Accurate Single Image to 3D Using View-Specific Neural Renderer
Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate multi-view images from a single image first and then feed these images to Neural Radiance Fields (NeRF) for 3D reconstruction. Therefore, visual...
Saved in:
Published in | Journal of Multimedia Information System Vol. 11; no. 4; pp. 241 - 248 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
한국멀티미디어학회
31.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2383-7632 2383-7632 |
DOI | 10.33851/JMIS.2024.11.4.241 |
Cover
Loading…
Abstract | Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate multi-view images from a single image first and then feed these images to Neural Radiance Fields (NeRF) for 3D reconstruction. Therefore, visual consistency across viewpoints of these generated multi-view images directly affects the accuracy of 3D reconstruction. However, the previous methods tend to generate view-inconsistent images due to the projective ambiguity of a single image.
To address the view inconsistency, we propose a viewpoint-specific learning method for single image-to-3D reconstruction using variants of NeRF. By introducing viewpoint-specific self-attention to NeRF, our method specializes the learning for viewpoints, enabling accurate 3D reconstruction even with visually discontinuous multi-view images. Experimental results demonstrate that the proposed method outperforms state-of-the-art single image-to-3D techniques by generating more accurate and coherent 3D models. KCI Citation Count: 0 |
---|---|
AbstractList | Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate multi-view images from a single image first and then feed these images to Neural Radiance Fields (NeRF) for 3D reconstruction. Therefore, visual consistency across viewpoints of these generated multi-view images directly affects the accuracy of 3D reconstruction. However, the previous methods tend to generate view-inconsistent images due to the projective ambiguity of a single image.
To address the view inconsistency, we propose a viewpoint-specific learning method for single image-to-3D reconstruction using variants of NeRF. By introducing viewpoint-specific self-attention to NeRF, our method specializes the learning for viewpoints, enabling accurate 3D reconstruction even with visually discontinuous multi-view images. Experimental results demonstrate that the proposed method outperforms state-of-the-art single image-to-3D techniques by generating more accurate and coherent 3D models. KCI Citation Count: 0 |
Author | Ko, Jaeeun Hong, Kibeom Jun, U-Chae |
Author_xml | – sequence: 1 givenname: U-Chae surname: Jun fullname: Jun, U-Chae – sequence: 2 givenname: Jaeeun surname: Ko fullname: Ko, Jaeeun – sequence: 3 givenname: Kibeom surname: Hong fullname: Hong, Kibeom |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162299$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpNkE1LAzEQhoNUsNb-Ai85C7smmewme5JSv1aqQj-8hmx2UkLb3ZJVxH_vtvXg6R2Gh-Gd55IMmrZBQq45SwF0xm9fXstFKpiQKeepTIXkZ2QoQEOichCDf_MFGXddqFgGoHLF1JDcTZz7ivYT6SI06y3ScmfXSD9bCvd01fU7-hHwO1ns0QUfHH3DHt_SOTY1RoxX5NzbbYfjvxyR1ePDcvqczN6fyulkljje90m0rC0q71EzByIXHqUQGnQtKll4VmkQNVhgIlOqyDJ0urDayqIqFANV5zAiN6e7TfRm44JpbTjmujWbaCbzZWk4638CoXoYTrCLbddF9GYfw87Gnx4xR2fm4MwcnBnOjTR9R_gFgBFeWw |
Cites_doi | 10.1109/CVPR52688.2022.01042 10.1109/CVPR.2014.59 10.1109/CVPR46437.2021.00455 10.1145/3503250 10.1109/ICCV51070.2023.00853 10.1145/3592433 10.1007/978-3-031-73232-4_25 10.1109/ICCV48922.2021.00580 10.1109/ICCV48922.2021.01072 10.1109/CVPR52733.2024.00951 10.1109/CVPR52688.2022.00541 10.1037/0033-295X.94.2.115 10.1109/CVPR.2018.00068 10.1109/TIP.2003.819861 10.1109/CVPR52729.2023.00037 10.1109/CVPR52729.2023.00816 10.1109/CVPR52729.2023.01263 |
ContentType | Journal Article |
DBID | AAYXX CITATION ACYCR |
DOI | 10.33851/JMIS.2024.11.4.241 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2383-7632 |
EndPage | 248 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10670327 10_33851_JMIS_2024_11_4_241 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION .UV ACYCR |
ID | FETCH-LOGICAL-c1241-84dae7ffe80c3262fe422838d2b49f0b832d3a302577955ec89a8a49b97037d63 |
ISSN | 2383-7632 |
IngestDate | Fri Aug 01 03:44:17 EDT 2025 Tue Jul 01 02:15:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1241-84dae7ffe80c3262fe422838d2b49f0b832d3a302577955ec89a8a49b97037d63 |
OpenAccessLink | http://www.jmis.org/download/download_pdf?doi=10.33851/JMIS.2024.11.4.241 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10670327 crossref_primary_10_33851_JMIS_2024_11_4_241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Multimedia Information System |
PublicationYear | 2024 |
Publisher | 한국멀티미디어학회 |
Publisher_xml | – name: 한국멀티미디어학회 |
References | key2.025011605213e+13_B15 key2.025011605213e+13_B16 key2.025011605213e+13_B17 key2.025011605213e+13_B18 key2.025011605213e+13_B19 key2.025011605213e+13_B20 key2.025011605213e+13_B10 key2.025011605213e+13_B21 key2.025011605213e+13_B3 key2.025011605213e+13_B11 key2.025011605213e+13_B22 key2.025011605213e+13_B2 key2.025011605213e+13_B12 key2.025011605213e+13_B1 key2.025011605213e+13_B13 key2.025011605213e+13_B14 key2.025011605213e+13_B7 key2.025011605213e+13_B6 key2.025011605213e+13_B5 key2.025011605213e+13_B4 key2.025011605213e+13_B9 key2.025011605213e+13_B8 |
References_xml | – ident: key2.025011605213e+13_B13 doi: 10.1109/CVPR52688.2022.01042 – ident: key2.025011605213e+13_B15 doi: 10.1109/CVPR.2014.59 – ident: key2.025011605213e+13_B8 doi: 10.1109/CVPR46437.2021.00455 – ident: key2.025011605213e+13_B19 doi: 10.1145/3503250 – ident: key2.025011605213e+13_B4 doi: 10.1109/ICCV51070.2023.00853 – ident: key2.025011605213e+13_B20 doi: 10.1145/3592433 – ident: key2.025011605213e+13_B3 doi: 10.1007/978-3-031-73232-4_25 – ident: key2.025011605213e+13_B6 – ident: key2.025011605213e+13_B7 doi: 10.1109/ICCV48922.2021.00580 – ident: key2.025011605213e+13_B16 doi: 10.1109/ICCV48922.2021.01072 – ident: key2.025011605213e+13_B2 doi: 10.1109/CVPR52733.2024.00951 – ident: key2.025011605213e+13_B9 doi: 10.1109/CVPR52688.2022.00541 – ident: key2.025011605213e+13_B1 doi: 10.1037/0033-295X.94.2.115 – ident: key2.025011605213e+13_B22 doi: 10.1109/CVPR.2018.00068 – ident: key2.025011605213e+13_B21 doi: 10.1109/TIP.2003.819861 – ident: key2.025011605213e+13_B18 doi: 10.1109/CVPR52729.2023.00037 – ident: key2.025011605213e+13_B5 doi: 10.1109/CVPR52729.2023.00816 – ident: key2.025011605213e+13_B17 – ident: key2.025011605213e+13_B10 – ident: key2.025011605213e+13_B14 doi: 10.1109/CVPR52729.2023.01263 – ident: key2.025011605213e+13_B12 – ident: key2.025011605213e+13_B11 |
SSID | ssib053376707 ssib022331700 ssib036278182 |
Score | 1.8970884 |
Snippet | Synthesizing a 3D model from a single 2D image is a significant challenge in computer vision and 3D modeling. Previous single image to-3D methods generate... |
SourceID | nrf crossref |
SourceType | Open Website Index Database |
StartPage | 241 |
SubjectTerms | 컴퓨터학 |
Title | Accurate Single Image to 3D Using View-Specific Neural Renderer |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162299 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Multimedia Information System, 2024, 11(4), , pp.241-248 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cILGgLEYCBL4KeSkjpOYj8hp-20Tiov29DeosRxUDVoUdUKiQf-H_-KOzvp0g6hgVRFVnpOXN_17jvL95mQt4iJqyg0ATfGBoBvy0DGvArKGrBtgXQoCRY4zz4mZ1fi_Dq-7vV-dXYtbdblwPz4Y13J_2gV7oFesUr2HzS7fSjcgDboF66gYbjeS8famA1SPfQvIAB9sf3pV9yBA2gygsTOLQJ8mtvvgTtjvp6bPjJxODJ9rGhptuXeBaauJtdVlPSbYiXvVRznM6oEvZ8UnTUENhkxNWI6dI0J0yNsaICp4a2IZlm0L6LGOyJjphSTYycrWQayGcs48-cTt2sTfMuA2FiT6xfjALBfzPQY-2mFmzjgK5k1T9Kn-FRoKIEffH3CMtF2V66hmfTrxtZ5R4AaUQDOkXe9r-fQagI59xSe-zECcvIYg8T5bHoxwEFD1BiIwbZvl5F7L1LucHLfmHn-eZnfrHLIPKY5UvGFEU8PyAMOGQsepjH7OWldG4CwqMuECLAhBai0RZYAulPon3peLDfE93cHuIOdDharugOFLo_Io8ZUqPYG-Zj07OIJ-dAaI_XGSJ0x0vWSRmPqjJHuGCP1xkhbY3xKrk4nl6OzoDmdIzCACYeBFFVh07q2MjSQA_DaOjY5WfFSqDosIVRUUREBpk5TFcfWSFXgv79UME9plUTPyOFiubDPCa2lhKy9itVQGFGbRFplAZgWZTGMK16JY_Ku_d35N0_CAvOdu2nKcZpynCZIZnORw9COyRuYG6egvyjqxb2kXpKHt4Z9Qg7Xq419BTB0Xb52Cv4NNP1sSQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Single+Image+to+3D+Using+View-Specific+Neural+Renderer&rft.jtitle=Journal+of+Multimedia+Information+System%2C+11%284%29&rft.au=%EC%9C%A0%EC%9E%AC%EC%A4%80&rft.au=%EA%B3%A0%EC%9E%AC%EC%9D%80&rft.au=%ED%99%8D%EA%B8%B0%EB%B2%94&rft.date=2024-12-31&rft.pub=%ED%95%9C%EA%B5%AD%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C&rft.eissn=2383-7632&rft.spage=241&rft.epage=248&rft_id=info:doi/10.33851%2FJMIS.2024.11.4.241&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10670327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2383-7632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2383-7632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2383-7632&client=summon |