Emergent Ferromagnetism with Fermi-Liquid Behavior in Proton Intercalated CaRuO 3
The evolution between Fermi-liquid and non-Fermi-liquid states in correlated electron systems has been a central subject in condensed matter physics because of the coupled intriguing magnetic and electronic states. An effective pathway to explore the nature of non-Fermi-liquid behavior is to approac...
Saved in:
Published in | Physical review. X Vol. 11; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physical Society
21.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2160-3308 2160-3308 |
DOI | 10.1103/PhysRevX.11.021018 |
Cover
Abstract | The evolution between Fermi-liquid and non-Fermi-liquid states in correlated electron systems has been a central subject in condensed matter physics because of the coupled intriguing magnetic and electronic states. An effective pathway to explore the nature of non-Fermi-liquid behavior is to approach its phase boundary. In this work, we report a crossover from non-Fermi-liquid to Fermi-liquid state in metallic CaRuO3 through ionic liquid gating induced protonation with electric field. This electronic transition subsequently triggers a reversible magnetic transition with the emergence of an exotic ferromagnetic state from this paramagnetic compound. Our theoretical analysis reveals that hydrogen incorporation plays a critical role in both the electronic and magnetic phase transitions via structural distortion and electron doping. These observations not only help understand the correlated magnetic and electronic transitions in perovskite ruthenate systems, but also provide novel pathways to design electronic phases in correlated materials. |
---|---|
AbstractList | The evolution between Fermi-liquid and non-Fermi-liquid states in correlated electron systems has been a central subject in condensed matter physics because of the coupled intriguing magnetic and electronic states. An effective pathway to explore the nature of non-Fermi-liquid behavior is to approach its phase boundary. In this work, we report a crossover from non-Fermi-liquid to Fermi-liquid state in metallic CaRuO3 through ionic liquid gating induced protonation with electric field. This electronic transition subsequently triggers a reversible magnetic transition with the emergence of an exotic ferromagnetic state from this paramagnetic compound. Our theoretical analysis reveals that hydrogen incorporation plays a critical role in both the electronic and magnetic phase transitions via structural distortion and electron doping. These observations not only help understand the correlated magnetic and electronic transitions in perovskite ruthenate systems, but also provide novel pathways to design electronic phases in correlated materials. |
ArticleNumber | 021018 |
Author | Yu, Pu Tian, Zijun Shen, Shengchun Okamoto, Satoshi Luo, Weidong Li, Zhuolu |
Author_xml | – sequence: 1 givenname: Shengchun surname: Shen fullname: Shen, Shengchun – sequence: 2 givenname: Zhuolu surname: Li fullname: Li, Zhuolu – sequence: 3 givenname: Zijun surname: Tian fullname: Tian, Zijun – sequence: 4 givenname: Weidong orcidid: 0000-0003-3829-1547 surname: Luo fullname: Luo, Weidong – sequence: 5 givenname: Satoshi orcidid: 0000-0002-0493-7568 surname: Okamoto fullname: Okamoto, Satoshi – sequence: 6 givenname: Pu orcidid: 0000-0002-5513-7632 surname: Yu fullname: Yu, Pu |
BackLink | https://www.osti.gov/biblio/2325348$$D View this record in Osti.gov |
BookMark | eNp9kE9PAjEQxRuDiYh8AU-N98Xpn12WoxJQEhKQaOJtU8os1LCttgXDt7cETYwH5zLzJu_9Du-StKyzSMg1gx5jIG7nm0NY4P41qR5wBqw8I23OCsiEgLL1674g3RDeIE0BTPb7bfI0atCv0UY6Ru9do9YWowkN_TRxc_w1Jpuaj51Z0XvcqL1xnhpL595FZ-nERvRabVXEFR2qxW5GxRU5r9U2YPd7d8jLePQ8fMyms4fJ8G6aacYGZSYLJQXXTGslixo5cACer3gu-qAl5zpPNqFlLWEpa8HLQZ7DUhVLqTRinYsOuTlxXYimCtpE1BvtrEUdKy4SSJbJxE8m7V0IHuvq3ZtG-UPFoDqWV_2Ul1R1Ki-Fyj-hBFfROBu9Mtv_ol80uHeK |
CitedBy_id | crossref_primary_10_1088_1361_648X_ad3707 crossref_primary_10_1103_PhysRevB_110_L041403 crossref_primary_10_1063_5_0100912 crossref_primary_10_1021_acsnano_4c01910 crossref_primary_10_1103_PhysRevMaterials_7_075001 crossref_primary_10_1063_5_0190376 crossref_primary_10_1063_5_0197630 crossref_primary_10_1103_PhysRevMaterials_8_074408 crossref_primary_10_1103_PhysRevB_107_125107 crossref_primary_10_1021_acs_nanolett_3c04368 crossref_primary_10_1021_acsami_3c17472 crossref_primary_10_1103_PhysRevB_110_144403 crossref_primary_10_1021_acs_nanolett_2c03229 |
Cites_doi | 10.7566/JPSJ.84.014708 10.1103/PhysRevLett.83.4397 10.1038/nature22389 10.1103/PhysRevB.77.214410 10.1088/1361-6633/aabdfa 10.1103/PhysRevB.63.172403 10.1038/nature12023 10.1103/PhysRevB.54.15144 10.1103/PhysRevB.56.2556 10.1103/PhysRevLett.100.096402 10.1126/sciadv.1500797 10.1080/001075199181602 10.1146/annurev-conmatphys-031016-025531 10.1080/14786440208564203 10.1103/PhysRevB.83.014416 10.1103/PhysRevB.60.1448 10.1103/PhysRevB.74.024410 10.1103/PhysRevB.91.195149 10.1038/s41467-019-13999-1 10.1038/35079534 10.1103/RevModPhys.79.1015 10.1038/414711a 10.1038/35106527 10.1103/PhysRevB.70.134426 10.1038/srep03877 10.1103/PhysRevB.66.054418 10.1103/RevModPhys.84.253 10.1063/1.365056 10.1016/S0038-1098(00)00482-8 10.1038/35083531 10.1103/RevModPhys.73.797 10.1016/j.ssc.2008.09.007 10.1038/nature01968 10.1103/PhysRevB.56.321 10.1063/1.2165589 10.1038/s41586-020-2052-z 10.1002/adma.201703628 10.1038/372532a0 10.1103/PhysRevLett.114.256801 10.1126/science.288.5465.468 10.1103/PhysRevLett.101.166405 10.1103/RevModPhys.82.1539 10.1088/0953-8984/13/36/309 10.1063/1.1656282 10.1103/PhysRevB.73.094418 10.1002/pssb.200983004 10.1126/science.1063539 |
ContentType | Journal Article |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1103/PhysRevX.11.021018 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | 2325348 10_1103_PhysRevX_11_021018 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W ABCKA ADETJ OTOTI |
ID | FETCH-LOGICAL-c1198-46a432c1cca46fe2020025d25370c422c51193c4f40b4f3289550ba6b4aceef53 |
ISSN | 2160-3308 |
IngestDate | Mon Apr 01 04:55:59 EDT 2024 Thu Apr 24 23:02:43 EDT 2025 Tue Jul 01 01:33:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1198-46a432c1cca46fe2020025d25370c422c51193c4f40b4f3289550ba6b4aceef53 |
Notes | AC05-00OR22725; 51788104; 51872155; U1632272; 11521404; 11904196; 2016YFA0301004; EP/N016718/1 National Basic Research Program of China Engineering and Physical Sciences Research Council (EPSRC) National Natural Science Foundation of China (NSFC) USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0003-3829-1547 0000-0002-0493-7568 0000-0002-5513-7632 0000000255137632 0000000338291547 0000000204937568 |
ParticipantIDs | osti_scitechconnect_2325348 crossref_primary_10_1103_PhysRevX_11_021018 crossref_citationtrail_10_1103_PhysRevX_11_021018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-21 |
PublicationDateYYYYMMDD | 2021-04-21 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review. X |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.11.021018Cc40R1 PhysRevX.11.021018Cc41R1 PhysRevX.11.021018Cc42R1 PhysRevX.11.021018Cc43R1 PhysRevX.11.021018Cc45R1 PhysRevX.11.021018Cc23R1 PhysRevX.11.021018Cc22R1 PhysRevX.11.021018Cc21R1 PhysRevX.11.021018Cc20R1 PhysRevX.11.021018Cc29R1 PhysRevX.11.021018Cc28R1 PhysRevX.11.021018Cc27R1 PhysRevX.11.021018Cc26R1 PhysRevX.11.021018Cc25R1 PhysRevX.11.021018Cc24R1 PhysRevX.11.021018Cc46R1 PhysRevX.11.021018Cc47R1 PhysRevX.11.021018Cc48R1 PhysRevX.11.021018Cc49R1 PhysRevX.11.021018Cc9R1 PhysRevX.11.021018Cc8R1 PhysRevX.11.021018Cc7R1 PhysRevX.11.021018Cc11R1 PhysRevX.11.021018Cc34R1 PhysRevX.11.021018Cc6R1 PhysRevX.11.021018Cc12R1 PhysRevX.11.021018Cc33R1 PhysRevX.11.021018Cc5R1 PhysRevX.11.021018Cc32R1 PhysRevX.11.021018Cc4R1 PhysRevX.11.021018Cc10R1 PhysRevX.11.021018Cc31R1 PhysRevX.11.021018Cc3R1 PhysRevX.11.021018Cc30R1 PhysRevX.11.021018Cc2R1 PhysRevX.11.021018Cc19R1 PhysRevX.11.021018Cc17R1 PhysRevX.11.021018Cc18R1 PhysRevX.11.021018Cc39R1 PhysRevX.11.021018Cc15R1 PhysRevX.11.021018Cc38R1 PhysRevX.11.021018Cc16R1 PhysRevX.11.021018Cc37R1 PhysRevX.11.021018Cc13R1 PhysRevX.11.021018Cc36R1 PhysRevX.11.021018Cc14R1 PhysRevX.11.021018Cc35R1 L. D. Landau (PhysRevX.11.021018Cc1R1) 1957; 3 |
References_xml | – ident: PhysRevX.11.021018Cc33R1 doi: 10.7566/JPSJ.84.014708 – ident: PhysRevX.11.021018Cc38R1 doi: 10.1103/PhysRevLett.83.4397 – ident: PhysRevX.11.021018Cc42R1 doi: 10.1038/nature22389 – ident: PhysRevX.11.021018Cc39R1 doi: 10.1103/PhysRevB.77.214410 – ident: PhysRevX.11.021018Cc14R1 doi: 10.1088/1361-6633/aabdfa – ident: PhysRevX.11.021018Cc27R1 doi: 10.1103/PhysRevB.63.172403 – ident: PhysRevX.11.021018Cc7R1 doi: 10.1038/nature12023 – ident: PhysRevX.11.021018Cc25R1 doi: 10.1103/PhysRevB.54.15144 – ident: PhysRevX.11.021018Cc47R1 doi: 10.1103/PhysRevB.56.2556 – ident: PhysRevX.11.021018Cc21R1 doi: 10.1103/PhysRevLett.100.096402 – ident: PhysRevX.11.021018Cc13R1 doi: 10.1126/sciadv.1500797 – ident: PhysRevX.11.021018Cc15R1 doi: 10.1080/001075199181602 – ident: PhysRevX.11.021018Cc6R1 doi: 10.1146/annurev-conmatphys-031016-025531 – ident: PhysRevX.11.021018Cc48R1 doi: 10.1080/14786440208564203 – ident: PhysRevX.11.021018Cc24R1 doi: 10.1103/PhysRevB.83.014416 – ident: PhysRevX.11.021018Cc16R1 doi: 10.1103/PhysRevB.60.1448 – ident: PhysRevX.11.021018Cc30R1 doi: 10.1103/PhysRevB.74.024410 – ident: PhysRevX.11.021018Cc23R1 doi: 10.1103/PhysRevB.91.195149 – ident: PhysRevX.11.021018Cc41R1 doi: 10.1038/s41467-019-13999-1 – ident: PhysRevX.11.021018Cc11R1 doi: 10.1038/35079534 – ident: PhysRevX.11.021018Cc5R1 doi: 10.1103/RevModPhys.79.1015 – ident: PhysRevX.11.021018Cc10R1 doi: 10.1038/414711a – ident: PhysRevX.11.021018Cc2R1 doi: 10.1038/35106527 – ident: PhysRevX.11.021018Cc35R1 doi: 10.1103/PhysRevB.70.134426 – ident: PhysRevX.11.021018Cc40R1 doi: 10.1038/srep03877 – ident: PhysRevX.11.021018Cc34R1 doi: 10.1103/PhysRevB.66.054418 – ident: PhysRevX.11.021018Cc19R1 doi: 10.1103/RevModPhys.84.253 – ident: PhysRevX.11.021018Cc26R1 doi: 10.1063/1.365056 – ident: PhysRevX.11.021018Cc29R1 doi: 10.1016/S0038-1098(00)00482-8 – ident: PhysRevX.11.021018Cc46R1 doi: 10.1038/35083531 – ident: PhysRevX.11.021018Cc4R1 doi: 10.1103/RevModPhys.73.797 – volume: 3 start-page: 920 issn: 0038-5646 year: 1957 ident: PhysRevX.11.021018Cc1R1 publication-title: Sov. Phys. JETP – ident: PhysRevX.11.021018Cc20R1 doi: 10.1016/j.ssc.2008.09.007 – ident: PhysRevX.11.021018Cc3R1 doi: 10.1038/nature01968 – ident: PhysRevX.11.021018Cc37R1 doi: 10.1103/PhysRevB.56.321 – ident: PhysRevX.11.021018Cc31R1 doi: 10.1063/1.2165589 – ident: PhysRevX.11.021018Cc8R1 doi: 10.1038/s41586-020-2052-z – ident: PhysRevX.11.021018Cc43R1 doi: 10.1002/adma.201703628 – ident: PhysRevX.11.021018Cc18R1 doi: 10.1038/372532a0 – ident: PhysRevX.11.021018Cc49R1 doi: 10.1103/PhysRevLett.114.256801 – ident: PhysRevX.11.021018Cc9R1 doi: 10.1126/science.288.5465.468 – ident: PhysRevX.11.021018Cc22R1 doi: 10.1103/PhysRevLett.101.166405 – ident: PhysRevX.11.021018Cc45R1 doi: 10.1103/RevModPhys.82.1539 – ident: PhysRevX.11.021018Cc28R1 doi: 10.1088/0953-8984/13/36/309 – ident: PhysRevX.11.021018Cc17R1 doi: 10.1063/1.1656282 – ident: PhysRevX.11.021018Cc32R1 doi: 10.1103/PhysRevB.73.094418 – ident: PhysRevX.11.021018Cc36R1 doi: 10.1002/pssb.200983004 – ident: PhysRevX.11.021018Cc12R1 doi: 10.1126/science.1063539 |
SSID | ssj0000601477 |
Score | 2.2586524 |
Snippet | The evolution between Fermi-liquid and non-Fermi-liquid states in correlated electron systems has been a central subject in condensed matter physics because of... |
SourceID | osti crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
SubjectTerms | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY density functional theory dynamical mean field theory Hall bar magnetic phase transitions resistivity measurements thin films transition-metal oxides x-ray diffraction |
Title | Emergent Ferromagnetism with Fermi-Liquid Behavior in Proton Intercalated CaRuO 3 |
URI | https://www.osti.gov/biblio/2325348 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCIkXNL7EGJv8wFuVksTO1yOaVk0Tn9Mmqr1EtmNvmSCFkvDAX8-dHSeZqCbgJW3dtEnvfj3_7nx3JuRVmhehZqEMlI5MwPNQBCLPdCDShBnB0iK39RXv3qfH5_xklazGckVbXdLKhfq1ta7kf7QKY6BXrJL9B80OXwoD8Bz0C0fQMBz_SsdHrnaynS_1ZrP-Ki4b3eKmFza4usQ0l-Bt_b2rK98GEXPPsTYAe2nYWCBoSCDnPBSn3Yc5m1LVj16DrrplMV8N0Zi-ogMfL9VVN2b12NSAi6sOfvUQEqhdiPWivp6c2NkI7WddV-t-6uwjD3GEiyjxJIvDLykN99Mnmo4mLI5SsPIsdBZWbxnzNjiaYC3ebtpDbDGB1zrVP1cLbL0aY7uxcSIb0guBJSaM53fJvTjL3OJ972i7-RncQrsl53ArvpoqZK__vMANxjJbg-WdMJCzHfKwdx3oG4eDR-SObh6T-04sP56QTx4N9CYaKKKBTtFAPRpo3VCHBjpFA7VooOwpOV8enR0eB_2GGYGKoiIPeCo4i1UE_0qeGg06Q0pbgTCyUPE4VrhozBQ3PJTcMPC1wT-VIpVcAFcyCXtGZs260c8JlZIZcKaLSpiKZ1KKpDBFJHIDBB5Ys9olkRdKqfpu8ripyZfSepUhK70g4VXpBLlL5sNnvrleKreevYeyLoEJYjtjhXlfqi173b649d098mAE7Esyazed3gfy2MoDi4Xf0n1vxA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergent+Ferromagnetism+with+Fermi-Liquid+Behavior+in+Proton+Intercalated+CaRuO+3&rft.jtitle=Physical+review.+X&rft.au=Shen%2C+Shengchun&rft.au=Li%2C+Zhuolu&rft.au=Tian%2C+Zijun&rft.au=Luo%2C+Weidong&rft.date=2021-04-21&rft.pub=American+Physical+Society&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevX.11.021018&rft.externalDocID=2325348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |