High‐Capacity and Long‐Life Cathode Constructed Solely by Carbon Dots for Aqueous Zinc‐Ion Batteries

Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because the...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 137; no. 34
Main Authors Song, Tian‐Bing, Ma, Qian‐Li, Wang, Bao‐Juan, Zhang, Xi‐Rong, Wang, Yong‐Gang, Xiong, Huan‐Ming
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn2+ and H+. The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g−1 at 0.1 A g−1 and a decent capacity of 103 mAh g−1 at an ultra‐high current density of 10 A g−1, as well as an ultrahigh ion diffusion coefficient of 10−8 ∼ 10−7 cm2 s−1. The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn2+ and H+ reversibly. Carbon dots are solely applied as the active cathode material in aqueous zinc‐ion batteries for the first time, which exhibit decent cycling performance, excellent capacity retention, and ultrahigh ion diffusion ability.
AbstractList Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn2+ and H+. The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g−1 at 0.1 A g−1 and a decent capacity of 103 mAh g−1 at an ultra‐high current density of 10 A g−1, as well as an ultrahigh ion diffusion coefficient of 10−8 ∼ 10−7 cm2 s−1. The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn2+ and H+ reversibly. Carbon dots are solely applied as the active cathode material in aqueous zinc‐ion batteries for the first time, which exhibit decent cycling performance, excellent capacity retention, and ultrahigh ion diffusion ability.
Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o ‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn 2+ and H + . The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g −1 at 0.1 A g −1 and a decent capacity of 103 mAh g −1 at an ultra‐high current density of 10 A g −1 , as well as an ultrahigh ion diffusion coefficient of 10 −8  ∼ 10 −7  cm 2 s −1 . The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn 2+ and H + reversibly.
Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn2+ and H+. The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g−1 at 0.1 A g−1 and a decent capacity of 103 mAh g−1 at an ultra‐high current density of 10 A g−1, as well as an ultrahigh ion diffusion coefficient of 10−8 ∼ 10−7 cm2 s−1. The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn2+ and H+ reversibly.
Author Xiong, Huan‐Ming
Zhang, Xi‐Rong
Wang, Yong‐Gang
Wang, Bao‐Juan
Ma, Qian‐Li
Song, Tian‐Bing
Author_xml – sequence: 1
  givenname: Tian‐Bing
  surname: Song
  fullname: Song, Tian‐Bing
  organization: Fudan University
– sequence: 2
  givenname: Qian‐Li
  surname: Ma
  fullname: Ma, Qian‐Li
  organization: Fudan University
– sequence: 3
  givenname: Bao‐Juan
  surname: Wang
  fullname: Wang, Bao‐Juan
  organization: Fudan University
– sequence: 4
  givenname: Xi‐Rong
  surname: Zhang
  fullname: Zhang, Xi‐Rong
  organization: Fudan University
– sequence: 5
  givenname: Yong‐Gang
  orcidid: 0000-0002-2447-4679
  surname: Wang
  fullname: Wang, Yong‐Gang
  email: ygwang@fudan.edu.cn
  organization: Fudan University
– sequence: 6
  givenname: Huan‐Ming
  orcidid: 0000-0002-3118-942X
  surname: Xiong
  fullname: Xiong, Huan‐Ming
  email: hmxiong@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkDFPwzAQhS1UJNrCymyJOcV27DgZSyltpQgGYGGJnOTcpgp2sVOhbPwEfiO_BFdFMDKddO97705vhAbGGkDokpIJJYRdK7OGCSNMkDgR4gQNqWA0iqWQAzQkhPMoZTw7QyPvt4SQhMlsiLbLZr35-vicqZ2qmq7HytQ4t2YddnmjAc9Ut7F1mNb4zu2rDmr8aFtoe1z2QXWlNfjWdh5r6_D0bQ927_FLY6qQsArajeo6cA34c3SqVevh4meO0fPd_Gm2jPKHxWo2zaOKUikizVMClFRQElqmpYJYU2CpLhOtkwo08ExKImspuE5LlmkZgCpTmVSM61rEY3R1zN05G97xXbG1e2fCySJmnMhU8CwJ1ORIVc5670AXO9e8KtcXlBSHPotDn8Vvn8GQHQ3vTQv9P3QxvV_M_7zfmG9_Fg
Cites_doi 10.1002/anie.202116289
10.1002/adma.202407811
10.1002/anie.202410519
10.1039/D0EE01723J
10.1021/acsenergylett.0c00903
10.1021/jacs.9b00617
10.1016/j.cej.2024.156341
10.1016/j.orgel.2017.07.007
10.1002/ange.202410342
10.1039/D3CS00295K
10.1016/j.electacta.2021.139620
10.1002/adma.202309753
10.1039/C4NR03213F
10.1039/D1QI00747E
10.1002/adma.201806197
10.1016/j.jpowsour.2020.228223
10.1016/j.chempr.2023.09.020
10.1007/s12274-021-3662-y
10.1002/anie.202211107
10.1016/j.cej.2022.137289
10.1002/aenm.202402721
10.1002/adma.202408685
10.1021/acsnano.3c06245
10.1016/j.est.2024.110632
10.1016/j.ensm.2023.102778
10.1021/jacs.1c03939
10.1016/j.nanoen.2023.108290
10.1002/adma.202103617
10.1021/acsnano.9b07042
10.1016/j.carbon.2022.03.058
10.1039/D2EE02961H
10.1039/D0SC05879C
10.1002/anie.202501743
10.1038/s44160-024-00607-4
10.1039/c2cp40449d
10.1016/j.nanoen.2016.04.051
10.1002/adma.202007480
10.1002/aenm.202200665
10.1002/anie.202117511
10.1021/acsami.2c11317
10.1007/s12613-022-2441-4
10.1016/j.apsusc.2023.157580
10.1002/adma.202200152
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202503655
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202503655
ANGE202503655
Genre researchArticle
GrantInformation_xml – fundername: Shanghai Pilot Program for Basic Research‐Fudan University
  funderid: 21TQ1400100; 21TQ009
– fundername: National Natural Science Foundation of China
  funderid: U24A20565; 2225201; 21975048
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 25ZR1401024
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1175-f480e10ceb01b8bae3f1e28fb6ff6cefe497707d754f8b29f73f1c9a97a24fd53
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Tue Aug 19 13:14:27 EDT 2025
Thu Aug 21 00:35:32 EDT 2025
Wed Aug 20 09:40:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1175-f480e10ceb01b8bae3f1e28fb6ff6cefe497707d754f8b29f73f1c9a97a24fd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2447-4679
0000-0002-3118-942X
PQID 3240785496
PQPubID 866336
PageCount 8
ParticipantIDs proquest_journals_3240785496
crossref_primary_10_1002_ange_202503655
wiley_primary_10_1002_ange_202503655_ANGE202503655
PublicationCentury 2000
PublicationDate August 18, 2025
2025-08-18
20250818
PublicationDateYYYYMMDD 2025-08-18
PublicationDate_xml – month: 08
  year: 2025
  text: August 18, 2025
  day: 18
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2023; 30
2022; 194
2023; 17
2019; 31
2023; 59
2017; 49
2023; 16
2019; 13
2024; 53
2024; 10
2020; 13
2023; 109
2020; 463
2021; 143
2024; 36
2024; 14
2012; 14
2024; 37
2019; 141
2020; 5
2021; 12
2021; 33
2022; 61
2022; 12
2022; 34
2024; 84
2023; 633
2024; 63
2022; 14
2022; 15
2024; 3
2024; 499
2024; 136
2021; 60
2025; 64
2014; 6
2022; 404
2016; 25
2022; 446
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
Zeng Y. (e_1_2_7_32_1) 2021; 60
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 463
  year: 2020
  publication-title: J. Power Sources
– volume: 17
  start-page: 18494
  year: 2023
  end-page: 18506
  publication-title: ACS Nano
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 13119
  year: 2014
  end-page: 13125
  publication-title: Nanoscale
– volume: 499
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 2515
  year: 2020
  end-page: 2523
  publication-title: Energy Environ. Sci.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 14
  start-page: 8307
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 60
  start-page: 22198
  year: 2021
  end-page: 22194
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 3615
  year: 2021
  end-page: 3626
  publication-title: Chem. Sci.
– volume: 84
  year: 2024
  publication-title: J. Energy Stor
– volume: 109
  year: 2023
  publication-title: Nano Energy
– volume: 8
  start-page: 4497
  year: 2021
  end-page: 4506
  publication-title: Inorg. Chem. Front.
– volume: 633
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 64
  year: 2025
  publication-title: Angew. Chem. Int. Ed.
– volume: 143
  start-page: 11510
  year: 2021
  end-page: 11519
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 53
  start-page: 4877
  year: 2024
  end-page: 4925
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 211
  year: 2016
  end-page: 217
  publication-title: Nano Energy
– volume: 30
  start-page: 25
  year: 2023
  end-page: 32
  publication-title: Int. J. Met. Mater.
– volume: 37
  year: 2024
  publication-title: Adv. Mater.
– volume: 404
  year: 2022
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 40247
  year: 2022
  end-page: 40256
  publication-title: ACS App. Mater. Inter.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 13
  start-page: 13456
  year: 2019
  end-page: 13464
  publication-title: ACS Nano
– volume: 3
  start-page: 1427
  year: 2024
  end-page: 1438
  publication-title: Nat. Synth.
– volume: 59
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 194
  start-page: 42
  year: 2022
  end-page: 51
  publication-title: Carbon
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 1338
  year: 2022
  end-page: 1346
  publication-title: Nano Res.
– volume: 49
  start-page: 340
  year: 2017
  end-page: 346
  publication-title: Org. Electron.
– volume: 10
  start-page: 134
  year: 2024
  end-page: 171
  publication-title: Chem
– volume: 136
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 141
  start-page: 6338
  year: 2019
  end-page: 6344
  publication-title: J. Am. Chem. Soc.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 2256
  year: 2020
  end-page: 2264
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 89
  year: 2023
  end-page: 96
  publication-title: Energy Environ. Sci.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202116289
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.202407811
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202410519
– ident: e_1_2_7_38_1
  doi: 10.1039/D0EE01723J
– ident: e_1_2_7_30_1
  doi: 10.1021/acsenergylett.0c00903
– volume: 60
  start-page: 22198
  year: 2021
  ident: e_1_2_7_32_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.9b00617
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cej.2024.156341
– ident: e_1_2_7_21_1
  doi: 10.1016/j.orgel.2017.07.007
– ident: e_1_2_7_27_1
  doi: 10.1002/ange.202410342
– ident: e_1_2_7_13_1
  doi: 10.1039/D3CS00295K
– ident: e_1_2_7_29_1
  doi: 10.1016/j.electacta.2021.139620
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.202309753
– ident: e_1_2_7_16_1
  doi: 10.1039/C4NR03213F
– ident: e_1_2_7_37_1
  doi: 10.1039/D1QI00747E
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201806197
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jpowsour.2020.228223
– ident: e_1_2_7_15_1
  doi: 10.1016/j.chempr.2023.09.020
– ident: e_1_2_7_23_1
  doi: 10.1007/s12274-021-3662-y
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.202211107
– ident: e_1_2_7_44_1
  doi: 10.1016/j.cej.2022.137289
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.202402721
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.202408685
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.3c06245
– ident: e_1_2_7_8_1
  doi: 10.1016/j.est.2024.110632
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ensm.2023.102778
– ident: e_1_2_7_2_1
  doi: 10.1021/jacs.1c03939
– ident: e_1_2_7_14_1
  doi: 10.1016/j.nanoen.2023.108290
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.202103617
– ident: e_1_2_7_43_1
  doi: 10.1021/acsnano.9b07042
– ident: e_1_2_7_18_1
  doi: 10.1016/j.carbon.2022.03.058
– ident: e_1_2_7_25_1
  doi: 10.1039/D2EE02961H
– ident: e_1_2_7_20_1
  doi: 10.1039/D0SC05879C
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.202501743
– ident: e_1_2_7_3_1
  doi: 10.1038/s44160-024-00607-4
– ident: e_1_2_7_22_1
  doi: 10.1039/c2cp40449d
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2016.04.051
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.202007480
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.202200665
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.202117511
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.2c11317
– ident: e_1_2_7_7_1
  doi: 10.1007/s12613-022-2441-4
– ident: e_1_2_7_10_1
  doi: 10.1016/j.apsusc.2023.157580
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202200152
SSID ssj0006279
Score 2.3006206
Snippet Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Batteries
Capacity
Carbon
Carbon dots
Cathode materials
Cathodes
Diffusion coefficient
Electrical conductivity
Electrical resistivity
Electrochemistry
Electrode materials
Electrolytes
Embedding
Ion diffusion
Lifetime
Phenylenediamine
Zinc
Zinc‐ion batteries
Title High‐Capacity and Long‐Life Cathode Constructed Solely by Carbon Dots for Aqueous Zinc‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202503655
https://www.proquest.com/docview/3240785496
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EYWCPCAxhSauE7tjVd4CBqBSxRL5cUY8lCBahjLxE_iN_BLOSdMWFiSY8nBs2T5f7jvr7jMhuw6SxGn0VKVwPOAtBoG2mgVKCwRJLAZbZPFfXCYnXX7Wi3tTWfwlP8R4w81rRvG_9gqudL8xIQ31sffo36EJbyaxzzL3AVseFV1N-KMSVpLthZwHEh2NirUxZI3v1b9bpQnUnAashcU5WiSq6msZaPK4_zrQ--btB43jfwazRBZGcJS2y_WzTGYgWyFzneoUuFXy4ANBPt8_OmhUDSJ2qjJLz_PsDt-d3zugPoUwt3jNR1y0YOl1_gRPQ6qHWPqi84we5IM-RXhM2zji_LVPb-8zgy2cYlnJ8IkO-xrpHh3edE6C0fkMgfEEn4HjMoQoNKDDSEutoOkiYNLpxLnEgAOO4DIUVsTcSc1aTuAHpqVaQjHubNxcJ7NZnsEGoRYiqVwotDCCW_RshTQmsgyEVU0loEb2KvmkzyUNR1oSLrPUz106nrsaqVfiS0fq2E8966CQ6AonNcIKOfzSStq-PD4cP23-pdIWmff3fv85knUyiyKAbQQwA71TLNIv7F3sOg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5icGCXbfwS3Qr4gMQpkLhO7B6rUlag9MAPCXGJYvsZlaFkWsuBnfYn7G_kL-E5aVrggrSdotixZfvZed9nPX8G2HWYJE4TU1XSiUC0OQbaah5kWhJI4jHa8hT_2TDpX4mT67iOJvRnYSp9iNmGm18Z5f_aL3C_IX0wVw31wfdE8MiHt5I4_gBL_lrvklWdzxWkEl7J7YVCBIqoRq3bGPKD1-Vf-6U52HwJWUufc_QZdN3aKtTkx_7DRO-b32-EHP-rO1_g0xSRsk41hVZgAfNVWO7WF8GtwZ2PBXn687dLftUQaGdZbtmgyG8pbTByyPwpwsLSs5jK0aJlF8U93j8y_Ui5v3SRs8NiMmaEkFmHulw8jNnNKDdUwzHlVSKfxNnX4eqod9ntB9MrGgLjNT4DJ1SIUWhQh5FWOsOWi5ArpxPnEoMOBeHLUFoZC6c0bztJH5h21pYZF87GrQ1YzIscN4FZjFTmQqmlkcISuZXKmMhylDZrZRIbsFcbKP1ZKXGkleYyT_3YpbOxa0Cztl86XZHj1AsPSkVsOGkALw3xTi1pZ_i9N3v7-i-FdmC5f3k2SAfHw9Nv8NGn--3oSDVhkcyBW4RnJnq7nLHPrHvwVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIulKdYWsCHSpzSJl7H9h5Xu13asqwqoFLFJfJjjPpQUrHbQznxE_iN_SUdJ5vdlkslOEWxY8v2zGS-sTyfAbYCShksRapaBZGIHsfEessTYxWBJJ6jr7P4P0_k3pE4OM6Pb2XxN_wQiw23aBn1_zoa-IUPO0vS0Hj2nuI7cuFdmecPYE3IVEe9Hn5ZEkhJ3rDtpUIkmiKNlrYx5Tt32991S0useRux1i5ntA6mHWxz0uRs-3Jmt92vv3gc_2c2T-HJHI-yfqNAz2AFy-fwaNBeA_cCTuNJkOvffwbkVR1BdmZKz8ZV-YPKxicBWcwhrDw9qzkZLXr2tTrH8ytmr6j2p61KNqxmU0b4mPVpxtXllH0_KR31sE91DcUnRewv4Wi0-22wl8wvaEhcZPhMgtApZqlDm2ZWW4PdkCHXwcoQpMOAgtBlqrzKRdCW94KiD1zP9JThIvi8-wpWy6rE18A8ZtqEVFnllPAU2irtXOY5Km-6RmEHPrTyKS4aHo6iYVzmRVy7YrF2HdhsxVfM7XFaRNpBpSkWlh3gtRzu6aXoTz7uLt7e_Euj9_DwcDgqxvuTTxvwOBbHvehMb8IqSQPfEpiZ2Xe1vt4ACGTvDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Capacity+and+Long%E2%80%90Life+Cathode+Constructed+Solely+by+Carbon+Dots+for+Aqueous+Zinc%E2%80%90Ion+Batteries&rft.jtitle=Angewandte+Chemie&rft.au=Song%2C+Tian%E2%80%90Bing&rft.au=Ma%2C+Qian%E2%80%90Li&rft.au=Wang%2C+Bao%E2%80%90Juan&rft.au=Zhang%2C+Xi%E2%80%90Rong&rft.date=2025-08-18&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=137&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202503655&rft.externalDBID=10.1002%252Fange.202503655&rft.externalDocID=ANGE202503655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon