Group Consensus in Finite Time for Fractional Multiagent Systems With Discontinuous Inherent Dynamics Subject to H ö lder Growth
This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where the inherent dynamics is modeled to be discontinuous, and subject to the local H ö lder nonlinear growth in a neighborhood of continuous points...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 6; pp. 4161 - 4172 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where the inherent dynamics is modeled to be discontinuous, and subject to the local H ö lder nonlinear growth in a neighborhood of continuous points. First, a fractional differential inequality on convex functions and a global convergence principle in finite time for absolutely continuous functions are developed, respectively. Second, two new distributed control protocols are designed to realize the consensus between the follower agents in each subgroup and respective leaders. In addition, under the fractional Filippov differential inclusion framework, by applying the Lur’e Postnikov-type convex Lyapunov functional approach and Clarke’s nonsmooth analysis technique, some sufficient conditions with respect to the global Mittag–Leffler group consensus and group consensus in finite time are addressed in terms of linear matrix inequalities (LMIs), respectively. Moreover, the settling time for the group consensus in finite time is estimated accurately. Finally, two simulation examples are provided to illustrate the validity of the proposed scheme and theoretical results. |
---|---|
AbstractList | This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where the inherent dynamics is modeled to be discontinuous, and subject to the local H ö lder nonlinear growth in a neighborhood of continuous points. First, a fractional differential inequality on convex functions and a global convergence principle in finite time for absolutely continuous functions are developed, respectively. Second, two new distributed control protocols are designed to realize the consensus between the follower agents in each subgroup and respective leaders. In addition, under the fractional Filippov differential inclusion framework, by applying the Lur’e Postnikov-type convex Lyapunov functional approach and Clarke’s nonsmooth analysis technique, some sufficient conditions with respect to the global Mittag–Leffler group consensus and group consensus in finite time are addressed in terms of linear matrix inequalities (LMIs), respectively. Moreover, the settling time for the group consensus in finite time is estimated accurately. Finally, two simulation examples are provided to illustrate the validity of the proposed scheme and theoretical results. |
Author | Cao, Jinde Wu, Huaiqin Zhang, Yuqing |
Author_xml | – sequence: 1 givenname: Yuqing surname: Zhang fullname: Zhang, Yuqing organization: School of Science, Yanshan University, Qinhuangdao, China – sequence: 2 givenname: Huaiqin orcidid: 0000-0002-8766-3514 surname: Wu fullname: Wu, Huaiqin organization: School of Science, Yanshan University, Qinhuangdao, China – sequence: 3 givenname: Jinde orcidid: 0000-0003-3133-7119 surname: Cao fullname: Cao, Jinde organization: School of Mathematics, Southeast University, Nanjing, China |
BookMark | eNp9kM9OAjEQxhuDiYg8gLcmnsG2y-6Wo4L8STAewBhPm26ZSsnSYtuN4ehL-QK-mN1APHhwLjOZfN83md8lahlrAKFrSvqUkuHtavR632eEkX5CWJKTwRlqM5rxHmN52vqds_wCdb3fklg8roa8jT6nztZ7PLLGg_G1x9rgiTY6AF7pHWBlHZ44IYO2RlT4sa6CFm9gAl4efICdxy86bPBYe2lN0Ka2MWNuNuAazfhgxE5Lj5d1uQUZcLB4hr-_cLUGh-Ppj7C5QudKVB66p95Bz5OH1WjWWzxN56O7RU9SyrMe4zRhoCRLOfBMlkoqLhiVQEhaymyY8zIHxQFEmdABFarM1BoGJR-maVKSNOmgm2Pu3tn3GnwotrZ28SlfRDI5T2N-FlX0qJLOeu9AFXund8IdCkqKBnbRwC4a2MUJdvTkfzxSB9EQC07o6h_nDzd9iAQ |
CitedBy_id | crossref_primary_10_1002_asjc_3012 crossref_primary_10_1007_s40314_022_01895_2 crossref_primary_10_1002_oca_3075 crossref_primary_10_1109_TAC_2023_3314653 crossref_primary_10_1186_s13662_021_03389_7 crossref_primary_10_1016_j_cnsns_2023_107538 crossref_primary_10_1007_s11063_021_10428_7 crossref_primary_10_1109_TSMC_2022_3185163 crossref_primary_10_1080_00207721_2022_2067910 crossref_primary_10_1002_acs_3487 crossref_primary_10_3390_fractalfract7030268 crossref_primary_10_1109_JSYST_2023_3330937 crossref_primary_10_1109_TCNS_2023_3336828 crossref_primary_10_3934_mbe_2023563 crossref_primary_10_1080_00207721_2023_2268771 crossref_primary_10_1007_s11063_022_10838_1 crossref_primary_10_1155_2021_6699198 crossref_primary_10_1109_TASE_2024_3422419 crossref_primary_10_1016_j_ins_2023_119380 crossref_primary_10_1080_03081079_2025_2468934 crossref_primary_10_1155_2021_6614150 crossref_primary_10_1002_asjc_3346 crossref_primary_10_1080_00207721_2024_2421453 crossref_primary_10_3934_math_2022666 crossref_primary_10_3390_electronics12081830 crossref_primary_10_1002_rnc_7173 crossref_primary_10_1016_j_jfranklin_2024_01_008 crossref_primary_10_3390_drones8040141 crossref_primary_10_3390_fractalfract6070380 crossref_primary_10_1007_s11063_021_10515_9 crossref_primary_10_1007_s40747_023_01107_2 crossref_primary_10_1109_TSIPN_2024_3375602 crossref_primary_10_1007_s10473_022_0219_4 crossref_primary_10_1109_TCSII_2022_3186669 |
Cites_doi | 10.1016/j.neucom.2018.04.002 10.1016/j.cnsns.2020.105400 10.1080/00207179.2017.1313453 10.1109/TNNLS.2018.2876726 10.1080/00207721.2016.1193258 10.1016/j.amc.2019.124929 10.1080/00207721.2017.1308579 10.1080/00207721.2013.822609 10.1016/j.isatra.2017.06.009 10.1016/j.ces.2014.06.034 10.1186/s13662-018-1666-z 10.1007/s40314-020-01146-2 10.1007/s11071-017-3945-8 10.1515/fca-2017-0003 10.4025/actascitechnol.v32i3.6552 10.1142/3779 10.1016/j.nahs.2020.100888 10.1016/j.aml.2016.06.011 10.1016/j.jfranklin.2017.10.009 10.1007/s11071-019-04877-y 10.1016/j.amc.2014.01.018 10.1016/j.aml.2019.106000 10.1109/ICCA.2010.5524080 10.1109/TAC.2003.812781 10.1155/2017/3465076 10.1016/j.neucom.2018.10.045 10.1049/iet-cta.2016.0606 10.1080/00207179.2015.1072876 10.1007/s11740-012-0420-8 10.1109/ACCESS.2017.2723462 10.1007/978-94-015-7793-9 10.1016/j.ins.2018.12.037 10.1016/j.neucom.2016.12.066 10.1007/978-3-642-69512-4 10.1016/j.jfranklin.2018.07.024 10.1016/j.neucom.2019.02.046 10.1109/TNNLS.2015.2425933 10.1016/j.isatra.2018.08.016 10.1007/s00521-018-3682-z 10.1007/s11071-019-04861-6 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1109/TCYB.2020.3023704 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4172 |
ExternalDocumentID | 10_1109_TCYB_2020_3023704 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH AAYXX ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RIG RNS 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c1186-28132efc258e86cbfcf8a21ce005bc6978b7ef8eeab3141afb6fde4b89553b053 |
ISSN | 2168-2267 |
IngestDate | Mon Jun 30 03:39:59 EDT 2025 Tue Jul 01 00:53:57 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1186-28132efc258e86cbfcf8a21ce005bc6978b7ef8eeab3141afb6fde4b89553b053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3133-7119 0000-0002-8766-3514 |
PQID | 2677851326 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2677851326 crossref_primary_10_1109_TCYB_2020_3023704 crossref_citationtrail_10_1109_TCYB_2020_3023704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-6-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-6-00 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationYear | 2022 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 Aubin (ref43) 1984 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Filippov (ref18) 1988 ref23 ref26 ref25 ref20 ref42 ref22 Rockafellar (ref41) 1972 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Podlubny (ref21) 1999 ref5 Soczkiewicz (ref24) 2002; 23 ref40 |
References_xml | – ident: ref38 doi: 10.1016/j.neucom.2018.04.002 – ident: ref6 doi: 10.1016/j.cnsns.2020.105400 – ident: ref20 doi: 10.1080/00207179.2017.1313453 – ident: ref26 doi: 10.1109/TNNLS.2018.2876726 – ident: ref37 doi: 10.1080/00207721.2016.1193258 – ident: ref42 doi: 10.1016/j.amc.2019.124929 – ident: ref19 doi: 10.1080/00207721.2017.1308579 – ident: ref2 doi: 10.1080/00207721.2013.822609 – ident: ref30 doi: 10.1016/j.isatra.2017.06.009 – ident: ref25 doi: 10.1016/j.ces.2014.06.034 – ident: ref11 doi: 10.1186/s13662-018-1666-z – ident: ref7 doi: 10.1007/s40314-020-01146-2 – volume: 23 start-page: 397 year: 2002 ident: ref24 article-title: Application of fractional calculus in the theory of viscoelasticity publication-title: Mol. Quantum Acoust. – ident: ref10 doi: 10.1007/s11071-017-3945-8 – ident: ref33 doi: 10.1515/fca-2017-0003 – ident: ref23 doi: 10.4025/actascitechnol.v32i3.6552 – ident: ref22 doi: 10.1142/3779 – ident: ref40 doi: 10.1016/j.nahs.2020.100888 – ident: ref31 doi: 10.1016/j.aml.2016.06.011 – ident: ref5 doi: 10.1016/j.jfranklin.2017.10.009 – ident: ref28 doi: 10.1007/s11071-019-04877-y – ident: ref15 doi: 10.1016/j.amc.2014.01.018 – ident: ref29 doi: 10.1016/j.aml.2019.106000 – ident: ref1 doi: 10.1109/ICCA.2010.5524080 – ident: ref12 doi: 10.1109/TAC.2003.812781 – ident: ref13 doi: 10.1155/2017/3465076 – ident: ref35 doi: 10.1016/j.neucom.2018.10.045 – ident: ref36 doi: 10.1049/iet-cta.2016.0606 – ident: ref17 doi: 10.1080/00207179.2015.1072876 – volume-title: Convex Analysis year: 1972 ident: ref41 – ident: ref3 doi: 10.1007/s11740-012-0420-8 – ident: ref14 doi: 10.1109/ACCESS.2017.2723462 – volume-title: Differential Equations With Discontinuous Right-Hand Sides year: 1988 ident: ref18 doi: 10.1007/978-94-015-7793-9 – ident: ref9 doi: 10.1016/j.ins.2018.12.037 – ident: ref39 doi: 10.1016/j.neucom.2016.12.066 – volume-title: Differential Inclusions year: 1984 ident: ref43 doi: 10.1007/978-3-642-69512-4 – ident: ref16 doi: 10.1016/j.jfranklin.2018.07.024 – ident: ref32 doi: 10.1016/j.neucom.2019.02.046 – ident: ref4 doi: 10.1109/TNNLS.2015.2425933 – ident: ref8 doi: 10.1016/j.isatra.2018.08.016 – ident: ref27 doi: 10.1007/s00521-018-3682-z – ident: ref34 doi: 10.1007/s11071-019-04861-6 – volume-title: Fractional Differential Equations year: 1999 ident: ref21 |
SSID | ssj0000816898 |
Score | 2.2895188 |
Snippet | This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 4161 |
SubjectTerms | Continuity (mathematics) Linear matrix inequalities Mathematical analysis Multiagent systems Reagents Subgroups |
Title | Group Consensus in Finite Time for Fractional Multiagent Systems With Discontinuous Inherent Dynamics Subject to H ö lder Growth |
URI | https://www.proquest.com/docview/2677851326 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6FcuGCKD-iUNAcOACVg73eXTtHGogCB06p1J4sr71WIiG3TWwhuPEqPAQvwIsxs7t2HAqIcrEiK1nFnm_nb2fmY-yZFFqFGjdSopIqECZXQWpKSUXjUamqWOnKVlt8UPMT8f5Uno5G3wZVS22jx8WX3_aV_I9U8R7KlbpkryHZflG8gZ9RvnhFCeP1n2TsMknEuUmEFbaydbYiJ9J2dtgKwtnadS5QCy7VDubUStXNKUed0CxpACcVrK_qlsph39VLYyc2vXFc9RvSLZSsIS91fkQH68fqiLi9KW_1qVkO3VsKHYl1oqMgt2cRxWdt1jU1S_b-e5-mPmsvO9tJlqG1lrDNV5erHrTT3B0O0VzHYY4Cw9u-lsqpMh4plBx3xBtjM7zneFM6XSz5AHNDxUpx2MBIi8gR_lw1AHZ-6mJ6doyxPw_HxImUOILj3WHbvxjBvjTRBkXhJKMlMloi80vcYDc5hiK-R7DP41niEku53D-kPzzHVV5d-SO77s-u9bcuzeIOu-1jEXjtgLXPRqa-y_a9tt_Acz-S_MU99tUiDXqkwaoGhzQgpAEiDbZIgy3SwCMNCGmwgzTokAYd0sAjDZpzmMOP70AoA4ey--xk9nYxnQeevCMoMGZVAU-jmJuq4DI1qSp0VVRpzqPCoNrXhZokqU5MlRqT6zgSUV5pVZVG6HQiZazRNDxge_V5bR4y4LKIdCK4EVUoSlPmgpcJ2qVcT9JYSHnAwu6dZoWfbE8EKx-zPwrzgL3sf3Lhxrr87cuHnaAyv_s3GafJixKfUT26zlqP2a3tBjlke826NU_QrW30U4urn0jxoGs |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Consensus+in+Finite+Time+for+Fractional+Multiagent+Systems+With+Discontinuous+Inherent+Dynamics+Subject+to+H+%C3%B6+lder+Growth&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Yuqing&rft.au=Wu%2C+Huaiqin&rft.au=Cao%2C+Jinde&rft.date=2022-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=6&rft.spage=4161&rft.epage=4172&rft_id=info:doi/10.1109%2FTCYB.2020.3023704&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3023704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |