Scalable Graph Learning with Graph Convolutional Networks and Graph Attention Networks: Addressing Class Imbalance Through Augmentation and Optimized Hyperparameter Tuning
In this study, we propose a graph-based node classification to address challenges such as data scarcity, class imbalance, limited access to original textual content in benchmark datasets, semantic preservation, and model generalization in node classification tasks. Beyond simple data replication, we...
Saved in:
Published in | International journal of advanced computer science & applications Vol. 16; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-107X 2156-5570 |
DOI | 10.14569/IJACSA.2025.0160740 |
Cover
Loading…
Abstract | In this study, we propose a graph-based node classification to address challenges such as data scarcity, class imbalance, limited access to original textual content in benchmark datasets, semantic preservation, and model generalization in node classification tasks. Beyond simple data replication, we enhanced the Cora dataset by extracting content from its original PostScript files using a three-dimensional framework that combines in one pipeline NLP-based techniques such as PEGASUS paraphrase, synthetic model generation and a controlled subject aware synonym replacement. We substantially expanded the dataset to 17,780 nodes—representing an approximation of 6.57x scaling while maintaining semantic fidelity (WMD scores: 0.27-0.34). Our Bayesian Hyperparameter tuning was conducted using Optuna, along with k-fold cross-validation for a rigorous optimized model validation protocol. Our Graph Convolutional Network (GCN) model achieves 95.42% accuracy while Graph Attention Network (GAT) reaches 93.46%, even when scaled to a significantly larger dataset than the base. Our empirical analysis demonstrates that semantic-preserving augmentation helped us achieve better performance while maintaining model stability across scaled datasets, offering a cost-effective alternative to architectural complexity, making graph learning accessible to resource-constrained environments. |
---|---|
AbstractList | In this study, we propose a graph-based node classification to address challenges such as data scarcity, class imbalance, limited access to original textual content in benchmark datasets, semantic preservation, and model generalization in node classification tasks. Beyond simple data replication, we enhanced the Cora dataset by extracting content from its original PostScript files using a three-dimensional framework that combines in one pipeline NLP-based techniques such as PEGASUS paraphrase, synthetic model generation and a controlled subject aware synonym replacement. We substantially expanded the dataset to 17,780 nodes—representing an approximation of 6.57x scaling while maintaining semantic fidelity (WMD scores: 0.27-0.34). Our Bayesian Hyperparameter tuning was conducted using Optuna, along with k-fold cross-validation for a rigorous optimized model validation protocol. Our Graph Convolutional Network (GCN) model achieves 95.42% accuracy while Graph Attention Network (GAT) reaches 93.46%, even when scaled to a significantly larger dataset than the base. Our empirical analysis demonstrates that semantic-preserving augmentation helped us achieve better performance while maintaining model stability across scaled datasets, offering a cost-effective alternative to architectural complexity, making graph learning accessible to resource-constrained environments. |
Author | Biniz, Mohamed Ayachi, Rachid El Touate, Chaima Ahle |
Author_xml | – sequence: 1 givenname: Chaima Ahle surname: Touate fullname: Touate, Chaima Ahle – sequence: 2 givenname: Rachid El surname: Ayachi fullname: Ayachi, Rachid El – sequence: 3 givenname: Mohamed surname: Biniz fullname: Biniz, Mohamed |
BookMark | eNo9UU1v2zAMFYYWWNf2H-wgYGdn-la0m2FsbYZgPTQFejNYm0nc2ZIn2Svav9Q_OTsJxgsJ8r1HEu8TOfPBIyGfOVtwpY37uvqZF_f5QjChF4wbZhX7QC4E1ybT2rKzQ73MOLOPH8l1Ss9sCumEWcoL8n5fQQtPLdKbCP2erhGib_yOvjTD_tQrgv8b2nFogoeW_sLhJcTfiYKvT4B8GNDP4__DbzSv64gpzVJFCynRVfc0bfIV0s0-hnE30cZdN_HgwJzV7vqh6Zo3rOnta4-xhwgdDhjpZpxvuiLnW2gTXp_yJXn48X1T3Gbru5tVka-zinPHMmmENFw4sEKZGhG0clwYi85oZ5kS1mnEymq1tLVCttVbqJTlToKTBip5Sb4cdfsY_oyYhvI5jHH6PZVSKOb4UjI7odQRVcWQUsRt2cemg_haclYenCmPzpSzM-XJGfkPvk-Frw |
ContentType | Journal Article |
Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.14569/IJACSA.2025.0160740 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Architecture |
EISSN | 2156-5570 |
ExternalDocumentID | 10_14569_IJACSA_2025_0160740 |
GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c1190-36236129a7246deea5491267e96597042795eec75487d4e0f5fac47193a936ac3 |
IEDL.DBID | BENPR |
ISSN | 2158-107X |
IngestDate | Fri Aug 29 06:18:14 EDT 2025 Thu Aug 07 06:40:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1190-36236129a7246deea5491267e96597042795eec75487d4e0f5fac47193a936ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3240918307?pq-origsite=%requestingapplication% |
PQID | 3240918307 |
PQPubID | 5444811 |
ParticipantIDs | proquest_journals_3240918307 crossref_primary_10_14569_IJACSA_2025_0160740 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | West Yorkshire |
PublicationPlace_xml | – name: West Yorkshire |
PublicationTitle | International journal of advanced computer science & applications |
PublicationYear | 2025 |
Publisher | Science and Information (SAI) Organization Limited |
Publisher_xml | – name: Science and Information (SAI) Organization Limited |
SSID | ssj0000392683 |
Score | 2.2789388 |
Snippet | In this study, we propose a graph-based node classification to address challenges such as data scarcity, class imbalance, limited access to original textual... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Approximation Architecture Artificial neural networks Attention Classification Computer science Data replication Datasets Empirical analysis Innovations Machine learning Natural language processing Neural networks Semantics Text categorization Tuning |
Title | Scalable Graph Learning with Graph Convolutional Networks and Graph Attention Networks: Addressing Class Imbalance Through Augmentation and Optimized Hyperparameter Tuning |
URI | https://www.proquest.com/docview/3240918307 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXIyJD9SIItmD14YK223Xi6kEBBLRKCbcmrK7JR4oyMODf8k_6Uy7oFy8tptt05mdb2Y68w3AtZZGEWeJg1iiHc4ld6SQxlE3gUk8chKyavfHvui88d7QG9qE28KWVa5tYmao9VRRjrxGxHES9c_172YfDk2Nor-rdoTGLhTRBAdeAYr3rf7zyybL4iL8i4yLE6GNeEz9oe2fQ8dB1rq9sPkaYpRYJ_JOgXDqbuPTtnnOMKd9BAfWWWRhLt1j2DFpCfbDP7n_Ehyu5zIwe0xP4PsVPzy1RLEHoqNmlkN1zCjpaq81p-mn1Tp8Qj8vBl-wONV2Qbhc5pWQm5u3LNQ6K5vFrbJhmqw7GVFppDJskM_7YeFqPLHtTGm22xPapMn7l9GsgyHvnKjGJ1SCwwYreqdTeGu3Bs2OY4cyoPio7RwBr4FekYz9OhfamBgDzJu68A0xE_o0uUN6xiifIiHNjZt4SawQAWUjlg0Rq8YZFNJpas6BCc1xKU8MruKqLkYqSJTPlSvjYCSULIOzFkU0y7k3IopZSHRRLrqIRBdZ0ZWhspZXZE_iIvrVm4v_b1_CHm2Wp1cqUFjOV-YKHY7lqAq7QfuhanXrByor1o8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0BPYCQ2BFLAR_gGBFS16mREAplaVkKgiL1FlLbqTg0BdqC4JeQ-EZmEoflwo1rbNmR3ngWe-YNwKaWRhFniYO2RDucS-5IIY2jdiomLpOTkGa7XzRE7ZaftsqtEfjIa2EorTLXiami1j1Fd-TbRBwnUf5cf__h0aGuUfS6mrfQyMTizLy-YMjW36sfIr5bnnd81KzWHNtVAPenumnU2CU06zLyPS60MRFGSDue8A1R6_nUekKWjVE-ufKaGzcux5FCFS5LkSyJSJVw3VEooJsh8RQVDo4aV9dftzouuhsi5f5EU0q8qX7L1uuhoyK366dB9SbAqNQjslCB5tv9bQ9_m4PUxh3PwJR1TlmQSdMsjJhkDiaDH28NczCd94FgVi3Mw_sNAk0lWOyE6K-Z5WztMLrktd-qveTZSjnu0MiSz_ssSrSdEAwGWebl1-AuC7RO03RxqbR5J6t325SKqQxrZv2FWDDsdG35VJKudok6sHv_ZjSrYYj9RNTmXUr5Yc0h_dMC3P4LXIswlvQSswRMaI5TeWxwFleeaKtKrHyuXBlV2kLJZXByKMKHjOsjpBiJoAsz6EKCLrTQLUMxxyu0J78ffsvpyt_DGzBea16ch-f1xtkqTNDC2dVOEcYGT0Ozhs7OoL1uJYzB3X8L9ScJwA_l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Graph+Learning+with+Graph+Convolutional+Networks+and+Graph+Attention+Networks%3A+Addressing+Class+Imbalance+Through+Augmentation+and+Optimized+Hyperparameter+Tuning&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Touate%2C+Chaima+Ahle&rft.au=Ayachi%2C+Rachid+El&rft.au=Biniz%2C+Mohamed&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=7&rft_id=info:doi/10.14569%2FIJACSA.2025.0160740&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |