Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV SF162P3N -Infected Macaques

To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 90; no. 8; pp. 4017 - 4031
Main Authors Jia, Manxue, Lu, Hong, Markowitz, Martin, Cheng-Mayer, Cecilia, Wu, Xueling
Format Journal Article
LanguageEnglish
Published 15.04.2016
Online AccessGet full text
ISSN0022-538X
1098-5514
DOI10.1128/JVI.02898-15

Cover

Loading…
Abstract To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIV SF162P3N and 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. IMPORTANCE HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIV SF162P3N -infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs.
AbstractList To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIV SF162P3N and 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. IMPORTANCE HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIV SF162P3N -infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs.
Author Jia, Manxue
Lu, Hong
Cheng-Mayer, Cecilia
Wu, Xueling
Markowitz, Martin
Author_xml – sequence: 1
  givenname: Manxue
  surname: Jia
  fullname: Jia, Manxue
  organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA
– sequence: 2
  givenname: Hong
  surname: Lu
  fullname: Lu, Hong
  organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA
– sequence: 3
  givenname: Martin
  surname: Markowitz
  fullname: Markowitz, Martin
  organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA
– sequence: 4
  givenname: Cecilia
  surname: Cheng-Mayer
  fullname: Cheng-Mayer, Cecilia
  organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA
– sequence: 5
  givenname: Xueling
  surname: Wu
  fullname: Wu, Xueling
  organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA
BookMark eNp9kd1u1DAQRi1UJLaFOx5gHoC0HifeOJf936BuQdplxV3kOONilNipkyCF1-SF2LJISKjq1Yw05_su5hyzIx88MfYe-SmiUGcfd-UpF6pQCcpXbIF8v0mJ2RFbcC5EIlP19Q07HobvnGOWLbMF-3VFP6gNfUd-hGDhIgbdtDPc0zRG3bqfzj_AuR9dHRpHA2jfwPYbuQhr3fdPx3qGdfCho-gMPPQoODgPq6nTHsqum3xoyDrjyJsZdi5OA2znngCT0lsyIzUH-NC9cZ3TPnkxvlmVO9jc4FJ8Tu_hX81aG_040fCWvba6Hejd33nCvtxcby9Xyd2n2_Ly_C4xiEomSmCaK1vnubEZSiFtLajmhbXpUtVoi0w1hdE5Go2a50XGFSekOpcF10Wm0xP24dBrYhiGSLbqo-t0nCvk1ZOQai-k-iOkQrnHxX-4caMeXfD7T7v2-dBvrtWS3w
CitedBy_id crossref_primary_10_1038_s41467_021_26846_z
crossref_primary_10_1073_pnas_1813909116
crossref_primary_10_3389_fimmu_2024_1506348
crossref_primary_10_1016_j_immuni_2018_02_013
crossref_primary_10_1089_aid_2019_0239
crossref_primary_10_1128_JVI_00594_20
crossref_primary_10_1126_sciadv_adn0042
crossref_primary_10_1371_journal_ppat_1008577
crossref_primary_10_1038_s41467_024_48758_4
crossref_primary_10_1126_science_abd2638
crossref_primary_10_1016_j_chom_2020_03_024
crossref_primary_10_1111_imr_12516
crossref_primary_10_3389_fimmu_2018_00628
crossref_primary_10_1097_QAD_0000000000001724
crossref_primary_10_1016_j_chembiol_2023_03_003
crossref_primary_10_3390_v12020163
crossref_primary_10_3390_v10050262
crossref_primary_10_1016_j_ebiom_2016_04_040
crossref_primary_10_1128_JVI_02198_20
crossref_primary_10_1128_spectrum_02234_24
crossref_primary_10_1371_journal_ppat_1006572
crossref_primary_10_1016_j_coi_2016_05_013
crossref_primary_10_3390_ijms25137200
crossref_primary_10_1172_jci_insight_97018
Cites_doi 10.1038/nature01470
10.1128/JVI.07139-11
10.1128/JVI.00110-09
10.1073/pnas.0802203105
10.1371/journal.ppat.1005238
10.1128/JVI.02108-09
10.1126/science.1207227
10.1128/JVI.02006-10
10.1006/viro.1994.1575
10.1038/nature13036
10.1016/j.cell.2014.06.022
10.1128/JVI.75.4.1990-1995.2001
10.1128/jvi.68.8.5142-5155.1994
10.1128/AAC.46.6.1896-1905.2002
10.1038/nm1624
10.1128/JVI.72.4.3427-3431.1998
10.1128/JVI.03104-12
10.1128/JVI.00759-07
10.1016/j.cell.2015.05.007
10.1097/QAD.0000000000000106
10.1093/nar/gkt382
10.1371/journal.ppat.1003618
10.1128/JVI.01142-09
10.1038/nature12053
10.1089/088922202753747914
10.1371/journal.pone.0008805
10.1084/jem.20110363
10.1086/651274
10.1073/pnas.1217443109
10.1186/1742-4690-10-9
10.1084/jem.20090378
10.1126/scitranslmed.aab3964
10.1097/QAI.0b013e31827f1c11
10.1016/j.jim.2007.09.017
10.1073/pnas.86.17.6768
10.1128/JVI.00563-11
10.1371/journal.ppat.1000890
10.1128/JVI.00673-09
10.1128/JVI.00734-12
10.1126/scitranslmed.3003752
10.1126/science.1187659
10.1038/ncomms7565
10.1128/JVI.00852-12
10.1128/JVI.01482-09
10.1038/nature10373
10.1128/JVI.00171-11
10.1101/cshperspect.a007310
10.1073/pnas.0911004107
10.1126/science.1213256
10.1128/jvi.68.12.8350-8364.1994
10.1126/science.aac4223
10.1016/j.molimm.2008.09.005
10.1128/JVI.00198-11
10.1128/JVI.00424-07
10.1128/JVI.01865-09
10.1128/JVI.01730-06
10.1016/j.immuni.2012.08.012
10.1371/journal.ppat.1001251
10.1128/JVI.79.16.10108-10125.2005
10.1016/j.immuni.2013.04.012
10.1016/j.virol.2007.01.010
10.1126/science.1207532
10.1128/JVI.01583-08
10.1128/JVI.02660-07
10.1038/ni.3158
10.1073/pnas.1117531108
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1128/JVI.02898-15
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 4031
ExternalDocumentID 10_1128_JVI_02898_15
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
ID FETCH-LOGICAL-c1185-821378fb77cf41525fb2eb09ff368b1f948d9ca71ca1a0794080e1eb7590a94a3
ISSN 0022-538X
IngestDate Thu Apr 24 23:06:35 EDT 2025
Tue Jul 01 01:02:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1185-821378fb77cf41525fb2eb09ff368b1f948d9ca71ca1a0794080e1eb7590a94a3
OpenAccessLink https://jvi.asm.org/content/jvi/90/8/4017.full.pdf
PageCount 15
ParticipantIDs crossref_primary_10_1128_JVI_02898_15
crossref_citationtrail_10_1128_JVI_02898_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-15
PublicationDateYYYYMMDD 2016-04-15
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of virology
PublicationYear 2016
References e_1_3_2_26_2
e_1_3_2_49_2
Kabat EA (e_1_3_2_68_2) 1991
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_37_2
  doi: 10.1038/nature01470
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.07139-11
– ident: e_1_3_2_17_2
  doi: 10.1128/JVI.00110-09
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.0802203105
– ident: e_1_3_2_54_2
  doi: 10.1371/journal.ppat.1005238
– ident: e_1_3_2_51_2
  doi: 10.1128/JVI.02108-09
– ident: e_1_3_2_47_2
  doi: 10.1126/science.1207227
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.02006-10
– ident: e_1_3_2_63_2
  doi: 10.1006/viro.1994.1575
– ident: e_1_3_2_25_2
  doi: 10.1038/nature13036
– ident: e_1_3_2_26_2
  doi: 10.1016/j.cell.2014.06.022
– ident: e_1_3_2_59_2
  doi: 10.1128/JVI.75.4.1990-1995.2001
– ident: e_1_3_2_65_2
  doi: 10.1128/jvi.68.8.5142-5155.1994
– ident: e_1_3_2_36_2
  doi: 10.1128/AAC.46.6.1896-1905.2002
– ident: e_1_3_2_45_2
  doi: 10.1038/nm1624
– ident: e_1_3_2_8_2
  doi: 10.1128/JVI.72.4.3427-3431.1998
– ident: e_1_3_2_46_2
  doi: 10.1128/JVI.03104-12
– ident: e_1_3_2_11_2
  doi: 10.1128/JVI.00759-07
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cell.2015.05.007
– ident: e_1_3_2_4_2
  doi: 10.1097/QAD.0000000000000106
– ident: e_1_3_2_48_2
  doi: 10.1093/nar/gkt382
– ident: e_1_3_2_67_2
  doi: 10.1371/journal.ppat.1003618
– ident: e_1_3_2_66_2
  doi: 10.1128/JVI.01142-09
– ident: e_1_3_2_24_2
  doi: 10.1038/nature12053
– ident: e_1_3_2_40_2
  doi: 10.1089/088922202753747914
– ident: e_1_3_2_53_2
  doi: 10.1371/journal.pone.0008805
– ident: e_1_3_2_29_2
  doi: 10.1084/jem.20110363
– ident: e_1_3_2_61_2
  doi: 10.1086/651274
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.1217443109
– ident: e_1_3_2_15_2
  doi: 10.1186/1742-4690-10-9
– ident: e_1_3_2_27_2
  doi: 10.1084/jem.20090378
– ident: e_1_3_2_10_2
  doi: 10.1126/scitranslmed.aab3964
– ident: e_1_3_2_13_2
  doi: 10.1097/QAI.0b013e31827f1c11
– ident: e_1_3_2_35_2
  doi: 10.1016/j.jim.2007.09.017
– volume-title: NIH publication no. 91-3242
  year: 1991
  ident: e_1_3_2_68_2
– ident: e_1_3_2_62_2
  doi: 10.1073/pnas.86.17.6768
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.00563-11
– ident: e_1_3_2_28_2
  doi: 10.1371/journal.ppat.1000890
– ident: e_1_3_2_41_2
  doi: 10.1128/JVI.00673-09
– ident: e_1_3_2_21_2
  doi: 10.1128/JVI.00734-12
– ident: e_1_3_2_49_2
  doi: 10.1126/scitranslmed.3003752
– ident: e_1_3_2_30_2
  doi: 10.1126/science.1187659
– ident: e_1_3_2_50_2
  doi: 10.1038/ncomms7565
– ident: e_1_3_2_14_2
  doi: 10.1128/JVI.00852-12
– ident: e_1_3_2_18_2
  doi: 10.1128/JVI.01482-09
– ident: e_1_3_2_34_2
  doi: 10.1038/nature10373
– ident: e_1_3_2_64_2
  doi: 10.1128/JVI.00171-11
– ident: e_1_3_2_5_2
  doi: 10.1101/cshperspect.a007310
– ident: e_1_3_2_57_2
  doi: 10.1073/pnas.0911004107
– ident: e_1_3_2_55_2
  doi: 10.1126/science.1213256
– ident: e_1_3_2_56_2
  doi: 10.1128/jvi.68.12.8350-8364.1994
– ident: e_1_3_2_52_2
  doi: 10.1126/science.aac4223
– ident: e_1_3_2_58_2
  doi: 10.1016/j.molimm.2008.09.005
– ident: e_1_3_2_16_2
  doi: 10.1128/JVI.00198-11
– ident: e_1_3_2_9_2
  doi: 10.1128/JVI.00424-07
– ident: e_1_3_2_12_2
  doi: 10.1128/JVI.01865-09
– ident: e_1_3_2_39_2
  doi: 10.1128/JVI.01730-06
– ident: e_1_3_2_3_2
  doi: 10.1016/j.immuni.2012.08.012
– ident: e_1_3_2_22_2
  doi: 10.1371/journal.ppat.1001251
– ident: e_1_3_2_38_2
  doi: 10.1128/JVI.79.16.10108-10125.2005
– ident: e_1_3_2_32_2
  doi: 10.1016/j.immuni.2013.04.012
– ident: e_1_3_2_60_2
  doi: 10.1016/j.virol.2007.01.010
– ident: e_1_3_2_31_2
  doi: 10.1126/science.1207532
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.01583-08
– ident: e_1_3_2_43_2
  doi: 10.1128/JVI.02660-07
– ident: e_1_3_2_2_2
  doi: 10.1038/ni.3158
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.1117531108
SSID ssj0014464
Score 2.1789515
Snippet To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 4017
Title Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV SF162P3N -Infected Macaques
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUhcEE-xvOQDnKoscZ7OESGWtiIrpHZXvVVOYq8iSlItjaD7N_k13Jix8zBLFy1coqqy3VbzdV6eb4aQVyBiV4Tcd1wRKAc84sjhYaGcOCyiMOGchQrzkOlJNDkNZstwORr9tKqWmm12lF_u5ZX8j1ThPZArsmT_QbL9ofAGvAb5whMkDM8bydiq-EGnD0JqUax3oLganb-41CmPaltmNdYK6nuChb4YSMVG86TA90yR1aDr6c83zHMx_2ES-1NkjtSFxBYTmp95Vl40X8cYuI6ZM9VFXOCt6sXm7Hn5BcDm_HX7fALx5vyYRd4n_2Q8HJOKXKCJusZZRjaenf-fmRrfVFTfmx6aHxttSOvWGJsmCZ_rb6WeWTs2HROGegZZnTup2LVMSJmX61LYSRAW4X2OoYFapATQ3Utj1owux1ap6BDayt7MJm1BzS3NDXFmbHkBgWuM058WxkPWxOxseoR3tLz7Fr818r5iYPuyRx1weXwFu1d69wrbI9zyIMLB4Rsfln11EkbpQdfoHn9Xx9nw-Bv7sy1vynKLFvfI3VZE9K0B530yktUDcttMON09JD8siNJa0Rai1IYoHSBKAUZUQ5S2EKXZjvYQpRqitKyoxhi9ijGqMUYRonSAqFlszrYhet12hCjtIEqHYzqIPiKnx-8X7yZOO0fEySF8Dh3uMT_mKovjXKG_GqrMk5mbKOVHPGMqCXiR5CJmuWDCRe3FXclkFoeJK5JA-I_JQVVX8gmhReL7cZEITyZREGWSR24uXD9PWBgXMlCHZNzJY5W3TfZx1st6tU_2h-R1v3pjmsvsXff0huuekTvDn-M5OdheNPIF-Mzb7KVG1y97ocTk
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Broadly+Neutralizing+Antibodies+and+Their+Mapping+by+Monomeric+gp120+in+Human+Immunodeficiency+Virus+Type+1-Infected+Humans+and+Simian-Human+Immunodeficiency+Virus+SHIV+SF162P3N+-Infected+Macaques&rft.jtitle=Journal+of+virology&rft.au=Jia%2C+Manxue&rft.au=Lu%2C+Hong&rft.au=Markowitz%2C+Martin&rft.au=Cheng-Mayer%2C+Cecilia&rft.date=2016-04-15&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=90&rft.issue=8&rft.spage=4017&rft.epage=4031&rft_id=info:doi/10.1128%2FJVI.02898-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_02898_15
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon