Time-Domain Ab Initio Insights into the Reduced Nonradiative Electron-Hole Recombination in ReSe 2 /MoS 2 van der Waals Heterostructure

Two-dimensional (2D) ReSe has attracted considerable interest due to its unique anisotropic mechanical, optical, and exitonic characteristics. Recent transient absorption experiments demonstrated a prolonged lifetime of photoexcited charge carriers by stacking ReSe with MoS , but the underlying mech...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 12; no. 10; pp. 2682 - 2690
Main Authors Dou, Wenzhen, Jia, Yizhen, Hao, Xiamin, Meng, Qingling, Wu, Jinge, Zhai, Shuwei, Li, Tianzhao, Hu, Weijuan, Song, Biyu, Zhou, Miao
Format Journal Article
LanguageEnglish
Published United States 18.03.2021
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) ReSe has attracted considerable interest due to its unique anisotropic mechanical, optical, and exitonic characteristics. Recent transient absorption experiments demonstrated a prolonged lifetime of photoexcited charge carriers by stacking ReSe with MoS , but the underlying mechanism remains elusive. Here, by combining time-domain density functional theory with nonadiabatic molecular dynamics, we investigate the electronic properties and charge carrier dynamics of 2D ReSe /MoS van der Waals (vdW) heterostructure. ReSe /MoS has a type II band alignment that exhibits spatially distinguished conduction and valence band edges, and a built-in electric field is formed due to interface charge transfer. Remarkably, in spite of the decreased band gap and increased decoherence time, we demonstrate that the photocarrier lifetime of ReSe /MoS is ∼5 times longer than that of ReSe , which originates from the greatly reduced nonadiabatic coupling that suppresses electron-hole recombination, perfectly explaining the experimental results. These findings not only provide physical insights into experiments but also shed light on future design and fabrication of functional optoelectronic devices based on 2D vdW heterostructures.
AbstractList Two-dimensional (2D) ReSe has attracted considerable interest due to its unique anisotropic mechanical, optical, and exitonic characteristics. Recent transient absorption experiments demonstrated a prolonged lifetime of photoexcited charge carriers by stacking ReSe with MoS , but the underlying mechanism remains elusive. Here, by combining time-domain density functional theory with nonadiabatic molecular dynamics, we investigate the electronic properties and charge carrier dynamics of 2D ReSe /MoS van der Waals (vdW) heterostructure. ReSe /MoS has a type II band alignment that exhibits spatially distinguished conduction and valence band edges, and a built-in electric field is formed due to interface charge transfer. Remarkably, in spite of the decreased band gap and increased decoherence time, we demonstrate that the photocarrier lifetime of ReSe /MoS is ∼5 times longer than that of ReSe , which originates from the greatly reduced nonadiabatic coupling that suppresses electron-hole recombination, perfectly explaining the experimental results. These findings not only provide physical insights into experiments but also shed light on future design and fabrication of functional optoelectronic devices based on 2D vdW heterostructures.
Author Hao, Xiamin
Meng, Qingling
Zhai, Shuwei
Zhou, Miao
Wu, Jinge
Dou, Wenzhen
Jia, Yizhen
Li, Tianzhao
Song, Biyu
Hu, Weijuan
Author_xml – sequence: 1
  givenname: Wenzhen
  surname: Dou
  fullname: Dou, Wenzhen
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Yizhen
  surname: Jia
  fullname: Jia, Yizhen
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Xiamin
  surname: Hao
  fullname: Hao, Xiamin
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Qingling
  surname: Meng
  fullname: Meng, Qingling
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 5
  givenname: Jinge
  surname: Wu
  fullname: Wu, Jinge
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 6
  givenname: Shuwei
  surname: Zhai
  fullname: Zhai, Shuwei
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 7
  givenname: Tianzhao
  surname: Li
  fullname: Li, Tianzhao
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 8
  givenname: Weijuan
  surname: Hu
  fullname: Hu, Weijuan
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 9
  givenname: Biyu
  surname: Song
  fullname: Song, Biyu
  organization: School of Physics, Beihang University, Beijing 100191, China
– sequence: 10
  givenname: Miao
  orcidid: 0000-0003-1390-372X
  surname: Zhou
  fullname: Zhou, Miao
  organization: School of Physics, Beihang University, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33689347$$D View this record in MEDLINE/PubMed
BookMark eNpNkN9KwzAUxoMo7o8-gSB5gW5N0zbp5ZjTDaaCm3hZ0uTUZbTJSLOBT-Brm7EpXn2H75zvHM5vgC6NNYDQHYlHJE7IWMhutN3JBrwfERnHaZZdoD4pUh4xwrPLf3UPDbpuG8d5EXN2jXqU5rygKeuj77VuIXqwrdAGTyq8MNprG6TTnxvfYW28xX4D-A3UXoLCL9Y4obTw-gB41oD0zppobpvjiLRtpU3oWROSwVgBTvD42a6CHITBChz-EKLp8Bw8ONt5t5d-7-AGXdXBhtuzDtH742w9nUfL16fFdLKMJCGMRSnwXCUsZxnIjAkBghFGqlomOU3zWvCccQHhS1nziieq5rzgtcpETlVREUaHiJ72ynC8c1CXO6db4b5KEpdHrGXAWp6xlmesIXV_Su32VQvqL_PLkf4ATfV50Q
CitedBy_id crossref_primary_10_1002_asia_202200463
crossref_primary_10_1021_acsnano_1c06822
crossref_primary_10_1021_acsanm_3c04670
crossref_primary_10_1002_asia_202200075
crossref_primary_10_1021_acs_jpclett_2c02196
crossref_primary_10_1039_D3TA06755F
crossref_primary_10_1021_acs_jpclett_1c02443
crossref_primary_10_1016_j_rinp_2023_107182
crossref_primary_10_1007_s40042_022_00401_5
crossref_primary_10_1021_acs_jpclett_3c01626
crossref_primary_10_1016_j_optlastec_2024_111195
crossref_primary_10_1002_adts_202100169
crossref_primary_10_1021_acs_jpclett_2c03825
crossref_primary_10_1039_D3QI01105D
crossref_primary_10_1002_adfm_202308906
crossref_primary_10_1021_acscatal_2c04527
crossref_primary_10_1039_D3CP04415G
crossref_primary_10_1021_acs_jpclett_2c01526
crossref_primary_10_1021_acs_jpclett_3c02387
crossref_primary_10_1021_acs_jpclett_2c02796
crossref_primary_10_1021_acs_jpclett_3c01780
Cites_doi 10.1002/advs.201901255
10.1364/OE.27.017851
10.1063/1.480178
10.1021/jz500344s
10.1021/ja4109787
10.1016/j.commatsci.2005.04.010
10.1021/ja404523s
10.1021/nn5053926
10.1002/adma.201601977
10.1007/s12274-015-0865-0
10.1103/PhysRevB.97.115416
10.1002/adfm.201606129
10.1063/1.4757100
10.1039/D0TA06626E
10.1126/science.1102896
10.1021/acs.nanolett.5b05264
10.1002/jcc.20495
10.1002/wcms.1411
10.1016/0927-0256(96)00008-0
10.1063/1.3526297
10.3390/catal10010053
10.1038/nnano.2010.279
10.1021/nl504276u
10.1038/nnano.2014.214
10.1021/acsnano.6b05746
10.1126/sciadv.aaw2347
10.1063/1.474312
10.1021/acs.nanolett.7b00765
10.1021/jacs.0c06769
10.1021/acsnano.6b04165
10.1021/acs.chemmater.6b00364
10.1021/acs.jpclett.0c02800
10.1021/ja965513d
10.1021/acs.nanolett.5b01707
10.1103/PhysRevB.78.121201
10.1126/science.1228006
10.1103/PhysRev.140.A1133
10.1063/1.1760074
10.1039/C6CC05357B
10.1364/OE.26.021501
10.1126/science.1256815
10.1103/PhysRevB.90.205422
10.1021/acs.nanolett.8b01501
10.1103/PhysRevLett.110.180404
10.1039/C8TC04087G
10.1103/PhysRevB.54.11169
10.1002/advs.201700231
10.1021/nl503636c
10.1103/PhysRevLett.100.197402
10.1103/PhysRevLett.99.216404
10.1021/nl5017283
10.1103/PhysRevB.96.165418
10.1021/jz402035z
10.1007/s12274-017-1477-7
10.1021/ja5001592
10.1103/PhysRevB.92.115438
10.1038/nphoton.2016.15
10.1063/1.2900647
10.1103/PhysRevLett.95.163001
10.1039/C9TC05881H
10.1021/nn5042703
10.1039/C7TA02109G
10.1063/1.2085170
10.1021/acs.nanolett.5b00092
10.1021/acsnano.7b03148
10.1038/nmat4685
10.1039/c4nr01741b
10.1021/acs.jpclett.0c01463
10.1021/acs.nanolett.7b04374
10.1126/science.1130681
10.1021/nl401544y
10.1021/acs.jpclett.0c01300
10.1103/PhysRevLett.77.3865
10.1063/1.3265858
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acs.jpclett.1c00455
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 2690
ExternalDocumentID 10_1021_acs_jpclett_1c00455
33689347
Genre Journal Article
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
DU5
EBS
ED~
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
CITATION
ID FETCH-LOGICAL-c1177-4e86d27675ec57aaea7171bfc26346fa8678ae908cf8b82df8898fd5a63d9b173
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Fri Aug 23 01:48:25 EDT 2024
Sat Sep 28 08:23:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1177-4e86d27675ec57aaea7171bfc26346fa8678ae908cf8b82df8898fd5a63d9b173
ORCID 0000-0003-1390-372X
PMID 33689347
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_jpclett_1c00455
pubmed_primary_33689347
PublicationCentury 2000
PublicationDate 2021-Mar-18
2021-03-18
PublicationDateYYYYMMDD 2021-03-18
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-Mar-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J Phys Chem Lett
PublicationYear 2021
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1002/advs.201901255
– ident: ref32/cit32
  doi: 10.1364/OE.27.017851
– ident: ref71/cit71
  doi: 10.1063/1.480178
– ident: ref9/cit9
  doi: 10.1021/jz500344s
– ident: ref14/cit14
  doi: 10.1021/ja4109787
– ident: ref60/cit60
  doi: 10.1016/j.commatsci.2005.04.010
– ident: ref2/cit2
  doi: 10.1021/ja404523s
– ident: ref20/cit20
  doi: 10.1021/nn5053926
– ident: ref26/cit26
  doi: 10.1002/adma.201601977
– ident: ref56/cit56
  doi: 10.1007/s12274-015-0865-0
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.97.115416
– ident: ref22/cit22
  doi: 10.1002/adfm.201606129
– ident: ref38/cit38
  doi: 10.1063/1.4757100
– ident: ref43/cit43
  doi: 10.1039/D0TA06626E
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.5b05264
– ident: ref54/cit54
  doi: 10.1002/jcc.20495
– ident: ref37/cit37
  doi: 10.1002/wcms.1411
– ident: ref50/cit50
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref40/cit40
  doi: 10.1063/1.3526297
– ident: ref4/cit4
  doi: 10.3390/catal10010053
– ident: ref6/cit6
  doi: 10.1038/nnano.2010.279
– ident: ref57/cit57
  doi: 10.1021/nl504276u
– ident: ref3/cit3
  doi: 10.1038/nnano.2014.214
– ident: ref10/cit10
  doi: 10.1021/acsnano.6b05746
– ident: ref75/cit75
  doi: 10.1126/sciadv.aaw2347
– ident: ref72/cit72
  doi: 10.1063/1.474312
– ident: ref29/cit29
  doi: 10.1021/acs.nanolett.7b00765
– ident: ref46/cit46
  doi: 10.1021/jacs.0c06769
– ident: ref30/cit30
  doi: 10.1021/acsnano.6b04165
– ident: ref21/cit21
  doi: 10.1021/acs.chemmater.6b00364
– ident: ref48/cit48
  doi: 10.1021/acs.jpclett.0c02800
– ident: ref67/cit67
  doi: 10.1021/ja965513d
– ident: ref61/cit61
  doi: 10.1021/acs.nanolett.5b01707
– ident: ref73/cit73
  doi: 10.1103/PhysRevB.78.121201
– ident: ref19/cit19
  doi: 10.1126/science.1228006
– ident: ref39/cit39
  doi: 10.1103/PhysRev.140.A1133
– ident: ref53/cit53
  doi: 10.1063/1.1760074
– ident: ref11/cit11
  doi: 10.1039/C6CC05357B
– ident: ref33/cit33
  doi: 10.1364/OE.26.021501
– ident: ref16/cit16
  doi: 10.1126/science.1256815
– ident: ref12/cit12
  doi: 10.1103/PhysRevB.90.205422
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.8b01501
– ident: ref68/cit68
  doi: 10.1103/PhysRevLett.110.180404
– ident: ref24/cit24
  doi: 10.1039/C8TC04087G
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.54.11169
– ident: ref23/cit23
  doi: 10.1002/advs.201700231
– ident: ref34/cit34
  doi: 10.1021/nl503636c
– ident: ref70/cit70
  doi: 10.1103/PhysRevLett.100.197402
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.99.216404
– ident: ref15/cit15
  doi: 10.1021/nl5017283
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.96.165418
– ident: ref69/cit69
  doi: 10.1021/jz402035z
– ident: ref27/cit27
  doi: 10.1007/s12274-017-1477-7
– ident: ref45/cit45
  doi: 10.1021/ja5001592
– ident: ref55/cit55
  doi: 10.1103/PhysRevB.92.115438
– ident: ref7/cit7
  doi: 10.1038/nphoton.2016.15
– ident: ref63/cit63
  doi: 10.1063/1.2900647
– ident: ref41/cit41
  doi: 10.1103/PhysRevLett.95.163001
– ident: ref74/cit74
  doi: 10.1039/C9TC05881H
– ident: ref66/cit66
  doi: 10.1021/nn5042703
– ident: ref64/cit64
  doi: 10.1002/adma.201601977
– ident: ref59/cit59
  doi: 10.1039/C7TA02109G
– ident: ref52/cit52
  doi: 10.1063/1.2085170
– ident: ref65/cit65
  doi: 10.1021/acs.nanolett.5b00092
– ident: ref8/cit8
  doi: 10.1021/acsnano.7b03148
– ident: ref17/cit17
  doi: 10.1038/nmat4685
– ident: ref28/cit28
  doi: 10.1039/c4nr01741b
– ident: ref47/cit47
  doi: 10.1021/acs.jpclett.0c01463
– ident: ref44/cit44
  doi: 10.1021/acs.nanolett.7b04374
– ident: ref5/cit5
  doi: 10.1126/science.1130681
– ident: ref13/cit13
  doi: 10.1021/nl401544y
– ident: ref42/cit42
  doi: 10.1021/acs.jpclett.0c01300
– ident: ref51/cit51
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref62/cit62
  doi: 10.1063/1.3265858
SSID ssj0069087
Score 2.3724372
Snippet Two-dimensional (2D) ReSe has attracted considerable interest due to its unique anisotropic mechanical, optical, and exitonic characteristics. Recent transient...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 2682
Title Time-Domain Ab Initio Insights into the Reduced Nonradiative Electron-Hole Recombination in ReSe 2 /MoS 2 van der Waals Heterostructure
URI https://www.ncbi.nlm.nih.gov/pubmed/33689347
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCyy8H-UlD4wkVWwnccaqtCpI7UCp6Bb5Fak8kqpNFyZWZv4hv4RzHogCA0yWIseK7k72d_Hd9yF0HjKpfU4Dx4R-4LDEqgGaSDia-yZiREpR_HDrD4LeiF2P_fGXZvVvN_jEawo1d--nYMM8dz1lIUjBWAqo0AKh9rDedyHNK-TwICvnDuy4fs0x9PsaS-fQEqIsTpbuJhrU_TllQcmDu8ilq55_0jX-7aO30EaFMXGrDIpttGLSHbTWrqXddtGrbfxwLrMnMUlxS-IrW0GUwTC3qfocT9I8w4AM8Y0ldjUaD6wIgdX0gL0RdyrlnPeXt172aCdB1EKCXfgY3oUHQ4MJbvazIQwA1bE2M3wnINJxz5bfZCVr7WJm9tCo27lt95xKk8FR9nrXYYYHmlgGGKP8UAgjIB_0ZKJIQFmQCA6HnzDgCpVwyYlOOI94on0RUB1JL6T7aDXNUnOIsCdUlAB61MwQpiNIdBShNKFahzxSWjbQRe2heFpSb8TFlTnxYrBvXNk3ruzbQAelFz8nUxoAGmPh0f8WOkbrxBau2KI9foJWwSLmFJBHLs-KgPsAeo_X2g
link.rule.ids 315,783,787,2772,27936,27937
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Domain+Ab+Initio+Insights+into+the+Reduced+Nonradiative+Electron%E2%80%93Hole+Recombination+in+ReSe+2+%2FMoS+2+van+der+Waals+Heterostructure&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Dou%2C+Wenzhen&rft.au=Jia%2C+Yizhen&rft.au=Hao%2C+Xiamin&rft.au=Meng%2C+Qingling&rft.date=2021-03-18&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=12&rft.issue=10&rft.spage=2682&rft.epage=2690&rft_id=info:doi/10.1021%2Facs.jpclett.1c00455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_1c00455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon