Operator estimates for elliptic equations in multidimensional domains with strongly curved boundaries
A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily within a thin layer along the unperturbed boundary. Dirichlet or Neumann conditions are prescribed on the curved boundary. In the case of Neuman...
Saved in:
Published in | Sbornik. Mathematics Vol. 216; no. 1; pp. 25 - 53 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
2025
|
Online Access | Get full text |
ISSN | 1064-5616 1468-4802 |
DOI | 10.4213/sm9994e |
Cover
Loading…
Abstract | A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily within a thin layer along the unperturbed boundary. Dirichlet or Neumann conditions are prescribed on the curved boundary. In the case of Neumann conditions certain additional, rather natural and very weak assumptions are made on the structure of the curved boundary. They make it possible to consider a very wide class of curved boundaries, including, for example, classical rapidly oscillating boundaries. It is shown that when the above thin layer shrinks and the curved boundary approaches the unperturbed one, the homogenization of the problem under consideration leads to the same system of equations with the same boundary conditions but imposed on the limit boundary. The main result consists in relevant operator $W_2^1$- and $L_2$-estimates. Bibliography: 29 titles. |
---|---|
AbstractList | A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily within a thin layer along the unperturbed boundary. Dirichlet or Neumann conditions are prescribed on the curved boundary. In the case of Neumann conditions certain additional, rather natural and very weak assumptions are made on the structure of the curved boundary. They make it possible to consider a very wide class of curved boundaries, including, for example, classical rapidly oscillating boundaries. It is shown that when the above thin layer shrinks and the curved boundary approaches the unperturbed one, the homogenization of the problem under consideration leads to the same system of equations with the same boundary conditions but imposed on the limit boundary. The main result consists in relevant operator $W_2^1$- and $L_2$-estimates. Bibliography: 29 titles. |
Author | Borisov, Denis Ivanovich Suleimanov, Radim Radikovich |
Author_xml | – sequence: 1 givenname: Denis Ivanovich surname: Borisov fullname: Borisov, Denis Ivanovich organization: Peoples' Friendship University of Russia, Moscow, Russia, Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia – sequence: 2 givenname: Radim Radikovich surname: Suleimanov fullname: Suleimanov, Radim Radikovich organization: Ufa University of Science and Technology, Ufa, Russia |
BookMark | eNotkMFOAyEQhompiW01vgI3T6uwsOxyNI1akya96HnDwqCYXajAavr20tjTzPx_Msn3rdDCBw8I3VJyz2vKHtIkpeRwgZaUi67iHakXZSeCV42g4gqtUvoihDQ17ZYI9geIKoeIIWU3qQwJ29M1ju6QncbwPavsgk_YeTzNY3bGTeBTidSITZiUK92vy5845Rj8x3jEeo4_YPAQZm9UdJCu0aVVY4Kb81yj9-ent8222u1fXjePu0pT2uaqFcYYLUQjGgXQNjVYaIXgVjJmGAVj7KA1sAEKIJW0lqZQ0NZ2mgklDVuju_-_OoaUItj-EAtUPPaU9Cc7_dkO-wNOIl17 |
Cites_doi | 10.1016/j.spa.2010.08.011 10.1007/s10958-022-06017-1 10.1137/15M1049981 10.1007/s10958-020-05125-0 10.1007/978-3-662-12678-3 10.1023/A:1012525913457 10.1090/S1061-0022-08-01000-5 10.1070/IM2008v072n03ABEH002410 10.1112/S0025579312001131 10.1137/120901921 10.1137/S0036139999528467 10.1007/BF01089137 10.1006/jmaa.1998.6226 10.1006/jdeq.1997.3256 10.1134/S0001434614030055 10.1016/j.jde.2013.08.005 10.1007/3-540-10000-8 10.3934/dcdsb.2010.14.327 10.1080/00036810500340476 10.1007/s00220-002-0738-8 10.1007/978-3-662-09922-3 10.1090/S1061-0022-2011-01178-1 10.1142/S021953050600070X 10.1051/m2an:2002009 10.1134/S0001434624070149 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.4213/sm9994e |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1468-4802 |
EndPage | 53 |
ExternalDocumentID | 10_4213_sm9994e |
GroupedDBID | --Z 1JI 1WK 4.4 5PX 5VS 7.M AAGCD AAJIO AALHV AATNI AAYXX ACAFW ACGFS ACHIP ADIYS AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN BBWZM CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EJD EQZZN FEDTE HVGLF IJHAN IOP IZVLO JCGBZ KOT M45 MV1 N5L NT- NT. O3V PJBAE Q02 R48 RIN RNS ROL RPA RTU RTV SY9 T37 VCL VIT |
ID | FETCH-LOGICAL-c117t-76dddc66565aee752efe7664f933d31eddfbcce3be94e19129d52117f8c36a9d3 |
ISSN | 1064-5616 |
IngestDate | Tue Jul 01 05:12:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c117t-76dddc66565aee752efe7664f933d31eddfbcce3be94e19129d52117f8c36a9d3 |
PageCount | 29 |
ParticipantIDs | crossref_primary_10_4213_sm9994e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Sbornik. Mathematics |
PublicationYear | 2025 |
References | O. A. Oleinik, A. S. Shamaev and G. A. Yosifian (ref-10.4213-sm9994-1-2-1-0) 1992; 26 ref-10.4213-sm9994-1-24-1-0 ref-10.4213-sm9994-1-11-1-0 ref-10.4213-sm9994-1-29-1-0 ref-10.4213-sm9994-1-6-1-0 ref-10.4213-sm9994-1-20-1-0 ref-10.4213-sm9994-1-12-1-0 ref-10.4213-sm9994-1-4-1-0 ref-10.4213-sm9994-1-17-1-0 ref-10.4213-sm9994-1-25-1-0 ref-10.4213-sm9994-1-21-1-0 ref-10.4213-sm9994-1-7-1-0 A. G. Belyaev, A. G. Mikheev and A. S. Shamaev (ref-10.4213-sm9994-1-3-1-0) 1992; 32 Myong-Hwan Ri (ref-10.4213-sm9994-1-16-1-0) ref-10.4213-sm9994-1-18-1-0 ref-10.4213-sm9994-1-8-1-0 M. M. Vainberg (ref-10.4213-sm9994-1-22-1-0) 1973 ref-10.4213-sm9994-1-26-1-0 ref-10.4213-sm9994-1-13-1-0 ref-10.4213-sm9994-1-9-1-0 ref-10.4213-sm9994-1-23-1-0 ref-10.4213-sm9994-1-14-1-0 ref-10.4213-sm9994-1-28-1-0 ref-10.4213-sm9994-1-15-1-0 ref-10.4213-sm9994-1-27-1-0 ref-10.4213-sm9994-1-10-1-0 ref-10.4213-sm9994-1-5-1-0 ref-10.4213-sm9994-1-19-1-0 ref-10.4213-sm9994-1-1-1-0 |
References_xml | – ident: ref-10.4213-sm9994-1-9-1-0 doi: 10.1016/j.spa.2010.08.011 – ident: ref-10.4213-sm9994-1-19-1-0 doi: 10.1007/s10958-022-06017-1 – ident: ref-10.4213-sm9994-1-27-1-0 doi: 10.1137/15M1049981 – ident: ref-10.4213-sm9994-1-25-1-0 doi: 10.1007/s10958-020-05125-0 – ident: ref-10.4213-sm9994-1-24-1-0 doi: 10.1007/978-3-662-12678-3 – ident: ref-10.4213-sm9994-1-8-1-0 doi: 10.1023/A:1012525913457 – ident: ref-10.4213-sm9994-1-6-1-0 doi: 10.1090/S1061-0022-08-01000-5 – ident: ref-10.4213-sm9994-1-7-1-0 doi: 10.1070/IM2008v072n03ABEH002410 – ident: ref-10.4213-sm9994-1-28-1-0 doi: 10.1112/S0025579312001131 – ident: ref-10.4213-sm9994-1-29-1-0 doi: 10.1137/120901921 – ident: ref-10.4213-sm9994-1-14-1-0 doi: 10.1137/S0036139999528467 – ident: ref-10.4213-sm9994-1-23-1-0 doi: 10.1007/BF01089137 – ident: ref-10.4213-sm9994-1-12-1-0 doi: 10.1006/jmaa.1998.6226 – ident: ref-10.4213-sm9994-1-13-1-0 doi: 10.1006/jdeq.1997.3256 – volume: 32 start-page: 1121 issue: 8 year: 1992 ident: ref-10.4213-sm9994-1-3-1-0 article-title: Diffraction of a plane wave by a rapidly-oscillating surface publication-title: Comput. Math. Math. Phys. – ident: ref-10.4213-sm9994-1-4-1-0 doi: 10.1134/S0001434614030055 – ident: ref-10.4213-sm9994-1-18-1-0 doi: 10.1016/j.jde.2013.08.005 – ident: ref-10.4213-sm9994-1-1-1-0 doi: 10.1007/3-540-10000-8 – ident: ref-10.4213-sm9994-1-10-1-0 doi: 10.3934/dcdsb.2010.14.327 – ident: ref-10.4213-sm9994-1-17-1-0 doi: 10.1080/00036810500340476 – ident: ref-10.4213-sm9994-1-15-1-0 doi: 10.1007/s00220-002-0738-8 – ident: ref-10.4213-sm9994-1-21-1-0 doi: 10.1007/978-3-662-09922-3 – ident: ref-10.4213-sm9994-1-5-1-0 doi: 10.1090/S1061-0022-2011-01178-1 – ident: ref-10.4213-sm9994-1-16-1-0 article-title: Effective wall-laws for the Stokes equations over curved rough boundaries – ident: ref-10.4213-sm9994-1-26-1-0 doi: 10.1142/S021953050600070X – ident: ref-10.4213-sm9994-1-11-1-0 doi: 10.1051/m2an:2002009 – volume-title: Variational method and method of monotone operators in the theory of nonlinear equations year: 1973 ident: ref-10.4213-sm9994-1-22-1-0 – volume: 26 volume-title: Mathematical problems in elasticity and homogenization year: 1992 ident: ref-10.4213-sm9994-1-2-1-0 – ident: ref-10.4213-sm9994-1-20-1-0 doi: 10.1134/S0001434624070149 |
SSID | ssj0005218 |
Score | 2.327838 |
Snippet | A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 25 |
Title | Operator estimates for elliptic equations in multidimensional domains with strongly curved boundaries |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOBQFQoqbUE-cItCNy87OVZVK0DiIR4St1VsjysEm4VlF6n99Z2JnQcrJB4XK7HsKPF8Gn8zmRkztmuEFbgtyRBiC2Fq7CAsbKZDq5JMg06lAXINHB2L_cv08Cq76sJt6-ySqdrT_57NK3mPVLEP5UpZsm-QbPtQ7MBrlC-2KGFsXyXjkzuo_5IHVCpjRKzRVfAm_z4VYoX7WRcrXocOGirm7wpxBGY8KilAxkWpk0v8z-3fQM8mj8RK6-OWJk2Ioaev54rSuG72gqO22mvnZh_TcYaPTolV1w_BAZL0MSqi1uF8PrsFfM3KDTor8WXq9qYb5f0PLkvZK0ukMyHyL1_K2vVRJleaD55o2NgP6UPJ68ust_O6qsHzOj2No7re1QipbArdttX8qp_bzdoYQ7RuaOrQT1xkyzFaEqS7D05Oe1FAkcuW9J_i8qpp4nc_sUdYeszj4iP74E0G_sPJf40tQLXOVnsS-MSgQQJvkcAt3Xkk8BYJ_Lri80jgHgmckMAbJHCHBN4hYYNd_v518XM_9AdohDqK5DSUwhijBVL2rASQWQwWpBCpLZLEJBEYY5XWkCjA70TDPS4Mrkckba4TURYm2WRL1biCz4xDpFQubSQsrpSWUORKDaS0WpRocufZFuPNKg3vXJ2U4ZwEvrw85CtbIYg5F9c3tjSdzGAbSd9U7dRi-w-_uGSU |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+estimates+for+elliptic+equations+in+multidimensional+domains+with+strongly+curved+boundaries&rft.jtitle=Sbornik.+Mathematics&rft.au=Borisov%2C+Denis+Ivanovich&rft.au=Suleimanov%2C+Radim+Radikovich&rft.date=2025&rft.issn=1064-5616&rft.eissn=1468-4802&rft.volume=216&rft.issue=1&rft.spage=25&rft.epage=53&rft_id=info:doi/10.4213%2Fsm9994e&rft.externalDBID=n%2Fa&rft.externalDocID=10_4213_sm9994e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5616&client=summon |