Spontaneous Co-Assembly of Cellulose Nanocrystals and TiO 2 Nanorods Followed by Calcination to Form Cholesteric Inorganic Nanostructures
Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly...
Saved in:
Published in | Langmuir Vol. 39; no. 26; pp. 9180 - 9185 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
04.07.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly of TiO
nanorods with cellulose nanocrystals (CNCs) in water. To guide experimental efforts, a phase diagram was constructed to describe how phase behavior depends on the CNCs/TiO
/H
O composition. A lyotropic cholesteric mesophase was observed to extend over a wide composition range as high as 50 wt % TiO
nanorods, far exceeding other examples of inorganic nanorods/CNCs co-assembly. Such a high loading enables the fabrication of inorganic, free-standing chiral films through removal of water and calcination. Distinct from the traditional templating method using CNCs, this new approach separates sol-gel synthesis from particle self-assembly using low-cost nanorods. |
---|---|
AbstractList | Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis, chiral photonics, and biosensing. A simple, bottom-up method to create chiral, inorganic structures is introduced that involves the co-assembly of TiO
nanorods with cellulose nanocrystals (CNCs) in water. To guide experimental efforts, a phase diagram was constructed to describe how phase behavior depends on the CNCs/TiO
/H
O composition. A lyotropic cholesteric mesophase was observed to extend over a wide composition range as high as 50 wt % TiO
nanorods, far exceeding other examples of inorganic nanorods/CNCs co-assembly. Such a high loading enables the fabrication of inorganic, free-standing chiral films through removal of water and calcination. Distinct from the traditional templating method using CNCs, this new approach separates sol-gel synthesis from particle self-assembly using low-cost nanorods. |
Author | Anthamatten, Mitchell Chen, Shaw H Zhang, Wenshi Cheng, Xinquan |
Author_xml | – sequence: 1 givenname: Wenshi orcidid: 0000-0002-0301-2256 surname: Zhang fullname: Zhang, Wenshi organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States – sequence: 2 givenname: Xinquan orcidid: 0000-0002-2771-1078 surname: Cheng fullname: Cheng, Xinquan organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States – sequence: 3 givenname: Shaw H orcidid: 0000-0003-4191-9817 surname: Chen fullname: Chen, Shaw H organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States – sequence: 4 givenname: Mitchell orcidid: 0000-0002-7763-9465 surname: Anthamatten fullname: Anthamatten, Mitchell organization: Department of Chemical Engineering, Advanced Materials for Photonics and Lasers, University of Rochester, Rochester, New York 14627-0166, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37334653$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kE1OwzAQRi1URH_gBgj5Ail2nDj2soooVEJ0QVlHju2UIMeu7EQoR-DWuLRlNaOZeZ80bw4m1lkNwD1GS4xS_ChkWBph993Q-iWRCHGGr8AM5ylKcpYWEzBDRUaSIqNkCuYhfKF4QzJ-A6akICSjOZmBn_eDs72w2g0Bli5ZhaC72ozQNbDUxgzGBQ3fhHXSj6EXJkBhFdy1W5j-jb1TAa6dMe5bK1iPsBRGtlb0rbOwd3HlO1h-OqNDr30r4SYye2Fjd8RD7wfZD16HW3DdxHh9d64L8LF-2pUvyev2eVOuXhOJMSeJkpIJnfNUsoKJjDCBGcsz2vCcU64Ipw3WPD5OFVGZokXDhWY140LSRouULEB2ypXeheB1Ux182wk_VhhVR7NVNFtdzFZnsxF7OGGHoe60-ocuKskvJeh9Dg |
CitedBy_id | crossref_primary_10_7584_JKTAPPI_2023_12_55_6_109 crossref_primary_10_1002_adfm_202404857 crossref_primary_10_1021_acsanm_3c03908 crossref_primary_10_3390_ijms25094978 |
Cites_doi | 10.3390/nano7100305 10.1002/adma.201606208 10.1002/adma.201701469 10.1126/science.abd8576 10.1021/acsphotonics.8b01584 10.1016/j.matchemphys.2018.12.012 10.1016/j.desal.2010.10.052 10.1021/acs.chemmater.9b04143 10.1021/acsanm.8b00947 10.1063/1.3436716 10.1002/adma.201701323 10.1002/anie.201201113 10.1021/acs.langmuir.7b03920 10.1002/adma.202070311 10.1126/science.1254132 10.1038/ncomms11515 10.1002/aic.17438 10.1021/acs.chemmater.9b00462 10.1063/1.447098 10.1021/acsnano.0c02026 10.1002/adma.201402699 10.1002/ejic.202000673 10.1021/ja501642p 10.1002/adma.201905600 10.1038/s41570-021-00350-w 10.1002/cjce.23914 10.1039/D2MA90034C 10.1021/acs.chemrev.6b00755 10.1016/j.cossms.2019.03.001 10.1002/adfm.202104596 10.1021/bm501355x 10.1209/0295-5075/111/56004 10.1186/s40580-022-00322-w 10.1021/jacs.9b00700 10.1002/anie.201903264 10.1002/anie.201407141 10.1039/C9TA12665A 10.1021/la950133b 10.1021/acs.biomac.8b00497 10.1021/la049300a 10.1021/acssuschemeng.1c01169 10.1002/adom.201801816 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION |
DOI | 10.1021/acs.langmuir.3c00981 |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 9185 |
ExternalDocumentID | 10_1021_acs_langmuir_3c00981 37334653 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ NPM RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c1193-dcc8ae592c878a438a188546f95969d396f1e97436d3d4d67f9ae8b89ac6fea23 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 23 01:06:59 EDT 2024 Sat Sep 28 08:10:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1193-dcc8ae592c878a438a188546f95969d396f1e97436d3d4d67f9ae8b89ac6fea23 |
ORCID | 0000-0002-0301-2256 0000-0003-4191-9817 0000-0002-2771-1078 0000-0002-7763-9465 |
PMID | 37334653 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1021_acs_langmuir_3c00981 pubmed_primary_37334653 |
PublicationCentury | 2000 |
PublicationDate | 2023-Jul-04 2023-07-04 |
PublicationDateYYYYMMDD | 2023-07-04 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-Jul-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2023 |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.3390/nano7100305 – ident: ref37/cit37 doi: 10.1002/adma.201606208 – ident: ref38/cit38 doi: 10.1002/adma.201701469 – ident: ref6/cit6 doi: 10.1126/science.abd8576 – ident: ref31/cit31 doi: 10.1021/acsphotonics.8b01584 – ident: ref23/cit23 doi: 10.1016/j.matchemphys.2018.12.012 – ident: ref41/cit41 doi: 10.1016/j.desal.2010.10.052 – ident: ref8/cit8 doi: 10.1021/acs.chemmater.9b04143 – ident: ref33/cit33 doi: 10.1021/acsanm.8b00947 – ident: ref28/cit28 doi: 10.1063/1.3436716 – ident: ref34/cit34 doi: 10.1002/adma.201701323 – ident: ref15/cit15 doi: 10.1002/anie.201201113 – ident: ref32/cit32 doi: 10.1021/acs.langmuir.7b03920 – ident: ref3/cit3 doi: 10.1002/adma.202070311 – ident: ref12/cit12 doi: 10.1126/science.1254132 – ident: ref30/cit30 doi: 10.1038/ncomms11515 – ident: ref5/cit5 doi: 10.1002/aic.17438 – ident: ref17/cit17 doi: 10.1021/acs.chemmater.9b00462 – ident: ref26/cit26 doi: 10.1063/1.447098 – ident: ref11/cit11 doi: 10.1021/acsnano.0c02026 – ident: ref19/cit19 doi: 10.1002/adma.201402699 – ident: ref14/cit14 doi: 10.1002/ejic.202000673 – ident: ref21/cit21 doi: 10.1021/ja501642p – ident: ref36/cit36 doi: 10.1002/adma.201905600 – ident: ref9/cit9 doi: 10.1038/s41570-021-00350-w – ident: ref24/cit24 doi: 10.1002/cjce.23914 – ident: ref1/cit1 doi: 10.1039/D2MA90034C – ident: ref4/cit4 doi: 10.1021/acs.chemrev.6b00755 – ident: ref39/cit39 doi: 10.1016/j.cossms.2019.03.001 – ident: ref18/cit18 doi: 10.1002/adfm.202104596 – ident: ref40/cit40 doi: 10.1021/bm501355x – ident: ref25/cit25 doi: 10.1209/0295-5075/111/56004 – ident: ref2/cit2 doi: 10.1186/s40580-022-00322-w – ident: ref10/cit10 doi: 10.1021/jacs.9b00700 – ident: ref7/cit7 doi: 10.1002/anie.201903264 – ident: ref13/cit13 doi: 10.1002/anie.201407141 – ident: ref16/cit16 doi: 10.1039/C9TA12665A – ident: ref35/cit35 doi: 10.1021/la950133b – ident: ref29/cit29 doi: 10.1021/acs.biomac.8b00497 – ident: ref42/cit42 doi: 10.1021/la049300a – ident: ref22/cit22 doi: 10.1021/acssuschemeng.1c01169 – ident: ref20/cit20 doi: 10.1002/adom.201801816 |
SSID | ssj0009349 |
Score | 2.4672322 |
Snippet | Chiral nanomaterials possess unique electronic, magnetic, and optical properties that are relevant to a wide range of applications including photocatalysis,... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 9180 |
Title | Spontaneous Co-Assembly of Cellulose Nanocrystals and TiO 2 Nanorods Followed by Calcination to Form Cholesteric Inorganic Nanostructures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37334653 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQL3Bh3xf5wDWlsR3HPqKIqiBBDwWpt8hbpIo0QV2Eyh_w14yTBlQQElzjRdF4NH7jsd9D6FJE2lhmO0FGIhWwDOKg4oQFmikKACUjtmLbv3_gvSd2N4yGX4ni9wo-Ca-Umbb92d14Ppq0qfEEmFW2E8fera-TwRfHLq3RrmfdjBmnzUu5XyZZ2YlWMGW1t3S3UL95oVNfKXluz2e6bd5-Ejb-8be30eYSZuLr2i920JordtF60qi77aH3wUtZADB0kPnjpAx88Xes8wUuM5y4PJ_n5dRhiL2lmSwAQeZTrAqLH0d9TKrPEHinuAteVL46i_UCJyo3o_psEc9KaJqMceLVdz0Vw8jg26JWkDLV8Jq3dg7J_j566t48Jr1gKcsQmBDgXmCNEcpFkhgRC8WoUKEQEeOZjCSXlkqehQ7SFMotBTfgcSaVE1pIZXjmFKEHqFWUhTtCWLGOlkJYoTuKEehESUycDDXllGoVHqOgWaL0pWbfSKuqOQlTMHDaGDhdGvgYHdbr-NmbxpR6CrmTf850ija8sHx1MZedoRYYxZ0D_Jjpi8rpPgA9B9o_ |
link.rule.ids | 315,783,787,2773,27937,27938 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Co-Assembly+of+Cellulose+Nanocrystals+and+TiO+2+Nanorods+Followed+by+Calcination+to+Form+Cholesteric+Inorganic+Nanostructures&rft.jtitle=Langmuir&rft.au=Zhang%2C+Wenshi&rft.au=Cheng%2C+Xinquan&rft.au=Chen%2C+Shaw+H&rft.au=Anthamatten%2C+Mitchell&rft.date=2023-07-04&rft.eissn=1520-5827&rft.volume=39&rft.issue=26&rft.spage=9180&rft_id=info:doi/10.1021%2Facs.langmuir.3c00981&rft_id=info%3Apmid%2F37334653&rft.externalDocID=37334653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |