Operator estimates for elliptic equations in multidimensional domains with strongly curved boundaries

A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily within a thin layer along the unperturbed boundary. Dirichlet or Neumann conditions are prescribed on the curved boundary. In the case of Neuman...

Full description

Saved in:
Bibliographic Details
Published inSbornik. Mathematics Vol. 216; no. 1; pp. 25 - 53
Main Authors Borisov, Denis Ivanovich, Suleimanov, Radim Radikovich
Format Journal Article
LanguageEnglish
Published 2025
Online AccessGet full text
ISSN1064-5616
1468-4802
DOI10.4213/sm9994e

Cover

Loading…
Abstract A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily within a thin layer along the unperturbed boundary. Dirichlet or Neumann conditions are prescribed on the curved boundary. In the case of Neumann conditions certain additional, rather natural and very weak assumptions are made on the structure of the curved boundary. They make it possible to consider a very wide class of curved boundaries, including, for example, classical rapidly oscillating boundaries. It is shown that when the above thin layer shrinks and the curved boundary approaches the unperturbed one, the homogenization of the problem under consideration leads to the same system of equations with the same boundary conditions but imposed on the limit boundary. The main result consists in relevant operator $W_2^1$- and $L_2$-estimates. Bibliography: 29 titles.
AbstractList A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily within a thin layer along the unperturbed boundary. Dirichlet or Neumann conditions are prescribed on the curved boundary. In the case of Neumann conditions certain additional, rather natural and very weak assumptions are made on the structure of the curved boundary. They make it possible to consider a very wide class of curved boundaries, including, for example, classical rapidly oscillating boundaries. It is shown that when the above thin layer shrinks and the curved boundary approaches the unperturbed one, the homogenization of the problem under consideration leads to the same system of equations with the same boundary conditions but imposed on the limit boundary. The main result consists in relevant operator $W_2^1$- and $L_2$-estimates. Bibliography: 29 titles.
Author Borisov, Denis Ivanovich
Suleimanov, Radim Radikovich
Author_xml – sequence: 1
  givenname: Denis Ivanovich
  surname: Borisov
  fullname: Borisov, Denis Ivanovich
  organization: Peoples' Friendship University of Russia, Moscow, Russia, Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
– sequence: 2
  givenname: Radim Radikovich
  surname: Suleimanov
  fullname: Suleimanov, Radim Radikovich
  organization: Ufa University of Science and Technology, Ufa, Russia
BookMark eNotkMFOAyEQhompiW01vgI3T6uwsOxyNI1akya96HnDwqCYXajAavr20tjTzPx_Msn3rdDCBw8I3VJyz2vKHtIkpeRwgZaUi67iHakXZSeCV42g4gqtUvoihDQ17ZYI9geIKoeIIWU3qQwJ29M1ju6QncbwPavsgk_YeTzNY3bGTeBTidSITZiUK92vy5845Rj8x3jEeo4_YPAQZm9UdJCu0aVVY4Kb81yj9-ent8222u1fXjePu0pT2uaqFcYYLUQjGgXQNjVYaIXgVjJmGAVj7KA1sAEKIJW0lqZQ0NZ2mgklDVuju_-_OoaUItj-EAtUPPaU9Cc7_dkO-wNOIl17
Cites_doi 10.1016/j.spa.2010.08.011
10.1007/s10958-022-06017-1
10.1137/15M1049981
10.1007/s10958-020-05125-0
10.1007/978-3-662-12678-3
10.1023/A:1012525913457
10.1090/S1061-0022-08-01000-5
10.1070/IM2008v072n03ABEH002410
10.1112/S0025579312001131
10.1137/120901921
10.1137/S0036139999528467
10.1007/BF01089137
10.1006/jmaa.1998.6226
10.1006/jdeq.1997.3256
10.1134/S0001434614030055
10.1016/j.jde.2013.08.005
10.1007/3-540-10000-8
10.3934/dcdsb.2010.14.327
10.1080/00036810500340476
10.1007/s00220-002-0738-8
10.1007/978-3-662-09922-3
10.1090/S1061-0022-2011-01178-1
10.1142/S021953050600070X
10.1051/m2an:2002009
10.1134/S0001434624070149
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.4213/sm9994e
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1468-4802
EndPage 53
ExternalDocumentID 10_4213_sm9994e
GroupedDBID --Z
1JI
1WK
4.4
5PX
5VS
7.M
AAGCD
AAJIO
AALHV
AATNI
AAYXX
ACAFW
ACGFS
ACHIP
ADIYS
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
BBWZM
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EJD
EQZZN
FEDTE
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
MV1
N5L
NT-
NT.
O3V
PJBAE
Q02
R48
RIN
RNS
ROL
RPA
RTU
RTV
SY9
T37
VCL
VIT
ID FETCH-LOGICAL-c117t-76dddc66565aee752efe7664f933d31eddfbcce3be94e19129d52117f8c36a9d3
ISSN 1064-5616
IngestDate Tue Jul 01 05:12:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c117t-76dddc66565aee752efe7664f933d31eddfbcce3be94e19129d52117f8c36a9d3
PageCount 29
ParticipantIDs crossref_primary_10_4213_sm9994e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Sbornik. Mathematics
PublicationYear 2025
References O. A. Oleinik, A. S. Shamaev and G. A. Yosifian (ref-10.4213-sm9994-1-2-1-0) 1992; 26
ref-10.4213-sm9994-1-24-1-0
ref-10.4213-sm9994-1-11-1-0
ref-10.4213-sm9994-1-29-1-0
ref-10.4213-sm9994-1-6-1-0
ref-10.4213-sm9994-1-20-1-0
ref-10.4213-sm9994-1-12-1-0
ref-10.4213-sm9994-1-4-1-0
ref-10.4213-sm9994-1-17-1-0
ref-10.4213-sm9994-1-25-1-0
ref-10.4213-sm9994-1-21-1-0
ref-10.4213-sm9994-1-7-1-0
A. G. Belyaev, A. G. Mikheev and A. S. Shamaev (ref-10.4213-sm9994-1-3-1-0) 1992; 32
Myong-Hwan Ri (ref-10.4213-sm9994-1-16-1-0)
ref-10.4213-sm9994-1-18-1-0
ref-10.4213-sm9994-1-8-1-0
M. M. Vainberg (ref-10.4213-sm9994-1-22-1-0) 1973
ref-10.4213-sm9994-1-26-1-0
ref-10.4213-sm9994-1-13-1-0
ref-10.4213-sm9994-1-9-1-0
ref-10.4213-sm9994-1-23-1-0
ref-10.4213-sm9994-1-14-1-0
ref-10.4213-sm9994-1-28-1-0
ref-10.4213-sm9994-1-15-1-0
ref-10.4213-sm9994-1-27-1-0
ref-10.4213-sm9994-1-10-1-0
ref-10.4213-sm9994-1-5-1-0
ref-10.4213-sm9994-1-19-1-0
ref-10.4213-sm9994-1-1-1-0
References_xml – ident: ref-10.4213-sm9994-1-9-1-0
  doi: 10.1016/j.spa.2010.08.011
– ident: ref-10.4213-sm9994-1-19-1-0
  doi: 10.1007/s10958-022-06017-1
– ident: ref-10.4213-sm9994-1-27-1-0
  doi: 10.1137/15M1049981
– ident: ref-10.4213-sm9994-1-25-1-0
  doi: 10.1007/s10958-020-05125-0
– ident: ref-10.4213-sm9994-1-24-1-0
  doi: 10.1007/978-3-662-12678-3
– ident: ref-10.4213-sm9994-1-8-1-0
  doi: 10.1023/A:1012525913457
– ident: ref-10.4213-sm9994-1-6-1-0
  doi: 10.1090/S1061-0022-08-01000-5
– ident: ref-10.4213-sm9994-1-7-1-0
  doi: 10.1070/IM2008v072n03ABEH002410
– ident: ref-10.4213-sm9994-1-28-1-0
  doi: 10.1112/S0025579312001131
– ident: ref-10.4213-sm9994-1-29-1-0
  doi: 10.1137/120901921
– ident: ref-10.4213-sm9994-1-14-1-0
  doi: 10.1137/S0036139999528467
– ident: ref-10.4213-sm9994-1-23-1-0
  doi: 10.1007/BF01089137
– ident: ref-10.4213-sm9994-1-12-1-0
  doi: 10.1006/jmaa.1998.6226
– ident: ref-10.4213-sm9994-1-13-1-0
  doi: 10.1006/jdeq.1997.3256
– volume: 32
  start-page: 1121
  issue: 8
  year: 1992
  ident: ref-10.4213-sm9994-1-3-1-0
  article-title: Diffraction of a plane wave by a rapidly-oscillating surface
  publication-title: Comput. Math. Math. Phys.
– ident: ref-10.4213-sm9994-1-4-1-0
  doi: 10.1134/S0001434614030055
– ident: ref-10.4213-sm9994-1-18-1-0
  doi: 10.1016/j.jde.2013.08.005
– ident: ref-10.4213-sm9994-1-1-1-0
  doi: 10.1007/3-540-10000-8
– ident: ref-10.4213-sm9994-1-10-1-0
  doi: 10.3934/dcdsb.2010.14.327
– ident: ref-10.4213-sm9994-1-17-1-0
  doi: 10.1080/00036810500340476
– ident: ref-10.4213-sm9994-1-15-1-0
  doi: 10.1007/s00220-002-0738-8
– ident: ref-10.4213-sm9994-1-21-1-0
  doi: 10.1007/978-3-662-09922-3
– ident: ref-10.4213-sm9994-1-5-1-0
  doi: 10.1090/S1061-0022-2011-01178-1
– ident: ref-10.4213-sm9994-1-16-1-0
  article-title: Effective wall-laws for the Stokes equations over curved rough boundaries
– ident: ref-10.4213-sm9994-1-26-1-0
  doi: 10.1142/S021953050600070X
– ident: ref-10.4213-sm9994-1-11-1-0
  doi: 10.1051/m2an:2002009
– volume-title: Variational method and method of monotone operators in the theory of nonlinear equations
  year: 1973
  ident: ref-10.4213-sm9994-1-22-1-0
– volume: 26
  volume-title: Mathematical problems in elasticity and homogenization
  year: 1992
  ident: ref-10.4213-sm9994-1-2-1-0
– ident: ref-10.4213-sm9994-1-20-1-0
  doi: 10.1134/S0001434624070149
SSID ssj0005218
Score 2.327838
Snippet A system of semilinear elliptic equations of the second order is considered in a multidimensional domain. The boundary of this domain is curved arbitrarily...
SourceID crossref
SourceType Index Database
StartPage 25
Title Operator estimates for elliptic equations in multidimensional domains with strongly curved boundaries
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOBQFQoqbUE-cItCNy87OVZVK0DiIR4St1VsjysEm4VlF6n99Z2JnQcrJB4XK7HsKPF8Gn8zmRkztmuEFbgtyRBiC2Fq7CAsbKZDq5JMg06lAXINHB2L_cv08Cq76sJt6-ySqdrT_57NK3mPVLEP5UpZsm-QbPtQ7MBrlC-2KGFsXyXjkzuo_5IHVCpjRKzRVfAm_z4VYoX7WRcrXocOGirm7wpxBGY8KilAxkWpk0v8z-3fQM8mj8RK6-OWJk2Ioaev54rSuG72gqO22mvnZh_TcYaPTolV1w_BAZL0MSqi1uF8PrsFfM3KDTor8WXq9qYb5f0PLkvZK0ukMyHyL1_K2vVRJleaD55o2NgP6UPJ68ust_O6qsHzOj2No7re1QipbArdttX8qp_bzdoYQ7RuaOrQT1xkyzFaEqS7D05Oe1FAkcuW9J_i8qpp4nc_sUdYeszj4iP74E0G_sPJf40tQLXOVnsS-MSgQQJvkcAt3Xkk8BYJ_Lri80jgHgmckMAbJHCHBN4hYYNd_v518XM_9AdohDqK5DSUwhijBVL2rASQWQwWpBCpLZLEJBEYY5XWkCjA70TDPS4Mrkckba4TURYm2WRL1biCz4xDpFQubSQsrpSWUORKDaS0WpRocufZFuPNKg3vXJ2U4ZwEvrw85CtbIYg5F9c3tjSdzGAbSd9U7dRi-w-_uGSU
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+estimates+for+elliptic+equations+in+multidimensional+domains+with+strongly+curved+boundaries&rft.jtitle=Sbornik.+Mathematics&rft.au=Borisov%2C+Denis+Ivanovich&rft.au=Suleimanov%2C+Radim+Radikovich&rft.date=2025&rft.issn=1064-5616&rft.eissn=1468-4802&rft.volume=216&rft.issue=1&rft.spage=25&rft.epage=53&rft_id=info:doi/10.4213%2Fsm9994e&rft.externalDBID=n%2Fa&rft.externalDocID=10_4213_sm9994e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5616&client=summon