Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe 2
To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe surfaces as a model system, we have observed nonlinear...
Saved in:
Published in | Nano letters Vol. 18; no. 3; pp. 2179 - 2185 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
14.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 |
DOI | 10.1021/acs.nanolett.8b00515 |
Cover
Loading…
Abstract | To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe
surfaces as a model system, we have observed nonlinear area evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) subjected electrical stressing. The observed growth dynamics represent a 2D departure from the linear area growth law expected for bulk vacancy clustering. Our simulations of monolayer island evolution using phase-field modeling and first-principles calculations are in good agreement with our experimental observations, and point toward preferential edge atom dissociation under STM scanning driving the observed nonlinear area growth. We further quantified a parabolic growth rate dependence with respect to the tunneling current magnitude. The results could be potentially important for device reliability in systems containing ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing. |
---|---|
AbstractList | To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe
surfaces as a model system, we have observed nonlinear area evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) subjected electrical stressing. The observed growth dynamics represent a 2D departure from the linear area growth law expected for bulk vacancy clustering. Our simulations of monolayer island evolution using phase-field modeling and first-principles calculations are in good agreement with our experimental observations, and point toward preferential edge atom dissociation under STM scanning driving the observed nonlinear area growth. We further quantified a parabolic growth rate dependence with respect to the tunneling current magnitude. The results could be potentially important for device reliability in systems containing ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing. |
Author | Valtierra, Salvador Bevan, Kirk H. Jiao, Liying Chen, Chuanhui Sun, Lifei Ofori-Opoku, Nana Zheng, Husong Yuan, Shuaishuai Tao, Chenggang |
Author_xml | – sequence: 1 givenname: Husong surname: Zheng fullname: Zheng, Husong organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States – sequence: 2 givenname: Salvador surname: Valtierra fullname: Valtierra, Salvador organization: Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada – sequence: 3 givenname: Nana surname: Ofori-Opoku fullname: Ofori-Opoku, Nana organization: Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States, Center for Hierarchical Materials Design, Northwestern University, Evanston, Illinois 60208, United States – sequence: 4 givenname: Chuanhui surname: Chen fullname: Chen, Chuanhui organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States – sequence: 5 givenname: Lifei surname: Sun fullname: Sun, Lifei organization: Department of Chemistry, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Shuaishuai surname: Yuan fullname: Yuan, Shuaishuai organization: Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada – sequence: 7 givenname: Liying orcidid: 0000-0002-6576-906X surname: Jiao fullname: Jiao, Liying organization: Department of Chemistry, Tsinghua University, Beijing 100084, China – sequence: 8 givenname: Kirk H. orcidid: 0000-0001-9884-1403 surname: Bevan fullname: Bevan, Kirk H. organization: Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada – sequence: 9 givenname: Chenggang orcidid: 0000-0002-6609-0219 surname: Tao fullname: Tao, Chenggang organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29461061$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNU7If-A5H8ga3JZne78SalrYWKh1avYTaZ1cg2W5IU6b93pa0HD55mGN7nhXmGpOdah4TccjbmLOX3oMPYgWsbjHFcVozlPL8gA54LlhRSpr3fvcz6ZBjCJ2NMipxdkX4qs4Kzgg_IfNagjt5qaOg6egzBune6dGav0dDntuuHA3r6BhqcPtBlaMAZuvDtV_ygraMbu0aaXpPLGpqAN6c5Iq_z2Wb6lKxeFsvp4yrRnEueZFCCrFOUFVSV4GIiJyAk5MBMZrRJ66LOK4lZxmuNNdOiFCmKsuhOyHI5ESNyd-zd7astGrXzdgv-oM4PdYGHY0D7NgSPtdI2QrStix5sozhTP_ZUZ0-d7amTvQ7O_sDn_n-xb1gIeCc |
CitedBy_id | crossref_primary_10_1016_j_jpcs_2019_109322 crossref_primary_10_1103_PhysRevB_108_214304 crossref_primary_10_1103_PhysRevB_99_174110 crossref_primary_10_1088_2053_1583_ab3beb crossref_primary_10_1002_smll_201902691 crossref_primary_10_1039_C8DT03663B crossref_primary_10_1039_C9NR06374A crossref_primary_10_1063_5_0149898 crossref_primary_10_1039_C9TC00183B crossref_primary_10_1016_j_jechem_2020_04_063 |
Cites_doi | 10.1088/0965-0393/17/6/064002 10.1103/PhysRevB.88.035301 10.1103/PhysRevLett.106.156404 10.1021/ja00031a020 10.1021/nn2024557 10.1016/0038-1098(78)90112-6 10.1021/nl3043079 10.1007/s002570050076 10.1038/nphys1991 10.1038/nnano.2012.193 10.1063/1.1447594 10.1038/nnano.2016.108 10.1016/S0169-4332(97)00163-3 10.1016/j.jcat.2003.09.015 10.1126/science.1166862 10.1016/0039-6028(90)90002-P 10.1038/nmat3687 10.1063/1.105979 10.1021/nn502776h 10.1103/PhysRevLett.101.186401 10.1063/1.105689 10.1039/C6NR08628D 10.1007/s002570050077 10.1103/PhysRevLett.109.035503 10.1103/PhysRevLett.105.176401 10.1021/jacs.6b10414 10.1039/C5FD00203F 10.1038/nphys3267 10.1103/PhysRevB.14.4321 10.1007/s12274-013-0346-2 10.1016/0169-4332(92)90489-K 10.1103/PhysRevB.76.045325 10.1063/1.4823138 10.1016/0039-6028(95)00963-9 10.1063/1.360733 10.1016/j.nantod.2015.07.004 10.1021/nl903868w 10.1126/science.1166999 10.1021/jp5097713 10.1088/2053-1583/2/4/044002 10.1021/acsnano.5b00554 10.1021/jp410893e 10.1103/PhysRevLett.105.136805 10.1021/la1015803 10.1103/PhysRevLett.112.197001 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM |
DOI | 10.1021/acs.nanolett.8b00515 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 2185 |
ExternalDocumentID | 29461061 10_1021_acs_nanolett_8b00515 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ DU5 EBS ED~ EJD F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F NPM |
ID | FETCH-LOGICAL-c1191-4a8a9f2e9babb313797a39a5a0d4dcd2f6f5b9e441fcef0c3832e3869e4e05973 |
IEDL.DBID | ACS |
ISSN | 1530-6984 |
IngestDate | Mon Jul 21 05:42:26 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Tue Jul 01 03:13:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | electrical stressing Transition metal dichalcogenides scanning tunneling microscopy island growth phase-field modeling surface diffusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1191-4a8a9f2e9babb313797a39a5a0d4dcd2f6f5b9e441fcef0c3832e3869e4e05973 |
ORCID | 0000-0001-9884-1403 0000-0002-6576-906X 0000-0002-6609-0219 |
PMID | 29461061 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_29461061 crossref_citationtrail_10_1021_acs_nanolett_8b00515 crossref_primary_10_1021_acs_nanolett_8b00515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-14 |
PublicationDateYYYYMMDD | 2018-03-14 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2018 |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 N Provatas K. E. (ref22/cit22) 2011 Ratke L. (ref29/cit29) 2002 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1088/0965-0393/17/6/064002 – ident: ref30/cit30 doi: 10.1103/PhysRevB.88.035301 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.106.156404 – ident: ref35/cit35 doi: 10.1021/ja00031a020 – ident: ref7/cit7 doi: 10.1021/nn2024557 – ident: ref11/cit11 doi: 10.1016/0038-1098(78)90112-6 – ident: ref9/cit9 doi: 10.1021/nl3043079 – ident: ref38/cit38 doi: 10.1007/s002570050076 – ident: ref17/cit17 doi: 10.1038/nphys1991 – ident: ref1/cit1 doi: 10.1038/nnano.2012.193 – ident: ref13/cit13 doi: 10.1063/1.1447594 – ident: ref14/cit14 doi: 10.1038/nnano.2016.108 – ident: ref41/cit41 doi: 10.1016/S0169-4332(97)00163-3 – ident: ref18/cit18 doi: 10.1016/j.jcat.2003.09.015 – ident: ref21/cit21 doi: 10.1126/science.1166862 – volume-title: Growth and Coarsening Ripening in Material Processing year: 2002 ident: ref29/cit29 – ident: ref31/cit31 doi: 10.1016/0039-6028(90)90002-P – ident: ref6/cit6 doi: 10.1038/nmat3687 – ident: ref36/cit36 doi: 10.1063/1.105979 – ident: ref8/cit8 doi: 10.1021/nn502776h – ident: ref16/cit16 doi: 10.1103/PhysRevLett.101.186401 – ident: ref34/cit34 doi: 10.1063/1.105689 – ident: ref45/cit45 doi: 10.1039/C6NR08628D – ident: ref37/cit37 doi: 10.1007/s002570050077 – ident: ref32/cit32 doi: 10.1103/PhysRevLett.109.035503 – ident: ref26/cit26 doi: 10.1103/PhysRevLett.105.176401 – ident: ref12/cit12 doi: 10.1021/jacs.6b10414 – ident: ref33/cit33 doi: 10.1039/C5FD00203F – ident: ref15/cit15 doi: 10.1038/nphys3267 – ident: ref10/cit10 doi: 10.1103/PhysRevB.14.4321 – ident: ref27/cit27 doi: 10.1007/s12274-013-0346-2 – ident: ref42/cit42 doi: 10.1016/0169-4332(92)90489-K – ident: ref47/cit47 doi: 10.1103/PhysRevB.76.045325 – ident: ref23/cit23 doi: 10.1063/1.4823138 – ident: ref39/cit39 doi: 10.1016/0039-6028(95)00963-9 – ident: ref40/cit40 doi: 10.1063/1.360733 – ident: ref4/cit4 doi: 10.1016/j.nantod.2015.07.004 – ident: ref2/cit2 doi: 10.1021/nl903868w – ident: ref20/cit20 doi: 10.1126/science.1166999 – ident: ref44/cit44 doi: 10.1021/jp5097713 – ident: ref5/cit5 doi: 10.1088/2053-1583/2/4/044002 – ident: ref19/cit19 doi: 10.1021/acsnano.5b00554 – volume-title: Phase-Field Methods in Materials Science and Engineering year: 2011 ident: ref22/cit22 – ident: ref28/cit28 doi: 10.1021/jp410893e – ident: ref3/cit3 doi: 10.1103/PhysRevLett.105.136805 – ident: ref43/cit43 doi: 10.1021/la1015803 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.112.197001 |
SSID | ssj0009350 |
Score | 2.2506723 |
Snippet | To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 2179 |
Title | Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe 2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29461061 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctxAQD70d5yQNrQuw8PaKqpUIChraoW2Q7F4FALoJ04dNzdpKWghCwWo6VnM_x72Tf_wg5RwZlCdjLrYGWGKAE4CHHpZ6KpHWHLABXee7mNhmMo-tJPFkEil9P8Dm7kPrNN9JM8TMqP3Ne5CRLceuzJNQdLjR2Q1eQFdcwRkQii9pMuR8GWdqJlpjS7S39TXLXZujUV0qe_FmlfP3-XbDxj6-9RTYazKSXtV9skxUwO2T9k_jgLun3XAUcO0l06DJGsJnaUh4aCoprHYNe5HF6L7X9A1PrPKagVxi3Vw90aujocQiU75FxvzfqDrymqoKnrZibF8lMipKDUFKpkIWpSGUoZCyDIip0wcukjJUAxKRSQxloDGE5hFmCTYAslob7ZNVMDRwSqlPFYwCexQglaZqIgiGsB4h0EqkIVIeErYVz3UiO28oXz7k7-uYsRyvlrZXyxkod4s2feqklN37pf1BP3rw3F1ZFPmFH_xzpmKwhD7mUQxadkNXqdQanyByVOnOe9gGP89L4 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Stressing+Induced+Monolayer+Vacancy+Island+Growth+on+TiSe+2&rft.jtitle=Nano+letters&rft.au=Zheng%2C+Husong&rft.au=Valtierra%2C+Salvador&rft.au=Ofori-Opoku%2C+Nana&rft.au=Chen%2C+Chuanhui&rft.date=2018-03-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=18&rft.issue=3&rft.spage=2179&rft.epage=2185&rft_id=info:doi/10.1021%2Facs.nanolett.8b00515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_8b00515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |