Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe 2

To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe surfaces as a model system, we have observed nonlinear...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 18; no. 3; pp. 2179 - 2185
Main Authors Zheng, Husong, Valtierra, Salvador, Ofori-Opoku, Nana, Chen, Chuanhui, Sun, Lifei, Yuan, Shuaishuai, Jiao, Liying, Bevan, Kirk H., Tao, Chenggang
Format Journal Article
LanguageEnglish
Published United States 14.03.2018
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
DOI10.1021/acs.nanolett.8b00515

Cover

Loading…
Abstract To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe surfaces as a model system, we have observed nonlinear area evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) subjected electrical stressing. The observed growth dynamics represent a 2D departure from the linear area growth law expected for bulk vacancy clustering. Our simulations of monolayer island evolution using phase-field modeling and first-principles calculations are in good agreement with our experimental observations, and point toward preferential edge atom dissociation under STM scanning driving the observed nonlinear area growth. We further quantified a parabolic growth rate dependence with respect to the tunneling current magnitude. The results could be potentially important for device reliability in systems containing ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing.
AbstractList To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe surfaces as a model system, we have observed nonlinear area evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) subjected electrical stressing. The observed growth dynamics represent a 2D departure from the linear area growth law expected for bulk vacancy clustering. Our simulations of monolayer island evolution using phase-field modeling and first-principles calculations are in good agreement with our experimental observations, and point toward preferential edge atom dissociation under STM scanning driving the observed nonlinear area growth. We further quantified a parabolic growth rate dependence with respect to the tunneling current magnitude. The results could be potentially important for device reliability in systems containing ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing.
Author Valtierra, Salvador
Bevan, Kirk H.
Jiao, Liying
Chen, Chuanhui
Sun, Lifei
Ofori-Opoku, Nana
Zheng, Husong
Yuan, Shuaishuai
Tao, Chenggang
Author_xml – sequence: 1
  givenname: Husong
  surname: Zheng
  fullname: Zheng, Husong
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
– sequence: 2
  givenname: Salvador
  surname: Valtierra
  fullname: Valtierra, Salvador
  organization: Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
– sequence: 3
  givenname: Nana
  surname: Ofori-Opoku
  fullname: Ofori-Opoku, Nana
  organization: Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States, Center for Hierarchical Materials Design, Northwestern University, Evanston, Illinois 60208, United States
– sequence: 4
  givenname: Chuanhui
  surname: Chen
  fullname: Chen, Chuanhui
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
– sequence: 5
  givenname: Lifei
  surname: Sun
  fullname: Sun, Lifei
  organization: Department of Chemistry, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Shuaishuai
  surname: Yuan
  fullname: Yuan, Shuaishuai
  organization: Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
– sequence: 7
  givenname: Liying
  orcidid: 0000-0002-6576-906X
  surname: Jiao
  fullname: Jiao, Liying
  organization: Department of Chemistry, Tsinghua University, Beijing 100084, China
– sequence: 8
  givenname: Kirk H.
  orcidid: 0000-0001-9884-1403
  surname: Bevan
  fullname: Bevan, Kirk H.
  organization: Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
– sequence: 9
  givenname: Chenggang
  orcidid: 0000-0002-6609-0219
  surname: Tao
  fullname: Tao, Chenggang
  organization: Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29461061$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNU7If-A5H8ga3JZne78SalrYWKh1avYTaZ1cg2W5IU6b93pa0HD55mGN7nhXmGpOdah4TccjbmLOX3oMPYgWsbjHFcVozlPL8gA54LlhRSpr3fvcz6ZBjCJ2NMipxdkX4qs4Kzgg_IfNagjt5qaOg6egzBune6dGav0dDntuuHA3r6BhqcPtBlaMAZuvDtV_ygraMbu0aaXpPLGpqAN6c5Iq_z2Wb6lKxeFsvp4yrRnEueZFCCrFOUFVSV4GIiJyAk5MBMZrRJ66LOK4lZxmuNNdOiFCmKsuhOyHI5ESNyd-zd7astGrXzdgv-oM4PdYGHY0D7NgSPtdI2QrStix5sozhTP_ZUZ0-d7amTvQ7O_sDn_n-xb1gIeCc
CitedBy_id crossref_primary_10_1016_j_jpcs_2019_109322
crossref_primary_10_1103_PhysRevB_108_214304
crossref_primary_10_1103_PhysRevB_99_174110
crossref_primary_10_1088_2053_1583_ab3beb
crossref_primary_10_1002_smll_201902691
crossref_primary_10_1039_C8DT03663B
crossref_primary_10_1039_C9NR06374A
crossref_primary_10_1063_5_0149898
crossref_primary_10_1039_C9TC00183B
crossref_primary_10_1016_j_jechem_2020_04_063
Cites_doi 10.1088/0965-0393/17/6/064002
10.1103/PhysRevB.88.035301
10.1103/PhysRevLett.106.156404
10.1021/ja00031a020
10.1021/nn2024557
10.1016/0038-1098(78)90112-6
10.1021/nl3043079
10.1007/s002570050076
10.1038/nphys1991
10.1038/nnano.2012.193
10.1063/1.1447594
10.1038/nnano.2016.108
10.1016/S0169-4332(97)00163-3
10.1016/j.jcat.2003.09.015
10.1126/science.1166862
10.1016/0039-6028(90)90002-P
10.1038/nmat3687
10.1063/1.105979
10.1021/nn502776h
10.1103/PhysRevLett.101.186401
10.1063/1.105689
10.1039/C6NR08628D
10.1007/s002570050077
10.1103/PhysRevLett.109.035503
10.1103/PhysRevLett.105.176401
10.1021/jacs.6b10414
10.1039/C5FD00203F
10.1038/nphys3267
10.1103/PhysRevB.14.4321
10.1007/s12274-013-0346-2
10.1016/0169-4332(92)90489-K
10.1103/PhysRevB.76.045325
10.1063/1.4823138
10.1016/0039-6028(95)00963-9
10.1063/1.360733
10.1016/j.nantod.2015.07.004
10.1021/nl903868w
10.1126/science.1166999
10.1021/jp5097713
10.1088/2053-1583/2/4/044002
10.1021/acsnano.5b00554
10.1021/jp410893e
10.1103/PhysRevLett.105.136805
10.1021/la1015803
10.1103/PhysRevLett.112.197001
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1021/acs.nanolett.8b00515
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 2185
ExternalDocumentID 29461061
10_1021_acs_nanolett_8b00515
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
VF5
VG9
W1F
NPM
ID FETCH-LOGICAL-c1191-4a8a9f2e9babb313797a39a5a0d4dcd2f6f5b9e441fcef0c3832e3869e4e05973
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Mon Jul 21 05:42:26 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Tue Jul 01 03:13:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electrical stressing
Transition metal dichalcogenides
scanning tunneling microscopy
island growth
phase-field modeling
surface diffusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1191-4a8a9f2e9babb313797a39a5a0d4dcd2f6f5b9e441fcef0c3832e3869e4e05973
ORCID 0000-0001-9884-1403
0000-0002-6576-906X
0000-0002-6609-0219
PMID 29461061
PageCount 7
ParticipantIDs pubmed_primary_29461061
crossref_citationtrail_10_1021_acs_nanolett_8b00515
crossref_primary_10_1021_acs_nanolett_8b00515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-14
PublicationDateYYYYMMDD 2018-03-14
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
N Provatas K. E. (ref22/cit22) 2011
Ratke L. (ref29/cit29) 2002
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1088/0965-0393/17/6/064002
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.88.035301
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.106.156404
– ident: ref35/cit35
  doi: 10.1021/ja00031a020
– ident: ref7/cit7
  doi: 10.1021/nn2024557
– ident: ref11/cit11
  doi: 10.1016/0038-1098(78)90112-6
– ident: ref9/cit9
  doi: 10.1021/nl3043079
– ident: ref38/cit38
  doi: 10.1007/s002570050076
– ident: ref17/cit17
  doi: 10.1038/nphys1991
– ident: ref1/cit1
  doi: 10.1038/nnano.2012.193
– ident: ref13/cit13
  doi: 10.1063/1.1447594
– ident: ref14/cit14
  doi: 10.1038/nnano.2016.108
– ident: ref41/cit41
  doi: 10.1016/S0169-4332(97)00163-3
– ident: ref18/cit18
  doi: 10.1016/j.jcat.2003.09.015
– ident: ref21/cit21
  doi: 10.1126/science.1166862
– volume-title: Growth and Coarsening Ripening in Material Processing
  year: 2002
  ident: ref29/cit29
– ident: ref31/cit31
  doi: 10.1016/0039-6028(90)90002-P
– ident: ref6/cit6
  doi: 10.1038/nmat3687
– ident: ref36/cit36
  doi: 10.1063/1.105979
– ident: ref8/cit8
  doi: 10.1021/nn502776h
– ident: ref16/cit16
  doi: 10.1103/PhysRevLett.101.186401
– ident: ref34/cit34
  doi: 10.1063/1.105689
– ident: ref45/cit45
  doi: 10.1039/C6NR08628D
– ident: ref37/cit37
  doi: 10.1007/s002570050077
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.109.035503
– ident: ref26/cit26
  doi: 10.1103/PhysRevLett.105.176401
– ident: ref12/cit12
  doi: 10.1021/jacs.6b10414
– ident: ref33/cit33
  doi: 10.1039/C5FD00203F
– ident: ref15/cit15
  doi: 10.1038/nphys3267
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.14.4321
– ident: ref27/cit27
  doi: 10.1007/s12274-013-0346-2
– ident: ref42/cit42
  doi: 10.1016/0169-4332(92)90489-K
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.76.045325
– ident: ref23/cit23
  doi: 10.1063/1.4823138
– ident: ref39/cit39
  doi: 10.1016/0039-6028(95)00963-9
– ident: ref40/cit40
  doi: 10.1063/1.360733
– ident: ref4/cit4
  doi: 10.1016/j.nantod.2015.07.004
– ident: ref2/cit2
  doi: 10.1021/nl903868w
– ident: ref20/cit20
  doi: 10.1126/science.1166999
– ident: ref44/cit44
  doi: 10.1021/jp5097713
– ident: ref5/cit5
  doi: 10.1088/2053-1583/2/4/044002
– ident: ref19/cit19
  doi: 10.1021/acsnano.5b00554
– volume-title: Phase-Field Methods in Materials Science and Engineering
  year: 2011
  ident: ref22/cit22
– ident: ref28/cit28
  doi: 10.1021/jp410893e
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.105.136805
– ident: ref43/cit43
  doi: 10.1021/la1015803
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.112.197001
SSID ssj0009350
Score 2.2506723
Snippet To ensure practical applications of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 2179
Title Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe 2
URI https://www.ncbi.nlm.nih.gov/pubmed/29461061
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctxAQD70d5yQNrQuw8PaKqpUIChraoW2Q7F4FALoJ04dNzdpKWghCwWo6VnM_x72Tf_wg5RwZlCdjLrYGWGKAE4CHHpZ6KpHWHLABXee7mNhmMo-tJPFkEil9P8Dm7kPrNN9JM8TMqP3Ne5CRLceuzJNQdLjR2Q1eQFdcwRkQii9pMuR8GWdqJlpjS7S39TXLXZujUV0qe_FmlfP3-XbDxj6-9RTYazKSXtV9skxUwO2T9k_jgLun3XAUcO0l06DJGsJnaUh4aCoprHYNe5HF6L7X9A1PrPKagVxi3Vw90aujocQiU75FxvzfqDrymqoKnrZibF8lMipKDUFKpkIWpSGUoZCyDIip0wcukjJUAxKRSQxloDGE5hFmCTYAslob7ZNVMDRwSqlPFYwCexQglaZqIgiGsB4h0EqkIVIeErYVz3UiO28oXz7k7-uYsRyvlrZXyxkod4s2feqklN37pf1BP3rw3F1ZFPmFH_xzpmKwhD7mUQxadkNXqdQanyByVOnOe9gGP89L4
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Stressing+Induced+Monolayer+Vacancy+Island+Growth+on+TiSe+2&rft.jtitle=Nano+letters&rft.au=Zheng%2C+Husong&rft.au=Valtierra%2C+Salvador&rft.au=Ofori-Opoku%2C+Nana&rft.au=Chen%2C+Chuanhui&rft.date=2018-03-14&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=18&rft.issue=3&rft.spage=2179&rft.epage=2185&rft_id=info:doi/10.1021%2Facs.nanolett.8b00515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_8b00515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon