Accurate Single Image to 3D Using View-Specific Neural Renderer

Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate multi-view images from a single image first and then feed these images to Neural Radiance Fields (NeRF) for 3D reconstruction. Therefore, visual...

Full description

Saved in:
Bibliographic Details
Published inJournal of Multimedia Information System Vol. 11; no. 4; pp. 241 - 248
Main Authors Jun, U-Chae, Ko, Jaeeun, Hong, Kibeom
Format Journal Article
LanguageEnglish
Published 한국멀티미디어학회 31.12.2024
Subjects
Online AccessGet full text
ISSN2383-7632
2383-7632
DOI10.33851/JMIS.2024.11.4.241

Cover

Loading…
Abstract Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate multi-view images from a single image first and then feed these images to Neural Radiance Fields (NeRF) for 3D reconstruction. Therefore, visual consistency across viewpoints of these generated multi-view images directly affects the accuracy of 3D reconstruction. However, the previous methods tend to generate view-inconsistent images due to the projective ambiguity of a single image. To address the view inconsistency, we propose a viewpoint-specific learning method for single image-to-3D reconstruction using variants of NeRF. By introducing viewpoint-specific self-attention to NeRF, our method specializes the learning for viewpoints, enabling accurate 3D reconstruction even with visually discontinuous multi-view images. Experimental results demonstrate that the proposed method outperforms state-of-the-art single image-to-3D techniques by generating more accurate and coherent 3D models. KCI Citation Count: 0
AbstractList Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate multi-view images from a single image first and then feed these images to Neural Radiance Fields (NeRF) for 3D reconstruction. Therefore, visual consistency across viewpoints of these generated multi-view images directly affects the accuracy of 3D reconstruction. However, the previous methods tend to generate view-inconsistent images due to the projective ambiguity of a single image. To address the view inconsistency, we propose a viewpoint-specific learning method for single image-to-3D reconstruction using variants of NeRF. By introducing viewpoint-specific self-attention to NeRF, our method specializes the learning for viewpoints, enabling accurate 3D reconstruction even with visually discontinuous multi-view images. Experimental results demonstrate that the proposed method outperforms state-of-the-art single image-to-3D techniques by generating more accurate and coherent 3D models. KCI Citation Count: 0
Author Ko, Jaeeun
Hong, Kibeom
Jun, U-Chae
Author_xml – sequence: 1
  givenname: U-Chae
  surname: Jun
  fullname: Jun, U-Chae
– sequence: 2
  givenname: Jaeeun
  surname: Ko
  fullname: Ko, Jaeeun
– sequence: 3
  givenname: Kibeom
  surname: Hong
  fullname: Hong, Kibeom
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162299$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpNkE1LAzEQhoNUsNb-Ai85C7smmewme5JSv1aqQj-8hmx2UkLb3ZJVxH_vtvXg6R2Gh-Gd55IMmrZBQq45SwF0xm9fXstFKpiQKeepTIXkZ2QoQEOichCDf_MFGXddqFgGoHLF1JDcTZz7ivYT6SI06y3ScmfXSD9bCvd01fU7-hHwO1ns0QUfHH3DHt_SOTY1RoxX5NzbbYfjvxyR1ePDcvqczN6fyulkljje90m0rC0q71EzByIXHqUQGnQtKll4VmkQNVhgIlOqyDJ0urDayqIqFANV5zAiN6e7TfRm44JpbTjmujWbaCbzZWk4638CoXoYTrCLbddF9GYfw87Gnx4xR2fm4MwcnBnOjTR9R_gFgBFeWw
Cites_doi 10.1109/CVPR52688.2022.01042
10.1109/CVPR.2014.59
10.1109/CVPR46437.2021.00455
10.1145/3503250
10.1109/ICCV51070.2023.00853
10.1145/3592433
10.1007/978-3-031-73232-4_25
10.1109/ICCV48922.2021.00580
10.1109/ICCV48922.2021.01072
10.1109/CVPR52733.2024.00951
10.1109/CVPR52688.2022.00541
10.1037/0033-295X.94.2.115
10.1109/CVPR.2018.00068
10.1109/TIP.2003.819861
10.1109/CVPR52729.2023.00037
10.1109/CVPR52729.2023.00816
10.1109/CVPR52729.2023.01263
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.33851/JMIS.2024.11.4.241
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2383-7632
EndPage 248
ExternalDocumentID oai_kci_go_kr_ARTI_10670327
10_33851_JMIS_2024_11_4_241
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
.UV
ACYCR
ID FETCH-LOGICAL-c1241-84dae7ffe80c3262fe422838d2b49f0b832d3a302577955ec89a8a49b97037d63
ISSN 2383-7632
IngestDate Fri Aug 01 03:44:17 EDT 2025
Tue Jul 01 02:15:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1241-84dae7ffe80c3262fe422838d2b49f0b832d3a302577955ec89a8a49b97037d63
OpenAccessLink http://www.jmis.org/download/download_pdf?doi=10.33851/JMIS.2024.11.4.241
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10670327
crossref_primary_10_33851_JMIS_2024_11_4_241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of Multimedia Information System
PublicationYear 2024
Publisher 한국멀티미디어학회
Publisher_xml – name: 한국멀티미디어학회
References key2.025011605213e+13_B15
key2.025011605213e+13_B16
key2.025011605213e+13_B17
key2.025011605213e+13_B18
key2.025011605213e+13_B19
key2.025011605213e+13_B20
key2.025011605213e+13_B10
key2.025011605213e+13_B21
key2.025011605213e+13_B3
key2.025011605213e+13_B11
key2.025011605213e+13_B22
key2.025011605213e+13_B2
key2.025011605213e+13_B12
key2.025011605213e+13_B1
key2.025011605213e+13_B13
key2.025011605213e+13_B14
key2.025011605213e+13_B7
key2.025011605213e+13_B6
key2.025011605213e+13_B5
key2.025011605213e+13_B4
key2.025011605213e+13_B9
key2.025011605213e+13_B8
References_xml – ident: key2.025011605213e+13_B13
  doi: 10.1109/CVPR52688.2022.01042
– ident: key2.025011605213e+13_B15
  doi: 10.1109/CVPR.2014.59
– ident: key2.025011605213e+13_B8
  doi: 10.1109/CVPR46437.2021.00455
– ident: key2.025011605213e+13_B19
  doi: 10.1145/3503250
– ident: key2.025011605213e+13_B4
  doi: 10.1109/ICCV51070.2023.00853
– ident: key2.025011605213e+13_B20
  doi: 10.1145/3592433
– ident: key2.025011605213e+13_B3
  doi: 10.1007/978-3-031-73232-4_25
– ident: key2.025011605213e+13_B6
– ident: key2.025011605213e+13_B7
  doi: 10.1109/ICCV48922.2021.00580
– ident: key2.025011605213e+13_B16
  doi: 10.1109/ICCV48922.2021.01072
– ident: key2.025011605213e+13_B2
  doi: 10.1109/CVPR52733.2024.00951
– ident: key2.025011605213e+13_B9
  doi: 10.1109/CVPR52688.2022.00541
– ident: key2.025011605213e+13_B1
  doi: 10.1037/0033-295X.94.2.115
– ident: key2.025011605213e+13_B22
  doi: 10.1109/CVPR.2018.00068
– ident: key2.025011605213e+13_B21
  doi: 10.1109/TIP.2003.819861
– ident: key2.025011605213e+13_B18
  doi: 10.1109/CVPR52729.2023.00037
– ident: key2.025011605213e+13_B5
  doi: 10.1109/CVPR52729.2023.00816
– ident: key2.025011605213e+13_B17
– ident: key2.025011605213e+13_B10
– ident: key2.025011605213e+13_B14
  doi: 10.1109/CVPR52729.2023.01263
– ident: key2.025011605213e+13_B12
– ident: key2.025011605213e+13_B11
SSID ssib053376707
ssib022331700
ssib036278182
Score 1.8970884
Snippet Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 241
SubjectTerms 컴퓨터학
Title Accurate Single Image to 3D Using View-Specific Neural Renderer
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162299
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Multimedia Information System, 2024, 11(4), , pp.241-248
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cILGgLEYCBL4KeSkjpOYj8hp-20Tiov29DeosRxUDVoUdUKiQf-H_-KOzvp0g6hgVRFVnpOXN_17jvL95mQt4iJqyg0ATfGBoBvy0DGvArKGrBtgXQoCRY4zz4mZ1fi_Dq-7vV-dXYtbdblwPz4Y13J_2gV7oFesUr2HzS7fSjcgDboF66gYbjeS8famA1SPfQvIAB9sf3pV9yBA2gygsTOLQJ8mtvvgTtjvp6bPjJxODJ9rGhptuXeBaauJtdVlPSbYiXvVRznM6oEvZ8UnTUENhkxNWI6dI0J0yNsaICp4a2IZlm0L6LGOyJjphSTYycrWQayGcs48-cTt2sTfMuA2FiT6xfjALBfzPQY-2mFmzjgK5k1T9Kn-FRoKIEffH3CMtF2V66hmfTrxtZ5R4AaUQDOkXe9r-fQagI59xSe-zECcvIYg8T5bHoxwEFD1BiIwbZvl5F7L1LucHLfmHn-eZnfrHLIPKY5UvGFEU8PyAMOGQsepjH7OWldG4CwqMuECLAhBai0RZYAulPon3peLDfE93cHuIOdDharugOFLo_Io8ZUqPYG-Zj07OIJ-dAaI_XGSJ0x0vWSRmPqjJHuGCP1xkhbY3xKrk4nl6OzoDmdIzCACYeBFFVh07q2MjSQA_DaOjY5WfFSqDosIVRUUREBpk5TFcfWSFXgv79UME9plUTPyOFiubDPCa2lhKy9itVQGFGbRFplAZgWZTGMK16JY_Ku_d35N0_CAvOdu2nKcZpynCZIZnORw9COyRuYG6egvyjqxb2kXpKHt4Z9Qg7Xq419BTB0Xb52Cv4NNP1sSQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Single+Image+to+3D+Using+View-Specific+Neural+Renderer&rft.jtitle=Journal+of+Multimedia+Information+System%2C+11%284%29&rft.au=%EC%9C%A0%EC%9E%AC%EC%A4%80&rft.au=%EA%B3%A0%EC%9E%AC%EC%9D%80&rft.au=%ED%99%8D%EA%B8%B0%EB%B2%94&rft.date=2024-12-31&rft.pub=%ED%95%9C%EA%B5%AD%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C&rft.eissn=2383-7632&rft.spage=241&rft.epage=248&rft_id=info:doi/10.33851%2FJMIS.2024.11.4.241&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10670327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2383-7632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2383-7632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2383-7632&client=summon