Group Consensus in Finite Time for Fractional Multiagent Systems With Discontinuous Inherent Dynamics Subject to H ö lder Growth

This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where the inherent dynamics is modeled to be discontinuous, and subject to the local H ö lder nonlinear growth in a neighborhood of continuous points...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 6; pp. 4161 - 4172
Main Authors Zhang, Yuqing, Wu, Huaiqin, Cao, Jinde
Format Journal Article
LanguageEnglish
Published Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where the inherent dynamics is modeled to be discontinuous, and subject to the local H ö lder nonlinear growth in a neighborhood of continuous points. First, a fractional differential inequality on convex functions and a global convergence principle in finite time for absolutely continuous functions are developed, respectively. Second, two new distributed control protocols are designed to realize the consensus between the follower agents in each subgroup and respective leaders. In addition, under the fractional Filippov differential inclusion framework, by applying the Lur’e Postnikov-type convex Lyapunov functional approach and Clarke’s nonsmooth analysis technique, some sufficient conditions with respect to the global Mittag–Leffler group consensus and group consensus in finite time are addressed in terms of linear matrix inequalities (LMIs), respectively. Moreover, the settling time for the group consensus in finite time is estimated accurately. Finally, two simulation examples are provided to illustrate the validity of the proposed scheme and theoretical results.
AbstractList This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where the inherent dynamics is modeled to be discontinuous, and subject to the local H ö lder nonlinear growth in a neighborhood of continuous points. First, a fractional differential inequality on convex functions and a global convergence principle in finite time for absolutely continuous functions are developed, respectively. Second, two new distributed control protocols are designed to realize the consensus between the follower agents in each subgroup and respective leaders. In addition, under the fractional Filippov differential inclusion framework, by applying the Lur’e Postnikov-type convex Lyapunov functional approach and Clarke’s nonsmooth analysis technique, some sufficient conditions with respect to the global Mittag–Leffler group consensus and group consensus in finite time are addressed in terms of linear matrix inequalities (LMIs), respectively. Moreover, the settling time for the group consensus in finite time is estimated accurately. Finally, two simulation examples are provided to illustrate the validity of the proposed scheme and theoretical results.
Author Cao, Jinde
Wu, Huaiqin
Zhang, Yuqing
Author_xml – sequence: 1
  givenname: Yuqing
  surname: Zhang
  fullname: Zhang, Yuqing
  organization: School of Science, Yanshan University, Qinhuangdao, China
– sequence: 2
  givenname: Huaiqin
  orcidid: 0000-0002-8766-3514
  surname: Wu
  fullname: Wu, Huaiqin
  organization: School of Science, Yanshan University, Qinhuangdao, China
– sequence: 3
  givenname: Jinde
  orcidid: 0000-0003-3133-7119
  surname: Cao
  fullname: Cao, Jinde
  organization: School of Mathematics, Southeast University, Nanjing, China
BookMark eNp9kM9OAjEQxhuDiYg8gLcmnsG2y-6Wo4L8STAewBhPm26ZSsnSYtuN4ehL-QK-mN1APHhwLjOZfN83md8lahlrAKFrSvqUkuHtavR632eEkX5CWJKTwRlqM5rxHmN52vqds_wCdb3fklg8roa8jT6nztZ7PLLGg_G1x9rgiTY6AF7pHWBlHZ44IYO2RlT4sa6CFm9gAl4efICdxy86bPBYe2lN0Ka2MWNuNuAazfhgxE5Lj5d1uQUZcLB4hr-_cLUGh-Ppj7C5QudKVB66p95Bz5OH1WjWWzxN56O7RU9SyrMe4zRhoCRLOfBMlkoqLhiVQEhaymyY8zIHxQFEmdABFarM1BoGJR-maVKSNOmgm2Pu3tn3GnwotrZ28SlfRDI5T2N-FlX0qJLOeu9AFXund8IdCkqKBnbRwC4a2MUJdvTkfzxSB9EQC07o6h_nDzd9iAQ
CitedBy_id crossref_primary_10_1002_asjc_3012
crossref_primary_10_1007_s40314_022_01895_2
crossref_primary_10_1002_oca_3075
crossref_primary_10_1109_TAC_2023_3314653
crossref_primary_10_1186_s13662_021_03389_7
crossref_primary_10_1016_j_cnsns_2023_107538
crossref_primary_10_1007_s11063_021_10428_7
crossref_primary_10_1109_TSMC_2022_3185163
crossref_primary_10_1080_00207721_2022_2067910
crossref_primary_10_1002_acs_3487
crossref_primary_10_3390_fractalfract7030268
crossref_primary_10_1109_JSYST_2023_3330937
crossref_primary_10_1109_TCNS_2023_3336828
crossref_primary_10_3934_mbe_2023563
crossref_primary_10_1080_00207721_2023_2268771
crossref_primary_10_1007_s11063_022_10838_1
crossref_primary_10_1155_2021_6699198
crossref_primary_10_1109_TASE_2024_3422419
crossref_primary_10_1016_j_ins_2023_119380
crossref_primary_10_1080_03081079_2025_2468934
crossref_primary_10_1155_2021_6614150
crossref_primary_10_1002_asjc_3346
crossref_primary_10_1080_00207721_2024_2421453
crossref_primary_10_3934_math_2022666
crossref_primary_10_3390_electronics12081830
crossref_primary_10_1002_rnc_7173
crossref_primary_10_1016_j_jfranklin_2024_01_008
crossref_primary_10_3390_drones8040141
crossref_primary_10_3390_fractalfract6070380
crossref_primary_10_1007_s11063_021_10515_9
crossref_primary_10_1007_s40747_023_01107_2
crossref_primary_10_1109_TSIPN_2024_3375602
crossref_primary_10_1007_s10473_022_0219_4
crossref_primary_10_1109_TCSII_2022_3186669
Cites_doi 10.1016/j.neucom.2018.04.002
10.1016/j.cnsns.2020.105400
10.1080/00207179.2017.1313453
10.1109/TNNLS.2018.2876726
10.1080/00207721.2016.1193258
10.1016/j.amc.2019.124929
10.1080/00207721.2017.1308579
10.1080/00207721.2013.822609
10.1016/j.isatra.2017.06.009
10.1016/j.ces.2014.06.034
10.1186/s13662-018-1666-z
10.1007/s40314-020-01146-2
10.1007/s11071-017-3945-8
10.1515/fca-2017-0003
10.4025/actascitechnol.v32i3.6552
10.1142/3779
10.1016/j.nahs.2020.100888
10.1016/j.aml.2016.06.011
10.1016/j.jfranklin.2017.10.009
10.1007/s11071-019-04877-y
10.1016/j.amc.2014.01.018
10.1016/j.aml.2019.106000
10.1109/ICCA.2010.5524080
10.1109/TAC.2003.812781
10.1155/2017/3465076
10.1016/j.neucom.2018.10.045
10.1049/iet-cta.2016.0606
10.1080/00207179.2015.1072876
10.1007/s11740-012-0420-8
10.1109/ACCESS.2017.2723462
10.1007/978-94-015-7793-9
10.1016/j.ins.2018.12.037
10.1016/j.neucom.2016.12.066
10.1007/978-3-642-69512-4
10.1016/j.jfranklin.2018.07.024
10.1016/j.neucom.2019.02.046
10.1109/TNNLS.2015.2425933
10.1016/j.isatra.2018.08.016
10.1007/s00521-018-3682-z
10.1007/s11071-019-04861-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TCYB.2020.3023704
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4172
ExternalDocumentID 10_1109_TCYB_2020_3023704
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYXX
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1186-28132efc258e86cbfcf8a21ce005bc6978b7ef8eeab3141afb6fde4b89553b053
ISSN 2168-2267
IngestDate Mon Jun 30 03:39:59 EDT 2025
Tue Jul 01 00:53:57 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1186-28132efc258e86cbfcf8a21ce005bc6978b7ef8eeab3141afb6fde4b89553b053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3133-7119
0000-0002-8766-3514
PQID 2677851326
PQPubID 85422
PageCount 12
ParticipantIDs proquest_journals_2677851326
crossref_primary_10_1109_TCYB_2020_3023704
crossref_citationtrail_10_1109_TCYB_2020_3023704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-6-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-6-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationYear 2022
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Aubin (ref43) 1984
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Filippov (ref18) 1988
ref23
ref26
ref25
ref20
ref42
ref22
Rockafellar (ref41) 1972
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Podlubny (ref21) 1999
ref5
Soczkiewicz (ref24) 2002; 23
ref40
References_xml – ident: ref38
  doi: 10.1016/j.neucom.2018.04.002
– ident: ref6
  doi: 10.1016/j.cnsns.2020.105400
– ident: ref20
  doi: 10.1080/00207179.2017.1313453
– ident: ref26
  doi: 10.1109/TNNLS.2018.2876726
– ident: ref37
  doi: 10.1080/00207721.2016.1193258
– ident: ref42
  doi: 10.1016/j.amc.2019.124929
– ident: ref19
  doi: 10.1080/00207721.2017.1308579
– ident: ref2
  doi: 10.1080/00207721.2013.822609
– ident: ref30
  doi: 10.1016/j.isatra.2017.06.009
– ident: ref25
  doi: 10.1016/j.ces.2014.06.034
– ident: ref11
  doi: 10.1186/s13662-018-1666-z
– ident: ref7
  doi: 10.1007/s40314-020-01146-2
– volume: 23
  start-page: 397
  year: 2002
  ident: ref24
  article-title: Application of fractional calculus in the theory of viscoelasticity
  publication-title: Mol. Quantum Acoust.
– ident: ref10
  doi: 10.1007/s11071-017-3945-8
– ident: ref33
  doi: 10.1515/fca-2017-0003
– ident: ref23
  doi: 10.4025/actascitechnol.v32i3.6552
– ident: ref22
  doi: 10.1142/3779
– ident: ref40
  doi: 10.1016/j.nahs.2020.100888
– ident: ref31
  doi: 10.1016/j.aml.2016.06.011
– ident: ref5
  doi: 10.1016/j.jfranklin.2017.10.009
– ident: ref28
  doi: 10.1007/s11071-019-04877-y
– ident: ref15
  doi: 10.1016/j.amc.2014.01.018
– ident: ref29
  doi: 10.1016/j.aml.2019.106000
– ident: ref1
  doi: 10.1109/ICCA.2010.5524080
– ident: ref12
  doi: 10.1109/TAC.2003.812781
– ident: ref13
  doi: 10.1155/2017/3465076
– ident: ref35
  doi: 10.1016/j.neucom.2018.10.045
– ident: ref36
  doi: 10.1049/iet-cta.2016.0606
– ident: ref17
  doi: 10.1080/00207179.2015.1072876
– volume-title: Convex Analysis
  year: 1972
  ident: ref41
– ident: ref3
  doi: 10.1007/s11740-012-0420-8
– ident: ref14
  doi: 10.1109/ACCESS.2017.2723462
– volume-title: Differential Equations With Discontinuous Right-Hand Sides
  year: 1988
  ident: ref18
  doi: 10.1007/978-94-015-7793-9
– ident: ref9
  doi: 10.1016/j.ins.2018.12.037
– ident: ref39
  doi: 10.1016/j.neucom.2016.12.066
– volume-title: Differential Inclusions
  year: 1984
  ident: ref43
  doi: 10.1007/978-3-642-69512-4
– ident: ref16
  doi: 10.1016/j.jfranklin.2018.07.024
– ident: ref32
  doi: 10.1016/j.neucom.2019.02.046
– ident: ref4
  doi: 10.1109/TNNLS.2015.2425933
– ident: ref8
  doi: 10.1016/j.isatra.2018.08.016
– ident: ref27
  doi: 10.1007/s00521-018-3682-z
– ident: ref34
  doi: 10.1007/s11071-019-04861-6
– volume-title: Fractional Differential Equations
  year: 1999
  ident: ref21
SSID ssj0000816898
Score 2.2895188
Snippet This article is concerned with the global Mittag–Leffler group consensus and group consensus in finite time for fractional multiagent systems (FMASs), where...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4161
SubjectTerms Continuity (mathematics)
Linear matrix inequalities
Mathematical analysis
Multiagent systems
Reagents
Subgroups
Title Group Consensus in Finite Time for Fractional Multiagent Systems With Discontinuous Inherent Dynamics Subject to H ö lder Growth
URI https://www.proquest.com/docview/2677851326
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6FcuGCKD-iUNAcOACVg73eXTtHGogCB06p1J4sr71WIiG3TWwhuPEqPAQvwIsxs7t2HAqIcrEiK1nFnm_nb2fmY-yZFFqFGjdSopIqECZXQWpKSUXjUamqWOnKVlt8UPMT8f5Uno5G3wZVS22jx8WX3_aV_I9U8R7KlbpkryHZflG8gZ9RvnhFCeP1n2TsMknEuUmEFbaydbYiJ9J2dtgKwtnadS5QCy7VDubUStXNKUed0CxpACcVrK_qlsph39VLYyc2vXFc9RvSLZSsIS91fkQH68fqiLi9KW_1qVkO3VsKHYl1oqMgt2cRxWdt1jU1S_b-e5-mPmsvO9tJlqG1lrDNV5erHrTT3B0O0VzHYY4Cw9u-lsqpMh4plBx3xBtjM7zneFM6XSz5AHNDxUpx2MBIi8gR_lw1AHZ-6mJ6doyxPw_HxImUOILj3WHbvxjBvjTRBkXhJKMlMloi80vcYDc5hiK-R7DP41niEku53D-kPzzHVV5d-SO77s-u9bcuzeIOu-1jEXjtgLXPRqa-y_a9tt_Acz-S_MU99tUiDXqkwaoGhzQgpAEiDbZIgy3SwCMNCGmwgzTokAYd0sAjDZpzmMOP70AoA4ey--xk9nYxnQeevCMoMGZVAU-jmJuq4DI1qSp0VVRpzqPCoNrXhZokqU5MlRqT6zgSUV5pVZVG6HQiZazRNDxge_V5bR4y4LKIdCK4EVUoSlPmgpcJ2qVcT9JYSHnAwu6dZoWfbE8EKx-zPwrzgL3sf3Lhxrr87cuHnaAyv_s3GafJixKfUT26zlqP2a3tBjlke826NU_QrW30U4urn0jxoGs
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Consensus+in+Finite+Time+for+Fractional+Multiagent+Systems+With+Discontinuous+Inherent+Dynamics+Subject+to+H+%C3%B6+lder+Growth&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Yuqing&rft.au=Wu%2C+Huaiqin&rft.au=Cao%2C+Jinde&rft.date=2022-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=6&rft.spage=4161&rft.epage=4172&rft_id=info:doi/10.1109%2FTCYB.2020.3023704&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3023704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon