High‐Capacity and Long‐Life Cathode Constructed Solely by Carbon Dots for Aqueous Zinc‐Ion Batteries
Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because the...
Saved in:
Published in | Angewandte Chemie Vol. 137; no. 34 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn2+ and H+. The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g−1 at 0.1 A g−1 and a decent capacity of 103 mAh g−1 at an ultra‐high current density of 10 A g−1, as well as an ultrahigh ion diffusion coefficient of 10−8 ∼ 10−7 cm2 s−1. The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn2+ and H+ reversibly.
Carbon dots are solely applied as the active cathode material in aqueous zinc‐ion batteries for the first time, which exhibit decent cycling performance, excellent capacity retention, and ultrahigh ion diffusion ability. |
---|---|
AbstractList | Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn2+ and H+. The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g−1 at 0.1 A g−1 and a decent capacity of 103 mAh g−1 at an ultra‐high current density of 10 A g−1, as well as an ultrahigh ion diffusion coefficient of 10−8 ∼ 10−7 cm2 s−1. The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn2+ and H+ reversibly.
Carbon dots are solely applied as the active cathode material in aqueous zinc‐ion batteries for the first time, which exhibit decent cycling performance, excellent capacity retention, and ultrahigh ion diffusion ability. Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o ‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn 2+ and H + . The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g −1 at 0.1 A g −1 and a decent capacity of 103 mAh g −1 at an ultra‐high current density of 10 A g −1 , as well as an ultrahigh ion diffusion coefficient of 10 −8 ∼ 10 −7 cm 2 s −1 . The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn 2+ and H + reversibly. Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported devices, such as batteries and supercapacitors, CDs are always used as additives to modify the electrodes or regulate the electrolytes because they have been regarded as inert and low‐capacity materials all along. Here, for the first time, o‐phenylenediamine derived CDs are selected as the only protagonist to construct cathode materials for aqueous zinc‐ion batteries (ZIBs). Such CDs (p‐CDs) have a special π‐conjugated phenazine‐based structure, with carbon cores for electrical conductivity and active sites for embedding Zn2+ and H+. The p‐CDs solely constructed cathode material delivers a superior capacity of 290 mAh g−1 at 0.1 A g−1 and a decent capacity of 103 mAh g−1 at an ultra‐high current density of 10 A g−1, as well as an ultrahigh ion diffusion coefficient of 10−8 ∼ 10−7 cm2 s−1. The p‐CDs assembled ZIBs exhibit a stable long‐term cycling, retaining 87.4% of the original capacity after 10 000 cycles. Various characterizations and theoretical calculations prove that the electron‐deficient N as the active sites on p‐CDs can embed/release Zn2+ and H+ reversibly. |
Author | Xiong, Huan‐Ming Zhang, Xi‐Rong Wang, Yong‐Gang Wang, Bao‐Juan Ma, Qian‐Li Song, Tian‐Bing |
Author_xml | – sequence: 1 givenname: Tian‐Bing surname: Song fullname: Song, Tian‐Bing organization: Fudan University – sequence: 2 givenname: Qian‐Li surname: Ma fullname: Ma, Qian‐Li organization: Fudan University – sequence: 3 givenname: Bao‐Juan surname: Wang fullname: Wang, Bao‐Juan organization: Fudan University – sequence: 4 givenname: Xi‐Rong surname: Zhang fullname: Zhang, Xi‐Rong organization: Fudan University – sequence: 5 givenname: Yong‐Gang orcidid: 0000-0002-2447-4679 surname: Wang fullname: Wang, Yong‐Gang email: ygwang@fudan.edu.cn organization: Fudan University – sequence: 6 givenname: Huan‐Ming orcidid: 0000-0002-3118-942X surname: Xiong fullname: Xiong, Huan‐Ming email: hmxiong@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkDFPwzAQhS1UJNrCymyJOcV27DgZSyltpQgGYGGJnOTcpgp2sVOhbPwEfiO_BFdFMDKddO97705vhAbGGkDokpIJJYRdK7OGCSNMkDgR4gQNqWA0iqWQAzQkhPMoZTw7QyPvt4SQhMlsiLbLZr35-vicqZ2qmq7HytQ4t2YddnmjAc9Ut7F1mNb4zu2rDmr8aFtoe1z2QXWlNfjWdh5r6_D0bQ927_FLY6qQsArajeo6cA34c3SqVevh4meO0fPd_Gm2jPKHxWo2zaOKUikizVMClFRQElqmpYJYU2CpLhOtkwo08ExKImspuE5LlmkZgCpTmVSM61rEY3R1zN05G97xXbG1e2fCySJmnMhU8CwJ1ORIVc5670AXO9e8KtcXlBSHPotDn8Vvn8GQHQ3vTQv9P3QxvV_M_7zfmG9_Fg |
Cites_doi | 10.1002/anie.202116289 10.1002/adma.202407811 10.1002/anie.202410519 10.1039/D0EE01723J 10.1021/acsenergylett.0c00903 10.1021/jacs.9b00617 10.1016/j.cej.2024.156341 10.1016/j.orgel.2017.07.007 10.1002/ange.202410342 10.1039/D3CS00295K 10.1016/j.electacta.2021.139620 10.1002/adma.202309753 10.1039/C4NR03213F 10.1039/D1QI00747E 10.1002/adma.201806197 10.1016/j.jpowsour.2020.228223 10.1016/j.chempr.2023.09.020 10.1007/s12274-021-3662-y 10.1002/anie.202211107 10.1016/j.cej.2022.137289 10.1002/aenm.202402721 10.1002/adma.202408685 10.1021/acsnano.3c06245 10.1016/j.est.2024.110632 10.1016/j.ensm.2023.102778 10.1021/jacs.1c03939 10.1016/j.nanoen.2023.108290 10.1002/adma.202103617 10.1021/acsnano.9b07042 10.1016/j.carbon.2022.03.058 10.1039/D2EE02961H 10.1039/D0SC05879C 10.1002/anie.202501743 10.1038/s44160-024-00607-4 10.1039/c2cp40449d 10.1016/j.nanoen.2016.04.051 10.1002/adma.202007480 10.1002/aenm.202200665 10.1002/anie.202117511 10.1021/acsami.2c11317 10.1007/s12613-022-2441-4 10.1016/j.apsusc.2023.157580 10.1002/adma.202200152 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202503655 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202503655 ANGE202503655 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Shanghai Pilot Program for Basic Research‐Fudan University funderid: 21TQ1400100; 21TQ009 – fundername: National Natural Science Foundation of China funderid: U24A20565; 2225201; 21975048 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 25ZR1401024 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c1175-f480e10ceb01b8bae3f1e28fb6ff6cefe497707d754f8b29f73f1c9a97a24fd53 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Tue Aug 19 13:14:27 EDT 2025 Thu Aug 21 00:35:32 EDT 2025 Wed Aug 20 09:40:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1175-f480e10ceb01b8bae3f1e28fb6ff6cefe497707d754f8b29f73f1c9a97a24fd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2447-4679 0000-0002-3118-942X |
PQID | 3240785496 |
PQPubID | 866336 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3240785496 crossref_primary_10_1002_ange_202503655 wiley_primary_10_1002_ange_202503655_ANGE202503655 |
PublicationCentury | 2000 |
PublicationDate | August 18, 2025 2025-08-18 20250818 |
PublicationDateYYYYMMDD | 2025-08-18 |
PublicationDate_xml | – month: 08 year: 2025 text: August 18, 2025 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2023; 30 2022; 194 2023; 17 2019; 31 2023; 59 2017; 49 2023; 16 2019; 13 2024; 53 2024; 10 2020; 13 2023; 109 2020; 463 2021; 143 2024; 36 2024; 14 2012; 14 2024; 37 2019; 141 2020; 5 2021; 12 2021; 33 2022; 61 2022; 12 2022; 34 2024; 84 2023; 633 2024; 63 2022; 14 2022; 15 2024; 3 2024; 499 2024; 136 2021; 60 2025; 64 2014; 6 2022; 404 2016; 25 2022; 446 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 Zeng Y. (e_1_2_7_32_1) 2021; 60 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 463 year: 2020 publication-title: J. Power Sources – volume: 17 start-page: 18494 year: 2023 end-page: 18506 publication-title: ACS Nano – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 13119 year: 2014 end-page: 13125 publication-title: Nanoscale – volume: 499 year: 2024 publication-title: Chem. Eng. J. – volume: 13 start-page: 2515 year: 2020 end-page: 2523 publication-title: Energy Environ. Sci. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 14 start-page: 8307 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 60 start-page: 22198 year: 2021 end-page: 22194 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 3615 year: 2021 end-page: 3626 publication-title: Chem. Sci. – volume: 84 year: 2024 publication-title: J. Energy Stor – volume: 109 year: 2023 publication-title: Nano Energy – volume: 8 start-page: 4497 year: 2021 end-page: 4506 publication-title: Inorg. Chem. Front. – volume: 633 year: 2023 publication-title: Appl. Surf. Sci. – volume: 64 year: 2025 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 11510 year: 2021 end-page: 11519 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 53 start-page: 4877 year: 2024 end-page: 4925 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 211 year: 2016 end-page: 217 publication-title: Nano Energy – volume: 30 start-page: 25 year: 2023 end-page: 32 publication-title: Int. J. Met. Mater. – volume: 37 year: 2024 publication-title: Adv. Mater. – volume: 404 year: 2022 publication-title: Electrochim. Acta – volume: 14 start-page: 40247 year: 2022 end-page: 40256 publication-title: ACS App. Mater. Inter. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 13 start-page: 13456 year: 2019 end-page: 13464 publication-title: ACS Nano – volume: 3 start-page: 1427 year: 2024 end-page: 1438 publication-title: Nat. Synth. – volume: 59 year: 2023 publication-title: Energy Storage Mater. – volume: 194 start-page: 42 year: 2022 end-page: 51 publication-title: Carbon – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 15 start-page: 1338 year: 2022 end-page: 1346 publication-title: Nano Res. – volume: 49 start-page: 340 year: 2017 end-page: 346 publication-title: Org. Electron. – volume: 10 start-page: 134 year: 2024 end-page: 171 publication-title: Chem – volume: 136 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 141 start-page: 6338 year: 2019 end-page: 6344 publication-title: J. Am. Chem. Soc. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 5 start-page: 2256 year: 2020 end-page: 2264 publication-title: ACS Energy Lett. – volume: 16 start-page: 89 year: 2023 end-page: 96 publication-title: Energy Environ. Sci. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_26_1 doi: 10.1002/anie.202116289 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202407811 – ident: e_1_2_7_11_1 doi: 10.1002/anie.202410519 – ident: e_1_2_7_38_1 doi: 10.1039/D0EE01723J – ident: e_1_2_7_30_1 doi: 10.1021/acsenergylett.0c00903 – volume: 60 start-page: 22198 year: 2021 ident: e_1_2_7_32_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_42_1 doi: 10.1021/jacs.9b00617 – ident: e_1_2_7_9_1 doi: 10.1016/j.cej.2024.156341 – ident: e_1_2_7_21_1 doi: 10.1016/j.orgel.2017.07.007 – ident: e_1_2_7_27_1 doi: 10.1002/ange.202410342 – ident: e_1_2_7_13_1 doi: 10.1039/D3CS00295K – ident: e_1_2_7_29_1 doi: 10.1016/j.electacta.2021.139620 – ident: e_1_2_7_39_1 doi: 10.1002/adma.202309753 – ident: e_1_2_7_16_1 doi: 10.1039/C4NR03213F – ident: e_1_2_7_37_1 doi: 10.1039/D1QI00747E – ident: e_1_2_7_19_1 doi: 10.1002/adma.201806197 – ident: e_1_2_7_36_1 doi: 10.1016/j.jpowsour.2020.228223 – ident: e_1_2_7_15_1 doi: 10.1016/j.chempr.2023.09.020 – ident: e_1_2_7_23_1 doi: 10.1007/s12274-021-3662-y – ident: e_1_2_7_41_1 doi: 10.1002/anie.202211107 – ident: e_1_2_7_44_1 doi: 10.1016/j.cej.2022.137289 – ident: e_1_2_7_4_1 doi: 10.1002/aenm.202402721 – ident: e_1_2_7_1_1 doi: 10.1002/adma.202408685 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.3c06245 – ident: e_1_2_7_8_1 doi: 10.1016/j.est.2024.110632 – ident: e_1_2_7_40_1 doi: 10.1016/j.ensm.2023.102778 – ident: e_1_2_7_2_1 doi: 10.1021/jacs.1c03939 – ident: e_1_2_7_14_1 doi: 10.1016/j.nanoen.2023.108290 – ident: e_1_2_7_28_1 doi: 10.1002/adma.202103617 – ident: e_1_2_7_43_1 doi: 10.1021/acsnano.9b07042 – ident: e_1_2_7_18_1 doi: 10.1016/j.carbon.2022.03.058 – ident: e_1_2_7_25_1 doi: 10.1039/D2EE02961H – ident: e_1_2_7_20_1 doi: 10.1039/D0SC05879C – ident: e_1_2_7_24_1 doi: 10.1002/anie.202501743 – ident: e_1_2_7_3_1 doi: 10.1038/s44160-024-00607-4 – ident: e_1_2_7_22_1 doi: 10.1039/c2cp40449d – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2016.04.051 – ident: e_1_2_7_35_1 doi: 10.1002/adma.202007480 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.202200665 – ident: e_1_2_7_33_1 doi: 10.1002/anie.202117511 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.2c11317 – ident: e_1_2_7_7_1 doi: 10.1007/s12613-022-2441-4 – ident: e_1_2_7_10_1 doi: 10.1016/j.apsusc.2023.157580 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202200152 |
SSID | ssj0006279 |
Score | 2.3006206 |
Snippet | Carbon dots (CDs) have been explored widely in the electrochemistry field, owing to their unique structures and rich properties. However, in the reported... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Batteries Capacity Carbon Carbon dots Cathode materials Cathodes Diffusion coefficient Electrical conductivity Electrical resistivity Electrochemistry Electrode materials Electrolytes Embedding Ion diffusion Lifetime Phenylenediamine Zinc Zinc‐ion batteries |
Title | High‐Capacity and Long‐Life Cathode Constructed Solely by Carbon Dots for Aqueous Zinc‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202503655 https://www.proquest.com/docview/3240785496 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EYWCPCAxhSauE7tjVd4CBqBSxRL5cUY8lCBahjLxE_iN_BLOSdMWFiSY8nBs2T5f7jvr7jMhuw6SxGn0VKVwPOAtBoG2mgVKCwRJLAZbZPFfXCYnXX7Wi3tTWfwlP8R4w81rRvG_9gqudL8xIQ31sffo36EJbyaxzzL3AVseFV1N-KMSVpLthZwHEh2NirUxZI3v1b9bpQnUnAashcU5WiSq6msZaPK4_zrQ--btB43jfwazRBZGcJS2y_WzTGYgWyFzneoUuFXy4ANBPt8_OmhUDSJ2qjJLz_PsDt-d3zugPoUwt3jNR1y0YOl1_gRPQ6qHWPqi84we5IM-RXhM2zji_LVPb-8zgy2cYlnJ8IkO-xrpHh3edE6C0fkMgfEEn4HjMoQoNKDDSEutoOkiYNLpxLnEgAOO4DIUVsTcSc1aTuAHpqVaQjHubNxcJ7NZnsEGoRYiqVwotDCCW_RshTQmsgyEVU0loEb2KvmkzyUNR1oSLrPUz106nrsaqVfiS0fq2E8966CQ6AonNcIKOfzSStq-PD4cP23-pdIWmff3fv85knUyiyKAbQQwA71TLNIv7F3sOg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5icGCXbfwS3Qr4gMQpkLhO7B6rUlag9MAPCXGJYvsZlaFkWsuBnfYn7G_kL-E5aVrggrSdotixZfvZed9nPX8G2HWYJE4TU1XSiUC0OQbaah5kWhJI4jHa8hT_2TDpX4mT67iOJvRnYSp9iNmGm18Z5f_aL3C_IX0wVw31wfdE8MiHt5I4_gBL_lrvklWdzxWkEl7J7YVCBIqoRq3bGPKD1-Vf-6U52HwJWUufc_QZdN3aKtTkx_7DRO-b32-EHP-rO1_g0xSRsk41hVZgAfNVWO7WF8GtwZ2PBXn687dLftUQaGdZbtmgyG8pbTByyPwpwsLSs5jK0aJlF8U93j8y_Ui5v3SRs8NiMmaEkFmHulw8jNnNKDdUwzHlVSKfxNnX4eqod9ntB9MrGgLjNT4DJ1SIUWhQh5FWOsOWi5ArpxPnEoMOBeHLUFoZC6c0bztJH5h21pYZF87GrQ1YzIscN4FZjFTmQqmlkcISuZXKmMhylDZrZRIbsFcbKP1ZKXGkleYyT_3YpbOxa0Cztl86XZHj1AsPSkVsOGkALw3xTi1pZ_i9N3v7-i-FdmC5f3k2SAfHw9Nv8NGn--3oSDVhkcyBW4RnJnq7nLHPrHvwVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIulKdYWsCHSpzSJl7H9h5Xu13asqwqoFLFJfJjjPpQUrHbQznxE_iN_SUdJ5vdlkslOEWxY8v2zGS-sTyfAbYCShksRapaBZGIHsfEessTYxWBJJ6jr7P4P0_k3pE4OM6Pb2XxN_wQiw23aBn1_zoa-IUPO0vS0Hj2nuI7cuFdmecPYE3IVEe9Hn5ZEkhJ3rDtpUIkmiKNlrYx5Tt32991S0useRux1i5ntA6mHWxz0uRs-3Jmt92vv3gc_2c2T-HJHI-yfqNAz2AFy-fwaNBeA_cCTuNJkOvffwbkVR1BdmZKz8ZV-YPKxicBWcwhrDw9qzkZLXr2tTrH8ytmr6j2p61KNqxmU0b4mPVpxtXllH0_KR31sE91DcUnRewv4Wi0-22wl8wvaEhcZPhMgtApZqlDm2ZWW4PdkCHXwcoQpMOAgtBlqrzKRdCW94KiD1zP9JThIvi8-wpWy6rE18A8ZtqEVFnllPAU2irtXOY5Km-6RmEHPrTyKS4aHo6iYVzmRVy7YrF2HdhsxVfM7XFaRNpBpSkWlh3gtRzu6aXoTz7uLt7e_Euj9_DwcDgqxvuTTxvwOBbHvehMb8IqSQPfEpiZ2Xe1vt4ACGTvDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Capacity+and+Long%E2%80%90Life+Cathode+Constructed+Solely+by+Carbon+Dots+for+Aqueous+Zinc%E2%80%90Ion+Batteries&rft.jtitle=Angewandte+Chemie&rft.au=Song%2C+Tian%E2%80%90Bing&rft.au=Ma%2C+Qian%E2%80%90Li&rft.au=Wang%2C+Bao%E2%80%90Juan&rft.au=Zhang%2C+Xi%E2%80%90Rong&rft.date=2025-08-18&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=137&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202503655&rft.externalDBID=10.1002%252Fange.202503655&rft.externalDocID=ANGE202503655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |