Spontaneous Co-Assembly of Cellulose Nanocrystals and TiO 2 Nanorods Followed by Calcination to Form Cholesteric Inorganic Nanostructures

Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 39; no. 26; pp. 9180 - 9185
Main Authors Zhang, Wenshi, Cheng, Xinquan, Chen, Shaw H, Anthamatten, Mitchell
Format Journal Article
LanguageEnglish
Published United States 04.07.2023
Online AccessGet full text

Cover

Loading…
Abstract Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly of TiO nanorods with cellulose nanocrystals (CNCs) in water. To guide experimental efforts, a phase diagram was constructed to describe how phase behavior depends on the CNCs/TiO /H O composition. A lyotropic cholesteric mesophase was observed to extend over a wide composition range as high as 50 wt % TiO nanorods, far exceeding other examples of inorganic nanorods/CNCs co-assembly. Such a high loading enables the fabrication of inorganic, free-standing chiral films through removal of water and calcination. Distinct from the traditional templating method using CNCs, this new approach separates sol-gel synthesis from particle self-assembly using low-cost nanorods.
AbstractList Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly of TiO nanorods with cellulose nanocrystals (CNCs) in water. To guide experimental efforts, a phase diagram was constructed to describe how phase behavior depends on the CNCs/TiO /H O composition. A lyotropic cholesteric mesophase was observed to extend over a wide composition range as high as 50 wt % TiO nanorods, far exceeding other examples of inorganic nanorods/CNCs co-assembly. Such a high loading enables the fabrication of inorganic, free-standing chiral films through removal of water and calcination. Distinct from the traditional templating method using CNCs, this new approach separates sol-gel synthesis from particle self-assembly using low-cost nanorods.
Author Anthamatten, Mitchell
Chen, Shaw H
Zhang, Wenshi
Cheng, Xinquan
Author_xml – sequence: 1
  givenname: Wenshi
  orcidid: 0000-0002-0301-2256
  surname: Zhang
  fullname: Zhang, Wenshi
  organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States
– sequence: 2
  givenname: Xinquan
  orcidid: 0000-0002-2771-1078
  surname: Cheng
  fullname: Cheng, Xinquan
  organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States
– sequence: 3
  givenname: Shaw H
  orcidid: 0000-0003-4191-9817
  surname: Chen
  fullname: Chen, Shaw H
  organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States
– sequence: 4
  givenname: Mitchell
  orcidid: 0000-0002-7763-9465
  surname: Anthamatten
  fullname: Anthamatten, Mitchell
  organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37334653$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1OwzAQRi1URH_gBgj5Ail2nDj2soooVEJ0QVlHju2UIMeu7EQoR-DWuLRlNaOZeZ80bw4m1lkNwD1GS4xS_ChkWBph993Q-iWRCHGGr8AM5ylKcpYWEzBDRUaSIqNkCuYhfKF4QzJ-A6akICSjOZmBn_eDs72w2g0Bli5ZhaC72ozQNbDUxgzGBQ3fhHXSj6EXJkBhFdy1W5j-jb1TAa6dMe5bK1iPsBRGtlb0rbOwd3HlO1h-OqNDr30r4SYye2Fjd8RD7wfZD16HW3DdxHh9d64L8LF-2pUvyev2eVOuXhOJMSeJkpIJnfNUsoKJjDCBGcsz2vCcU64Ipw3WPD5OFVGZokXDhWY140LSRouULEB2ypXeheB1Ux182wk_VhhVR7NVNFtdzFZnsxF7OGGHoe60-ocuKskvJeh9Dg
CitedBy_id crossref_primary_10_7584_JKTAPPI_2023_12_55_6_109
crossref_primary_10_1002_adfm_202404857
crossref_primary_10_1021_acsanm_3c03908
crossref_primary_10_3390_ijms25094978
Cites_doi 10.3390/nano7100305
10.1002/adma.201606208
10.1002/adma.201701469
10.1126/science.abd8576
10.1021/acsphotonics.8b01584
10.1016/j.matchemphys.2018.12.012
10.1016/j.desal.2010.10.052
10.1021/acs.chemmater.9b04143
10.1021/acsanm.8b00947
10.1063/1.3436716
10.1002/adma.201701323
10.1002/anie.201201113
10.1021/acs.langmuir.7b03920
10.1002/adma.202070311
10.1126/science.1254132
10.1038/ncomms11515
10.1002/aic.17438
10.1021/acs.chemmater.9b00462
10.1063/1.447098
10.1021/acsnano.0c02026
10.1002/adma.201402699
10.1002/ejic.202000673
10.1021/ja501642p
10.1002/adma.201905600
10.1038/s41570-021-00350-w
10.1002/cjce.23914
10.1039/D2MA90034C
10.1021/acs.chemrev.6b00755
10.1016/j.cossms.2019.03.001
10.1002/adfm.202104596
10.1021/bm501355x
10.1209/0295-5075/111/56004
10.1186/s40580-022-00322-w
10.1021/jacs.9b00700
10.1002/anie.201903264
10.1002/anie.201407141
10.1039/C9TA12665A
10.1021/la950133b
10.1021/acs.biomac.8b00497
10.1021/la049300a
10.1021/acssuschemeng.1c01169
10.1002/adom.201801816
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acs.langmuir.3c00981
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 9185
ExternalDocumentID 10_1021_acs_langmuir_3c00981
37334653
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
NPM
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c1193-dcc8ae592c878a438a188546f95969d396f1e97436d3d4d67f9ae8b89ac6fea23
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Fri Aug 23 01:06:59 EDT 2024
Sat Sep 28 08:10:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1193-dcc8ae592c878a438a188546f95969d396f1e97436d3d4d67f9ae8b89ac6fea23
ORCID 0000-0002-0301-2256
0000-0003-4191-9817
0000-0002-2771-1078
0000-0002-7763-9465
PMID 37334653
PageCount 6
ParticipantIDs crossref_primary_10_1021_acs_langmuir_3c00981
pubmed_primary_37334653
PublicationCentury 2000
PublicationDate 2023-Jul-04
2023-07-04
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-Jul-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2023
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.3390/nano7100305
– ident: ref37/cit37
  doi: 10.1002/adma.201606208
– ident: ref38/cit38
  doi: 10.1002/adma.201701469
– ident: ref6/cit6
  doi: 10.1126/science.abd8576
– ident: ref31/cit31
  doi: 10.1021/acsphotonics.8b01584
– ident: ref23/cit23
  doi: 10.1016/j.matchemphys.2018.12.012
– ident: ref41/cit41
  doi: 10.1016/j.desal.2010.10.052
– ident: ref8/cit8
  doi: 10.1021/acs.chemmater.9b04143
– ident: ref33/cit33
  doi: 10.1021/acsanm.8b00947
– ident: ref28/cit28
  doi: 10.1063/1.3436716
– ident: ref34/cit34
  doi: 10.1002/adma.201701323
– ident: ref15/cit15
  doi: 10.1002/anie.201201113
– ident: ref32/cit32
  doi: 10.1021/acs.langmuir.7b03920
– ident: ref3/cit3
  doi: 10.1002/adma.202070311
– ident: ref12/cit12
  doi: 10.1126/science.1254132
– ident: ref30/cit30
  doi: 10.1038/ncomms11515
– ident: ref5/cit5
  doi: 10.1002/aic.17438
– ident: ref17/cit17
  doi: 10.1021/acs.chemmater.9b00462
– ident: ref26/cit26
  doi: 10.1063/1.447098
– ident: ref11/cit11
  doi: 10.1021/acsnano.0c02026
– ident: ref19/cit19
  doi: 10.1002/adma.201402699
– ident: ref14/cit14
  doi: 10.1002/ejic.202000673
– ident: ref21/cit21
  doi: 10.1021/ja501642p
– ident: ref36/cit36
  doi: 10.1002/adma.201905600
– ident: ref9/cit9
  doi: 10.1038/s41570-021-00350-w
– ident: ref24/cit24
  doi: 10.1002/cjce.23914
– ident: ref1/cit1
  doi: 10.1039/D2MA90034C
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.6b00755
– ident: ref39/cit39
  doi: 10.1016/j.cossms.2019.03.001
– ident: ref18/cit18
  doi: 10.1002/adfm.202104596
– ident: ref40/cit40
  doi: 10.1021/bm501355x
– ident: ref25/cit25
  doi: 10.1209/0295-5075/111/56004
– ident: ref2/cit2
  doi: 10.1186/s40580-022-00322-w
– ident: ref10/cit10
  doi: 10.1021/jacs.9b00700
– ident: ref7/cit7
  doi: 10.1002/anie.201903264
– ident: ref13/cit13
  doi: 10.1002/anie.201407141
– ident: ref16/cit16
  doi: 10.1039/C9TA12665A
– ident: ref35/cit35
  doi: 10.1021/la950133b
– ident: ref29/cit29
  doi: 10.1021/acs.biomac.8b00497
– ident: ref42/cit42
  doi: 10.1021/la049300a
– ident: ref22/cit22
  doi: 10.1021/acssuschemeng.1c01169
– ident: ref20/cit20
  doi: 10.1002/adom.201801816
SSID ssj0009349
Score 2.4672322
Snippet Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis,...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 9180
Title Spontaneous Co-Assembly of Cellulose Nanocrystals and TiO 2 Nanorods Followed by Calcination to Form Cholesteric Inorganic Nanostructures
URI https://www.ncbi.nlm.nih.gov/pubmed/37334653
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQL3Bh3xf5wDWlsR3HPqKIqiBBDwWpt8hbpIo0QV2Eyh_w14yTBlQQElzjRdF4NH7jsd9D6FJE2lhmO0FGIhWwDOKg4oQFmikKACUjtmLbv3_gvSd2N4yGX4ni9wo-Ca-Umbb92d14Ppq0qfEEmFW2E8fera-TwRfHLq3RrmfdjBmnzUu5XyZZ2YlWMGW1t3S3UL95oVNfKXluz2e6bd5-Ejb-8be30eYSZuLr2i920JordtF60qi77aH3wUtZADB0kPnjpAx88Xes8wUuM5y4PJ_n5dRhiL2lmSwAQeZTrAqLH0d9TKrPEHinuAteVL46i_UCJyo3o_psEc9KaJqMceLVdz0Vw8jg26JWkDLV8Jq3dg7J_j566t48Jr1gKcsQmBDgXmCNEcpFkhgRC8WoUKEQEeOZjCSXlkqehQ7SFMotBTfgcSaVE1pIZXjmFKEHqFWUhTtCWLGOlkJYoTuKEehESUycDDXllGoVHqOgWaL0pWbfSKuqOQlTMHDaGDhdGvgYHdbr-NmbxpR6CrmTf850ija8sHx1MZedoRYYxZ0D_Jjpi8rpPgA9B9o_
link.rule.ids 315,783,787,2773,27937,27938
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Co-Assembly+of+Cellulose+Nanocrystals+and+TiO+2+Nanorods+Followed+by+Calcination+to+Form+Cholesteric+Inorganic+Nanostructures&rft.jtitle=Langmuir&rft.au=Zhang%2C+Wenshi&rft.au=Cheng%2C+Xinquan&rft.au=Chen%2C+Shaw+H&rft.au=Anthamatten%2C+Mitchell&rft.date=2023-07-04&rft.eissn=1520-5827&rft.volume=39&rft.issue=26&rft.spage=9180&rft_id=info:doi/10.1021%2Facs.langmuir.3c00981&rft_id=info%3Apmid%2F37334653&rft.externalDocID=37334653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon