Harnessing Lithium‐Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles
Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled...
Saved in:
Published in | Angewandte Chemie Vol. 137; no. 27 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
This study pioneers a sustainable approach to ammonia synthesis by integrating lithium‐mediated nitrogen reduction (Li‐NRR) with water electrolysis (WE). Polyoxometalates (POMs) serve as electron‐coupled proton buffers (ECPBs), enhancing proton transfer while suppressing hydrogen evolution. A three‐compartment flow reactor achieves continuous ammonia production, setting a benchmark for eco‐friendly nitrogen fixation. |
---|---|
AbstractList | Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻ 2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry. Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry. Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron‐coupled proton buffers (ECPBs) to seamlessly link WE with Li‐NRR in a three‐compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry. This study pioneers a sustainable approach to ammonia synthesis by integrating lithium‐mediated nitrogen reduction (Li‐NRR) with water electrolysis (WE). Polyoxometalates (POMs) serve as electron‐coupled proton buffers (ECPBs), enhancing proton transfer while suppressing hydrogen evolution. A three‐compartment flow reactor achieves continuous ammonia production, setting a benchmark for eco‐friendly nitrogen fixation. |
Author | Li, Zhen Lai, Zhiping Chen, Cailing Miao, Jun Al Nuaimi, Reham Huang, Kuo‐Wei Cao, Li |
Author_xml | – sequence: 1 givenname: Jun surname: Miao fullname: Miao, Jun organization: King Abdullah University of Science and Technology – sequence: 2 givenname: Cailing surname: Chen fullname: Chen, Cailing organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Li surname: Cao fullname: Cao, Li organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Reham surname: Al Nuaimi fullname: Al Nuaimi, Reham organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Zhen surname: Li fullname: Li, Zhen email: zhen.li@kaust.edu.sa organization: King Abdullah University of Science and Technology – sequence: 6 givenname: Kuo‐Wei surname: Huang fullname: Huang, Kuo‐Wei organization: King Abdullah University of Science and Technology – sequence: 7 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: King Abdullah University of Science and Technology |
BookMark | eNqFkLFOwzAQhi0EEqWwMltiTrGdOInHUpUWqYVKgBgjN7m0qRK72K5KmHgEJN6QJ8GlCEam09193530n6BDpRUgdE5JjxLCLqVaQI8RxkkYxfwAdShnNAgTnhyiDiFRFKQsEsfoxNoVISRmieigj7E0Cqyt1AJPKresNs3n2_sUiko6KPDIACjcbxqtKonvW-WWYCuLtx7FTx4xeFhD7oyu2938Smu78-YtnkIzN1LBH_Dq6W9x5hv9ohtwsvY38MxopxW-X26cq8GeoqNS1hbOfmoXPV4PHwbjYHI3uhn0J0FOacKDpJQxFVwCLXMSpyIRnFMKsQxJTJOC5mFE_UKkES0LmZaCJzIUaZmLOCpykoZddLG_uzb6eQPWZSu9Mcq_zELGBGEp4bGnensqN9paA2W2NlUjTZtRku2Cz3bBZ7_Be0HshW1VQ_sPnfVvR8M_9wu70I0A |
Cites_doi | 10.1038/s41570-018-0112 10.1038/s41467-024-46803-w 10.1038/s41467-020-19130-z 10.1038/s41586-024-07276-5 10.1038/s41467-021-27866-5 10.1021/acsenergylett.2c02792 10.1126/science.aar6611 10.1002/adma.202312645 10.1021/jacs.7b04393 10.1002/anie.202416027 10.1126/science.1257443 10.1038/s41557-021-00850-8 10.1016/j.cclet.2022.03.060 10.1246/cl.1993.851 10.1038/s41929-019-0252-4 10.1038/ngeo325 10.1038/s41560-019-0451-x 10.1126/science.abg2371 10.1038/s41586-022-05108-y 10.1039/D0EE02246B 10.1039/D3EE00026E 10.1039/C9GC01338E 10.1038/s41467-021-24513-x 10.1016/0022-0728(93)03025-K 10.1038/s41893-022-00908-6 10.1126/science.abl4300 10.1002/anie.202409006 10.1038/s44286-024-00137-y 10.1002/aenm.201601375 10.1002/anie.202305843 10.1038/s41560-020-0654-1 10.1021/ja4071893 10.1038/s41586-019-1260-x 10.1021/jacs.3c08965 10.1038/s44286-023-00009-x 10.1002/advs.201802109 10.1016/j.joule.2022.07.009 10.1039/C7EE01126A 10.1039/D0EE02263B 10.1038/nchem.1621 10.1016/S0379-6779(02)00649-5 10.1038/s41929-024-01115-6 10.1126/sciadv.add5598 10.1016/j.mtcata.2023.100031 10.1002/hlca.19300130604 10.1038/s41893-023-01252-z 10.1016/j.isci.2021.103105 10.1038/s44160-023-00458-5 10.1038/ncomms14589 10.1002/anie.201916516 10.1126/sciadv.1700336 10.1002/adma.202007650 10.1126/science.adf4403 10.1016/j.joule.2020.04.004 10.1038/s41929-020-0455-8 10.1038/s41893-024-01406-7 10.1002/anie.202203170 10.1016/j.electacta.2013.12.058 10.1002/adfm.202214495 10.1002/cphc.202401097 10.1021/acsenergylett.4c01896 10.1016/j.joule.2019.02.003 10.1039/D2QM01131J 10.1002/adfm.202009151 10.1002/anie.202311413 10.1038/s41560-020-00680-x 10.1126/science.aam6014 10.1016/j.chempr.2018.10.010 10.1002/anie.202015496 10.1021/acsenergylett.1c02104 10.1038/s41586-021-03482-7 10.1016/j.joule.2023.05.013 10.1038/s41929-024-01200-w 10.1039/D2CS00797E |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202503465 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202503465 ANGE202503465 |
Genre | researchArticle |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: BAS/1/1375–01; FCC/1/1972–88; BAS/1/1334–01 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT .Y3 31~ 53G AAMMB AANHP AASGY AAYXX ABDPE ABEFU ACBWZ ACRPL ACUHS ACYXJ ADNMO AEFGJ AFFNX AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF BZBRT CITATION EJD FEDTE HF~ HVGLF MVM PALCI RIWAO RJQFR SAMSI TUS VH1 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c1175-7fa6195ae1fc0689795511e6a30617d1c341c069841fda8f957a398fc964dc083 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Mon Aug 18 06:11:05 EDT 2025 Thu Aug 21 00:32:47 EDT 2025 Mon Jun 30 09:44:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1175-7fa6195ae1fc0689795511e6a30617d1c341c069841fda8f957a398fc964dc083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3229028056 |
PQPubID | 866336 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3229028056 crossref_primary_10_1002_ange_202503465 wiley_primary_10_1002_ange_202503465_ANGE202503465 |
PublicationCentury | 2000 |
PublicationDate | July 1, 2025 2025-07-00 20250701 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 1, 2025 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2024; 629 2021; 24 2017; 8 2018; 360 2023; 33 2023; 34 2023; 7 1993; 22 2023; 8 2023; 145 1930; 13 2020; 59 2020; 13 2020; 11 2023; 3 2024 2008; 1 2024; 36 2013; 5 2017; 358 2023; 62 2020; 5 2020; 4 2020; 3 2021; 31 2018; 2 2021; 33 2018; 4 2024; 7 2019; 21 2024; 9 2023; 379 2024; 63 2022; 609 2025; 26 2024; 1 2021; 595 2024; 3 2025; 64 2014; 120 2023; 52 2019; 4 2019; 3 2019; 6 2019; 5 2019; 2 2023; 16 2024; 15 2017; 139 2021; 14 2016; 6 1994; 367 2021; 12 2023 2022; 5 2022; 61 2022; 6 2022; 7 2017; 10 2022; 8 2022; 13 2022; 14 2013; 135 2021; 372 2021; 374 2019; 570 2021; 60 2003; 135‐136 2014; 345 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Iqbal M. S. (e_1_2_8_21_1) 2023 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Remmers M. (e_1_2_8_47_1) 2024; 63 Gao Z. (e_1_2_8_71_1) 2023; 62 Li S. (e_1_2_8_31_1) 2024 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Guan D.‐H. (e_1_2_8_48_1) 2023; 62 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 3 start-page: 406 year: 2024 end-page: 418 publication-title: Nat. Synth. – volume: 14 start-page: 672 year: 2021 end-page: 687 publication-title: Energy Environ. Sci. – volume: 5 start-page: 787 year: 2022 end-page: 794 publication-title: Nat. Sustainability – volume: 11 start-page: 5546 year: 2020 publication-title: Nat. Commun. – volume: 22 start-page: 851 year: 1993 end-page: 854 publication-title: Chem. Lett. – volume: 2 start-page: 290 year: 2019 end-page: 296 publication-title: Nat. Catal. – volume: 60 start-page: 5257 year: 2021 end-page: 5261 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 463 year: 2020 end-page: 469 publication-title: Nat. Catal. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 3 start-page: 1127 year: 2019 end-page: 1139 publication-title: Joule – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 13 start-page: 4291 year: 2020 end-page: 4300 publication-title: Energy Environ. Sci. – volume: 7 start-page: 36 year: 2022 end-page: 41 publication-title: ACS Energy Lett. – volume: 8 start-page: 1230 year: 2023 end-page: 1235 publication-title: ACS Energy Lett. – year: 2024 publication-title: Nat. Energy – volume: 345 start-page: 1326 year: 2014 end-page: 1330 publication-title: Science – volume: 59 start-page: 6244 year: 2020 end-page: 6248 publication-title: Angew. Chem. Int. Ed. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 379 start-page: 707 year: 2023 end-page: 712 publication-title: Science – volume: 609 start-page: 722 year: 2022 end-page: 727 publication-title: Nature – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1032 year: 2024 end-page: 1043 publication-title: Nat. Catal. – volume: 14 start-page: 321 year: 2022 end-page: 327 publication-title: Nat. Chem. – volume: 1 start-page: 45 year: 2024 end-page: 60 publication-title: Nat. Chem. Eng. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 16 start-page: 3063 year: 2023 end-page: 3073 publication-title: Energy Environ. Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 12 start-page: 4205 year: 2021 publication-title: Nat. Commun. – volume: 24 year: 2021 publication-title: iScience – volume: 2 start-page: 0112 year: 2018 publication-title: Nat. Rev. Chem. – volume: 4 start-page: 776 year: 2019 end-page: 785 publication-title: Nat. Energy – volume: 4 start-page: 1186 year: 2020 end-page: 1205 publication-title: Joule – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 372 start-page: 1187 year: 2021 end-page: 1191 publication-title: Science – volume: 5 start-page: 263 year: 2019 end-page: 283 publication-title: Chem – volume: 135‐136 start-page: 225 year: 2003 end-page: 226 publication-title: Synth. Met. – volume: 7 start-page: 179 year: 2024 end-page: 190 publication-title: Nat. Sustainability – volume: 6 start-page: 2083 year: 2022 end-page: 2101 publication-title: Joule – volume: 595 start-page: 361 year: 2021 end-page: 369 publication-title: Nature – volume: 10 start-page: 1621 year: 2017 end-page: 1630 publication-title: Energy Environ. Sci. – volume: 367 start-page: 183 year: 1994 end-page: 188 publication-title: J. Electroanal. Chem. – volume: 7 start-page: 720 year: 2023 end-page: 727 publication-title: Mater. Chem. Front. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – year: 2023 publication-title: Ind. Chem. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 231 year: 2024 end-page: 241 publication-title: Nat. Catal. – volume: 13 start-page: 1228 year: 1930 end-page: 1236 publication-title: Helv. Chim. Acta – volume: 358 start-page: 506 year: 2017 end-page: 510 publication-title: Science – volume: 5 start-page: 605 year: 2020 end-page: 613 publication-title: Nat. Energy – volume: 3 year: 2023 publication-title: Materials Today Catalysis – volume: 26 year: 2025 publication-title: ChemPhysChem – volume: 13 start-page: 202 year: 2022 publication-title: Nat. Commun. – volume: 1 start-page: 710 year: 2024 end-page: 723 publication-title: Nat. Chem. Eng. – volume: 21 start-page: 3839 year: 2019 end-page: 3845 publication-title: Green Chem. – volume: 5 start-page: 759 year: 2020 end-page: 767 publication-title: Nat. Energy – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 15 start-page: 2417 year: 2024 publication-title: Nat. Commun. – volume: 64 year: 2025 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1251 year: 2024 end-page: 1263 publication-title: Nat. Sustainability – volume: 139 start-page: 9771 year: 2017 end-page: 9774 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 13656 year: 2013 end-page: 13659 publication-title: J. Am. Chem. Soc. – volume: 570 start-page: 504 year: 2019 end-page: 508 publication-title: Nature – volume: 1 start-page: 636 year: 2008 end-page: 639 publication-title: Nat. Geosci. – volume: 52 start-page: 6938 year: 2023 end-page: 6956 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 359 year: 2014 end-page: 368 publication-title: Electrochim. Acta – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 34 year: 2023 publication-title: Chin. Chem. Lett. – volume: 629 start-page: 92 year: 2024 end-page: 97 publication-title: Nature – volume: 360 year: 2018 publication-title: Science – volume: 5 start-page: 403 year: 2013 end-page: 409 publication-title: Nat. Chem. – volume: 374 start-page: 1593 year: 2021 end-page: 1597 publication-title: Science – volume: 7 start-page: 1333 year: 2023 end-page: 1346 publication-title: Joule – volume: 145 start-page: 25716 year: 2023 end-page: 25725 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4673 year: 2024 end-page: 4681 publication-title: ACS Energy Lett. – ident: e_1_2_8_59_1 doi: 10.1038/s41570-018-0112 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-024-46803-w – ident: e_1_2_8_22_1 doi: 10.1038/s41467-020-19130-z – ident: e_1_2_8_32_1 doi: 10.1038/s41586-024-07276-5 – ident: e_1_2_8_62_1 doi: 10.1038/s41467-021-27866-5 – ident: e_1_2_8_64_1 doi: 10.1021/acsenergylett.2c02792 – ident: e_1_2_8_3_1 doi: 10.1126/science.aar6611 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202312645 – ident: e_1_2_8_50_1 doi: 10.1021/jacs.7b04393 – ident: e_1_2_8_75_1 doi: 10.1002/anie.202416027 – ident: e_1_2_8_41_1 doi: 10.1126/science.1257443 – ident: e_1_2_8_45_1 doi: 10.1038/s41557-021-00850-8 – ident: e_1_2_8_74_1 doi: 10.1016/j.cclet.2022.03.060 – ident: e_1_2_8_29_1 doi: 10.1246/cl.1993.851 – ident: e_1_2_8_10_1 doi: 10.1038/s41929-019-0252-4 – ident: e_1_2_8_1_1 doi: 10.1038/ngeo325 – ident: e_1_2_8_8_1 doi: 10.1038/s41560-019-0451-x – ident: e_1_2_8_24_1 doi: 10.1126/science.abg2371 – ident: e_1_2_8_65_1 doi: 10.1038/s41586-022-05108-y – ident: e_1_2_8_19_1 doi: 10.1039/D0EE02246B – year: 2023 ident: e_1_2_8_21_1 publication-title: Ind. Chem. Mater. – ident: e_1_2_8_36_1 doi: 10.1039/D3EE00026E – ident: e_1_2_8_55_1 doi: 10.1039/C9GC01338E – volume: 62 year: 2023 ident: e_1_2_8_71_1 publication-title: Angew. Chem. Int. Ed. – year: 2024 ident: e_1_2_8_31_1 publication-title: Nat. Energy – ident: e_1_2_8_61_1 doi: 10.1038/s41467-021-24513-x – ident: e_1_2_8_30_1 doi: 10.1016/0022-0728(93)03025-K – ident: e_1_2_8_5_1 doi: 10.1038/s41893-022-00908-6 – ident: e_1_2_8_18_1 doi: 10.1126/science.abl4300 – ident: e_1_2_8_53_1 doi: 10.1002/anie.202409006 – ident: e_1_2_8_9_1 doi: 10.1038/s44286-024-00137-y – ident: e_1_2_8_54_1 doi: 10.1002/aenm.201601375 – ident: e_1_2_8_46_1 doi: 10.1002/anie.202305843 – ident: e_1_2_8_39_1 doi: 10.1038/s41560-020-0654-1 – ident: e_1_2_8_43_1 doi: 10.1021/ja4071893 – ident: e_1_2_8_23_1 doi: 10.1038/s41586-019-1260-x – ident: e_1_2_8_37_1 doi: 10.1021/jacs.3c08965 – ident: e_1_2_8_52_1 doi: 10.1038/s44286-023-00009-x – ident: e_1_2_8_79_1 doi: 10.1002/advs.201802109 – ident: e_1_2_8_68_1 doi: 10.1016/j.joule.2022.07.009 – ident: e_1_2_8_40_1 doi: 10.1039/C7EE01126A – ident: e_1_2_8_6_1 doi: 10.1039/D0EE02263B – ident: e_1_2_8_42_1 doi: 10.1038/nchem.1621 – ident: e_1_2_8_77_1 doi: 10.1016/S0379-6779(02)00649-5 – ident: e_1_2_8_26_1 doi: 10.1038/s41929-024-01115-6 – ident: e_1_2_8_57_1 doi: 10.1126/sciadv.add5598 – ident: e_1_2_8_20_1 doi: 10.1016/j.mtcata.2023.100031 – ident: e_1_2_8_28_1 doi: 10.1002/hlca.19300130604 – ident: e_1_2_8_15_1 doi: 10.1038/s41893-023-01252-z – ident: e_1_2_8_35_1 doi: 10.1016/j.isci.2021.103105 – ident: e_1_2_8_56_1 doi: 10.1038/s44160-023-00458-5 – ident: e_1_2_8_76_1 doi: 10.1038/ncomms14589 – ident: e_1_2_8_78_1 doi: 10.1002/anie.201916516 – volume: 62 year: 2023 ident: e_1_2_8_48_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_49_1 doi: 10.1126/sciadv.1700336 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202007650 – ident: e_1_2_8_17_1 doi: 10.1126/science.adf4403 – ident: e_1_2_8_2_1 doi: 10.1016/j.joule.2020.04.004 – ident: e_1_2_8_34_1 doi: 10.1038/s41929-020-0455-8 – ident: e_1_2_8_14_1 doi: 10.1038/s41893-024-01406-7 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202203170 – ident: e_1_2_8_63_1 doi: 10.1016/j.electacta.2013.12.058 – ident: e_1_2_8_73_1 doi: 10.1002/adfm.202214495 – ident: e_1_2_8_27_1 doi: 10.1002/cphc.202401097 – ident: e_1_2_8_16_1 doi: 10.1021/acsenergylett.4c01896 – ident: e_1_2_8_66_1 doi: 10.1016/j.joule.2019.02.003 – volume: 63 year: 2024 ident: e_1_2_8_47_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_72_1 doi: 10.1039/D2QM01131J – ident: e_1_2_8_58_1 doi: 10.1002/adfm.202009151 – ident: e_1_2_8_69_1 doi: 10.1002/anie.202311413 – ident: e_1_2_8_44_1 doi: 10.1038/s41560-020-00680-x – ident: e_1_2_8_60_1 doi: 10.1126/science.aam6014 – ident: e_1_2_8_4_1 doi: 10.1016/j.chempr.2018.10.010 – ident: e_1_2_8_70_1 doi: 10.1002/anie.202015496 – ident: e_1_2_8_67_1 doi: 10.1021/acsenergylett.1c02104 – ident: e_1_2_8_51_1 doi: 10.1038/s41586-021-03482-7 – ident: e_1_2_8_11_1 doi: 10.1016/j.joule.2023.05.013 – ident: e_1_2_8_38_1 doi: 10.1038/s41929-024-01200-w – ident: e_1_2_8_7_1 doi: 10.1039/D2CS00797E |
SSID | ssj0006279 |
Score | 2.296225 |
Snippet | Integrating water electrolysis (WE) with lithium‐mediated nitrogen reduction (Li‐NRR) offers a sustainable route for green ammonia production by directly... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Ammonia Buffers (chemistry) Electrochemical processes Electrolysis Green chemistry Hydrogen Hydrogen evolution reactions Hydrophobicity Intermediates Ion‐conducting membranes Lithium Membrane technology Oxidation Polymethyl methacrylate Polymethylmethacrylate Polyoxometalates Polyoxometallates Protons Reactor technology Reactors Sustainable ammonia production Synthesis Water pollution |
Title | Harnessing Lithium‐Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202503465 https://www.proquest.com/docview/3229028056 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-yi178L06n5CB46lzbtEuOUzaHOBH_oLeStgkbslbaDZwnP4LgN_ST-F66btOLoLeGvoQ0L8n7vfTl9wg5Uloh7VXDipnyLOZybXEZCcsJXcZCwfFXEEZbXPnde3bx6D0u3OIv-CFmB264Msx-jQtchvnJnDQUY-_BvwMT7jIfb5ljwBaiops5f5TvFGR7DcYsDo5GydrYcE6-V_9uleZQcxGwGovTWSOy7GsRaPJUH4_CevT6g8bxPx-zTlancJS2ivmzQZZUskmWz8oscFvkoysz3A3BwtHLwag_GA8_3957JsGHiqkJ26EtnMwDSW8nCeDJfJBTPN6lDyCS0XaRaMdQn9DT1FwqoeGE9tQQepyoucArSJuK11BIX9KhAs8A2qDXWQoQld72x8i4nG-T-0777qxrTRM5WBEygVpNLcFP86SyddTwuWgKwGm28qWLACq2IzCl8EJwZutYci28pnQF15HwWRwBSNwhlSRN1C6hNvdjzcGFlq5koFFhO46teZN7ISAf7lfJcanI4Lng6wgKZmYnwEEOZoNcJbVSz8F03eaBi_T3DgdUWCWOUdgvrQStq_P2rLT3l0r7ZAWfixjgGqmMsrE6AKQzCg_NbP4CkHf3mQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFH8a4zAu_EcUNuYDiFO2xnFS-8Ch2zo61lYT28RumZPYWoWaoKYVdCc-AhKfhK_CR-CT7D2naRkXJKQdODqxrch-f37Pef49gJfGGqK9anqZMKEnAmk9qVPl8SQQIlGSfgVRtsUg6p6Kd2fh2Qr8qO_CVPwQiwM30gxnr0nB6UB6e8kaSsn3GOChDw9EVOdVHprZZ4zayjcHe7jFrzjf75zsdr15YQEvJWZKr2U1xg2hNr5Nm5FULYW4wTeRDsihZ36Kph1fKCl8m2lpVdjSgZI2VZHIUgQtOO8tuE1lxImuf-_9krEq4hW9X1MIT2JoU_NENvn29e-97geX4PZ3iOx83P49-FmvTpXa8nFrOkm20ss_iCP_q-W7D3fniJu1KxV5ACsmfwhru3Whu0fwvavHZPDRibPecHIxnI5-ff3WdzVMTMZcZhJrk74ONTue5QiZy2HJ6ASbfcAuY9apagk5dhe2U7h7MyyZsb4Z4RLlZtnhEnu7gUfYKL4UI4PBD87BjsYFonB2fDElUunyMZzeyJo8gdW8yM1TYL6MMiv9gOtACxQh5XPuW9mSYYLgTkYNeF1LTvypoiSJK_JpHtOmxotNbcB6LVjx3DSVcUAM_1wi8G0AdxLyl1ni9uBtZ9F69i-DNmGte9Lvxb2DweFzuEPPq5TndVidjKdmA4HdJHnhVInB-U0L3xV1WlLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFH8aQwIuG39FxwAfQJyyJY7j2gcO3drSsa2qGBO7ZU5iaxVqMjWtoDvtIyDxRfZV-Ap8Ep6dpmVckJB24OjEtqLn9_x-z3n-PYBX2mhLe-V7GdORx0JhPKFS6dEkZCyRwv4KstkWfd47Zu9PopMVuKrvwlT8EIsDN2sZbr-2Bn6eme0laajNvcf4Dl14yHidVrmvZ18waCvf7rVxhV9T2u183O1587oCXmqJKb2mURg2REoHJvW5kE2JsCHQXIXWn2dBijs7vpCCBSZTwsioqUIpTCo5y1LELDjvLbjNuC9tsYj2hyVhFacVu5_PmCcwsqlpIn26ff17r7vBJbb9HSE7F9ddhx-1cKrMls9b00mylV78wRv5P0nvPqzN8TZpVQbyAFZ0_hDu7tZl7h7B954a2-0eXTg5GE7OhtPRz8tvh66Cic6Iy0siLWutQ0WOZjkC5nJYEnt-TT5hlzHpVJWEHLcL2SncrRmSzMihHqGEcr3scIG93cABNoqvxUhj6INzkMG4QAxOjs6mllK6fAzHNyKTJ7CaF7l-CiQQPDMiCKkKFUMNkgGlgRFNESUI7QRvwJtaceLzipAkrqinaWwXNV4sagM2a72K5xtTGYeW358KhL0NoE5B_jJL3Oq_6yxaG_8y6CXcGbS78cFef_8Z3LOPq3znTVidjKf6OaK6SfLCGRKB05vWvV8GeVGf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Lithium%E2%80%90Mediated+Green+Ammonia+Synthesis+with+Water+Electrolysis+Boosted+by+Membrane+Electrolyzer+with+Polyoxometalate+Proton+Shuttles&rft.jtitle=Angewandte+Chemie&rft.au=Miao%2C+Jun&rft.au=Chen%2C+Cailing&rft.au=Cao%2C+Li&rft.au=Al+Nuaimi%2C+Reham&rft.date=2025-07-01&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=137&rft.issue=27&rft_id=info:doi/10.1002%2Fange.202503465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202503465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |