Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV SF162P3N -Infected Macaques
To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected wit...
Saved in:
Published in | Journal of virology Vol. 90; no. 8; pp. 4017 - 4031 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
15.04.2016
|
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 |
DOI | 10.1128/JVI.02898-15 |
Cover
Loading…
Abstract | To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIV
SF162P3N
and 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs.
IMPORTANCE
HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIV
SF162P3N
-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs. |
---|---|
AbstractList | To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIV
SF162P3N
and 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs.
IMPORTANCE
HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIV
SF162P3N
-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs. |
Author | Jia, Manxue Lu, Hong Cheng-Mayer, Cecilia Wu, Xueling Markowitz, Martin |
Author_xml | – sequence: 1 givenname: Manxue surname: Jia fullname: Jia, Manxue organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA – sequence: 2 givenname: Hong surname: Lu fullname: Lu, Hong organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA – sequence: 3 givenname: Martin surname: Markowitz fullname: Markowitz, Martin organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA – sequence: 4 givenname: Cecilia surname: Cheng-Mayer fullname: Cheng-Mayer, Cecilia organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA – sequence: 5 givenname: Xueling surname: Wu fullname: Wu, Xueling organization: Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, New York, USA |
BookMark | eNp9kd1u1DAQRi1UJLaFOx5gHoC0HifeOJf936BuQdplxV3kOONilNipkyCF1-SF2LJISKjq1Yw05_su5hyzIx88MfYe-SmiUGcfd-UpF6pQCcpXbIF8v0mJ2RFbcC5EIlP19Q07HobvnGOWLbMF-3VFP6gNfUd-hGDhIgbdtDPc0zRG3bqfzj_AuR9dHRpHA2jfwPYbuQhr3fdPx3qGdfCho-gMPPQoODgPq6nTHsqum3xoyDrjyJsZdi5OA2znngCT0lsyIzUH-NC9cZ3TPnkxvlmVO9jc4FJ8Tu_hX81aG_040fCWvba6Hejd33nCvtxcby9Xyd2n2_Ly_C4xiEomSmCaK1vnubEZSiFtLajmhbXpUtVoi0w1hdE5Go2a50XGFSekOpcF10Wm0xP24dBrYhiGSLbqo-t0nCvk1ZOQai-k-iOkQrnHxX-4caMeXfD7T7v2-dBvrtWS3w |
CitedBy_id | crossref_primary_10_1038_s41467_021_26846_z crossref_primary_10_1073_pnas_1813909116 crossref_primary_10_3389_fimmu_2024_1506348 crossref_primary_10_1016_j_immuni_2018_02_013 crossref_primary_10_1089_aid_2019_0239 crossref_primary_10_1128_JVI_00594_20 crossref_primary_10_1126_sciadv_adn0042 crossref_primary_10_1371_journal_ppat_1008577 crossref_primary_10_1038_s41467_024_48758_4 crossref_primary_10_1126_science_abd2638 crossref_primary_10_1016_j_chom_2020_03_024 crossref_primary_10_1111_imr_12516 crossref_primary_10_3389_fimmu_2018_00628 crossref_primary_10_1097_QAD_0000000000001724 crossref_primary_10_1016_j_chembiol_2023_03_003 crossref_primary_10_3390_v12020163 crossref_primary_10_3390_v10050262 crossref_primary_10_1016_j_ebiom_2016_04_040 crossref_primary_10_1128_JVI_02198_20 crossref_primary_10_1128_spectrum_02234_24 crossref_primary_10_1371_journal_ppat_1006572 crossref_primary_10_1016_j_coi_2016_05_013 crossref_primary_10_3390_ijms25137200 crossref_primary_10_1172_jci_insight_97018 |
Cites_doi | 10.1038/nature01470 10.1128/JVI.07139-11 10.1128/JVI.00110-09 10.1073/pnas.0802203105 10.1371/journal.ppat.1005238 10.1128/JVI.02108-09 10.1126/science.1207227 10.1128/JVI.02006-10 10.1006/viro.1994.1575 10.1038/nature13036 10.1016/j.cell.2014.06.022 10.1128/JVI.75.4.1990-1995.2001 10.1128/jvi.68.8.5142-5155.1994 10.1128/AAC.46.6.1896-1905.2002 10.1038/nm1624 10.1128/JVI.72.4.3427-3431.1998 10.1128/JVI.03104-12 10.1128/JVI.00759-07 10.1016/j.cell.2015.05.007 10.1097/QAD.0000000000000106 10.1093/nar/gkt382 10.1371/journal.ppat.1003618 10.1128/JVI.01142-09 10.1038/nature12053 10.1089/088922202753747914 10.1371/journal.pone.0008805 10.1084/jem.20110363 10.1086/651274 10.1073/pnas.1217443109 10.1186/1742-4690-10-9 10.1084/jem.20090378 10.1126/scitranslmed.aab3964 10.1097/QAI.0b013e31827f1c11 10.1016/j.jim.2007.09.017 10.1073/pnas.86.17.6768 10.1128/JVI.00563-11 10.1371/journal.ppat.1000890 10.1128/JVI.00673-09 10.1128/JVI.00734-12 10.1126/scitranslmed.3003752 10.1126/science.1187659 10.1038/ncomms7565 10.1128/JVI.00852-12 10.1128/JVI.01482-09 10.1038/nature10373 10.1128/JVI.00171-11 10.1101/cshperspect.a007310 10.1073/pnas.0911004107 10.1126/science.1213256 10.1128/jvi.68.12.8350-8364.1994 10.1126/science.aac4223 10.1016/j.molimm.2008.09.005 10.1128/JVI.00198-11 10.1128/JVI.00424-07 10.1128/JVI.01865-09 10.1128/JVI.01730-06 10.1016/j.immuni.2012.08.012 10.1371/journal.ppat.1001251 10.1128/JVI.79.16.10108-10125.2005 10.1016/j.immuni.2013.04.012 10.1016/j.virol.2007.01.010 10.1126/science.1207532 10.1128/JVI.01583-08 10.1128/JVI.02660-07 10.1038/ni.3158 10.1073/pnas.1117531108 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1128/JVI.02898-15 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 4031 |
ExternalDocumentID | 10_1128_JVI_02898_15 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM |
ID | FETCH-LOGICAL-c1185-821378fb77cf41525fb2eb09ff368b1f948d9ca71ca1a0794080e1eb7590a94a3 |
ISSN | 0022-538X |
IngestDate | Thu Apr 24 23:06:35 EDT 2025 Tue Jul 01 01:02:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1185-821378fb77cf41525fb2eb09ff368b1f948d9ca71ca1a0794080e1eb7590a94a3 |
OpenAccessLink | https://jvi.asm.org/content/jvi/90/8/4017.full.pdf |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1128_JVI_02898_15 crossref_citationtrail_10_1128_JVI_02898_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-15 |
PublicationDateYYYYMMDD | 2016-04-15 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of virology |
PublicationYear | 2016 |
References | e_1_3_2_26_2 e_1_3_2_49_2 Kabat EA (e_1_3_2_68_2) 1991 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_37_2 doi: 10.1038/nature01470 – ident: e_1_3_2_44_2 doi: 10.1128/JVI.07139-11 – ident: e_1_3_2_17_2 doi: 10.1128/JVI.00110-09 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.0802203105 – ident: e_1_3_2_54_2 doi: 10.1371/journal.ppat.1005238 – ident: e_1_3_2_51_2 doi: 10.1128/JVI.02108-09 – ident: e_1_3_2_47_2 doi: 10.1126/science.1207227 – ident: e_1_3_2_20_2 doi: 10.1128/JVI.02006-10 – ident: e_1_3_2_63_2 doi: 10.1006/viro.1994.1575 – ident: e_1_3_2_25_2 doi: 10.1038/nature13036 – ident: e_1_3_2_26_2 doi: 10.1016/j.cell.2014.06.022 – ident: e_1_3_2_59_2 doi: 10.1128/JVI.75.4.1990-1995.2001 – ident: e_1_3_2_65_2 doi: 10.1128/jvi.68.8.5142-5155.1994 – ident: e_1_3_2_36_2 doi: 10.1128/AAC.46.6.1896-1905.2002 – ident: e_1_3_2_45_2 doi: 10.1038/nm1624 – ident: e_1_3_2_8_2 doi: 10.1128/JVI.72.4.3427-3431.1998 – ident: e_1_3_2_46_2 doi: 10.1128/JVI.03104-12 – ident: e_1_3_2_11_2 doi: 10.1128/JVI.00759-07 – ident: e_1_3_2_33_2 doi: 10.1016/j.cell.2015.05.007 – ident: e_1_3_2_4_2 doi: 10.1097/QAD.0000000000000106 – ident: e_1_3_2_48_2 doi: 10.1093/nar/gkt382 – ident: e_1_3_2_67_2 doi: 10.1371/journal.ppat.1003618 – ident: e_1_3_2_66_2 doi: 10.1128/JVI.01142-09 – ident: e_1_3_2_24_2 doi: 10.1038/nature12053 – ident: e_1_3_2_40_2 doi: 10.1089/088922202753747914 – ident: e_1_3_2_53_2 doi: 10.1371/journal.pone.0008805 – ident: e_1_3_2_29_2 doi: 10.1084/jem.20110363 – ident: e_1_3_2_61_2 doi: 10.1086/651274 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.1217443109 – ident: e_1_3_2_15_2 doi: 10.1186/1742-4690-10-9 – ident: e_1_3_2_27_2 doi: 10.1084/jem.20090378 – ident: e_1_3_2_10_2 doi: 10.1126/scitranslmed.aab3964 – ident: e_1_3_2_13_2 doi: 10.1097/QAI.0b013e31827f1c11 – ident: e_1_3_2_35_2 doi: 10.1016/j.jim.2007.09.017 – volume-title: NIH publication no. 91-3242 year: 1991 ident: e_1_3_2_68_2 – ident: e_1_3_2_62_2 doi: 10.1073/pnas.86.17.6768 – ident: e_1_3_2_23_2 doi: 10.1128/JVI.00563-11 – ident: e_1_3_2_28_2 doi: 10.1371/journal.ppat.1000890 – ident: e_1_3_2_41_2 doi: 10.1128/JVI.00673-09 – ident: e_1_3_2_21_2 doi: 10.1128/JVI.00734-12 – ident: e_1_3_2_49_2 doi: 10.1126/scitranslmed.3003752 – ident: e_1_3_2_30_2 doi: 10.1126/science.1187659 – ident: e_1_3_2_50_2 doi: 10.1038/ncomms7565 – ident: e_1_3_2_14_2 doi: 10.1128/JVI.00852-12 – ident: e_1_3_2_18_2 doi: 10.1128/JVI.01482-09 – ident: e_1_3_2_34_2 doi: 10.1038/nature10373 – ident: e_1_3_2_64_2 doi: 10.1128/JVI.00171-11 – ident: e_1_3_2_5_2 doi: 10.1101/cshperspect.a007310 – ident: e_1_3_2_57_2 doi: 10.1073/pnas.0911004107 – ident: e_1_3_2_55_2 doi: 10.1126/science.1213256 – ident: e_1_3_2_56_2 doi: 10.1128/jvi.68.12.8350-8364.1994 – ident: e_1_3_2_52_2 doi: 10.1126/science.aac4223 – ident: e_1_3_2_58_2 doi: 10.1016/j.molimm.2008.09.005 – ident: e_1_3_2_16_2 doi: 10.1128/JVI.00198-11 – ident: e_1_3_2_9_2 doi: 10.1128/JVI.00424-07 – ident: e_1_3_2_12_2 doi: 10.1128/JVI.01865-09 – ident: e_1_3_2_39_2 doi: 10.1128/JVI.01730-06 – ident: e_1_3_2_3_2 doi: 10.1016/j.immuni.2012.08.012 – ident: e_1_3_2_22_2 doi: 10.1371/journal.ppat.1001251 – ident: e_1_3_2_38_2 doi: 10.1128/JVI.79.16.10108-10125.2005 – ident: e_1_3_2_32_2 doi: 10.1016/j.immuni.2013.04.012 – ident: e_1_3_2_60_2 doi: 10.1016/j.virol.2007.01.010 – ident: e_1_3_2_31_2 doi: 10.1126/science.1207532 – ident: e_1_3_2_19_2 doi: 10.1128/JVI.01583-08 – ident: e_1_3_2_43_2 doi: 10.1128/JVI.02660-07 – ident: e_1_3_2_2_2 doi: 10.1038/ni.3158 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.1117531108 |
SSID | ssj0014464 |
Score | 2.1789515 |
Snippet | To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 4017 |
Title | Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV SF162P3N -Infected Macaques |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUhcEE-xvOQDnKoscZ7OESGWtiIrpHZXvVVOYq8iSlItjaD7N_k13Jix8zBLFy1coqqy3VbzdV6eb4aQVyBiV4Tcd1wRKAc84sjhYaGcOCyiMOGchQrzkOlJNDkNZstwORr9tKqWmm12lF_u5ZX8j1ThPZArsmT_QbL9ofAGvAb5whMkDM8bydiq-EGnD0JqUax3oLganb-41CmPaltmNdYK6nuChb4YSMVG86TA90yR1aDr6c83zHMx_2ES-1NkjtSFxBYTmp95Vl40X8cYuI6ZM9VFXOCt6sXm7Hn5BcDm_HX7fALx5vyYRd4n_2Q8HJOKXKCJusZZRjaenf-fmRrfVFTfmx6aHxttSOvWGJsmCZ_rb6WeWTs2HROGegZZnTup2LVMSJmX61LYSRAW4X2OoYFapATQ3Utj1owux1ap6BDayt7MJm1BzS3NDXFmbHkBgWuM058WxkPWxOxseoR3tLz7Fr818r5iYPuyRx1weXwFu1d69wrbI9zyIMLB4Rsfln11EkbpQdfoHn9Xx9nw-Bv7sy1vynKLFvfI3VZE9K0B530yktUDcttMON09JD8siNJa0Rai1IYoHSBKAUZUQ5S2EKXZjvYQpRqitKyoxhi9ijGqMUYRonSAqFlszrYhet12hCjtIEqHYzqIPiKnx-8X7yZOO0fEySF8Dh3uMT_mKovjXKG_GqrMk5mbKOVHPGMqCXiR5CJmuWDCRe3FXclkFoeJK5JA-I_JQVVX8gmhReL7cZEITyZREGWSR24uXD9PWBgXMlCHZNzJY5W3TfZx1st6tU_2h-R1v3pjmsvsXff0huuekTvDn-M5OdheNPIF-Mzb7KVG1y97ocTk |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Broadly+Neutralizing+Antibodies+and+Their+Mapping+by+Monomeric+gp120+in+Human+Immunodeficiency+Virus+Type+1-Infected+Humans+and+Simian-Human+Immunodeficiency+Virus+SHIV+SF162P3N+-Infected+Macaques&rft.jtitle=Journal+of+virology&rft.au=Jia%2C+Manxue&rft.au=Lu%2C+Hong&rft.au=Markowitz%2C+Martin&rft.au=Cheng-Mayer%2C+Cecilia&rft.date=2016-04-15&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=90&rft.issue=8&rft.spage=4017&rft.epage=4031&rft_id=info:doi/10.1128%2FJVI.02898-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_02898_15 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |