ident: 4046 doi: 10.61383/ejam.20231231 |
SSID | ssib052554945 |
Score | 1.8758001 |
Snippet | The Caputo-Hadamard derivative was used to investigate the problem of functional recovery in this study. This problem is ill-posed, we propose a novel... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 22 |
Title | Reconstruct the Unknown Source on the Right Hand Side of Time Fractional Diffusion Equation with Caputo-Hadamard Derivative |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZucumlpLShaZOiQyAHo3QtaW3pGGIXE-IcQgK5GVkrtS6NNyV2Di30v_SfdkbSPmpcSHLwYgat2PV8nscnzYiQQ9vHjZM9zbRXGZNGaDazuWF96yCdcFLloUhsctEfX8uzm_ym0_nT2rW0Ws6O7c-NdSXP0SrIQK9YJfsEzdaTggC-g37hChqG66N0jLlj6gCbAkikyOAPGxj5tA7QvcT8uzsOezTnReAIsPADY1abmMDh3PsV8mbd0Y_Y-zsStKfmbrUsGZgnc4t8wxDe6sFUlZk1o98cpbMhvp3UjWHvGwxFC3PxpcSPbdjX0oK9v02171-741XtNc4D8zqcg_S8TO42sRVc4q6qWK8ZjRrXAAku48k8x26DLFll3gIfb1tY3vLV0YGsewGIUBS2o3DfDPYa4FgsLBp_V63xr7nBenMipEVhhineP63uf0G2OWQiaPsnv0eVycohI5M6HIVdv0VsDRqm-PTPI7RCn1YMc7VDXiXl0JOIpNek4xZvyK8WiiioiiYU0YgiWi6CNKCIIoooooiWniKKaIMiWqOIViiiiCK6hiLaoOgtuf48ujods3QkB7MQCAqmsR2iBp8IcXVWSK-QBLMGl2ttYZzKjJNCDPxACNdTReath_i176Q2vJdpL3bJ1qJcuHeEypxLp4p84KUHb61mnrvCQXiqlZCFzvcIq36tqU396vHYlO_TzQraI0f1-LvYqeU_I98_euQH8rIB8T7ZAlW4AwhCl7OPAQZ_AUVOiRs |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruct+the+Unknown+Source+on+the+Right+Hand+Side+of+Time+Fractional+Diffusion+Equation+with+Caputo-Hadamard+Derivative&rft.jtitle=Electronic+Journal+of+Applied+Mathematics&rft.au=Hung%2C+Ngo+Ngoc&rft.au=Quoc+Nam%2C+Danh+Hua&rft.au=Le%2C+Dinh+Long&rft.date=2024-06-15&rft.issn=2980-2474&rft.eissn=2980-2474&rft.volume=2&rft.issue=2&rft.spage=22&rft.epage=31&rft_id=info:doi/10.61383%2Fejam.20242263&rft.externalDBID=n%2Fa&rft.externalDocID=10_61383_ejam_20242263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2980-2474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2980-2474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2980-2474&client=summon |