An Aqueous Electrolyte Gated Artificial Synapse with Synaptic Plasticity Selectively Mediated by Biomolecules
The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and...
Saved in:
Published in | Angewandte Chemie Vol. 135; no. 29 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose. The enzymatic reaction between glucose and glucose oxidase results in long‐term modulation of the channel conductance, mimicking selective binding of biomolecules to their receptors and consequent long‐term modulation of the synaptic weight. Moreover, the device shows enhanced synaptic behaviors in the blood serum at a higher glucose concentration, which suggests its potential application in vivo as artificial neurons. This work provides a step towards the fabrication of ANNs with synaptic plasticity selectively mediated by biomolecules for neuro‐prosthetics and human‐machine interfaces.
We report an artificial synapse where non‐relevant biomolecules (urea, lactic acid (LA) and fructose (Fru)) cannot modulate its plasticity, while only relevant biomolecules (glucose) can selectively activate the device and induce long‐term modulation and memory effect. The device works properly in blood serum and shows enhanced synaptic behaviors at high glucose concentrations, suggesting its potential application as artificial neurons in vivo. |
---|---|
AbstractList | The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose. The enzymatic reaction between glucose and glucose oxidase results in long‐term modulation of the channel conductance, mimicking selective binding of biomolecules to their receptors and consequent long‐term modulation of the synaptic weight. Moreover, the device shows enhanced synaptic behaviors in the blood serum at a higher glucose concentration, which suggests its potential application in vivo as artificial neurons. This work provides a step towards the fabrication of ANNs with synaptic plasticity selectively mediated by biomolecules for neuro‐prosthetics and human‐machine interfaces. The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose. The enzymatic reaction between glucose and glucose oxidase results in long‐term modulation of the channel conductance, mimicking selective binding of biomolecules to their receptors and consequent long‐term modulation of the synaptic weight. Moreover, the device shows enhanced synaptic behaviors in the blood serum at a higher glucose concentration, which suggests its potential application in vivo as artificial neurons. This work provides a step towards the fabrication of ANNs with synaptic plasticity selectively mediated by biomolecules for neuro‐prosthetics and human‐machine interfaces. We report an artificial synapse where non‐relevant biomolecules (urea, lactic acid (LA) and fructose (Fru)) cannot modulate its plasticity, while only relevant biomolecules (glucose) can selectively activate the device and induce long‐term modulation and memory effect. The device works properly in blood serum and shows enhanced synaptic behaviors at high glucose concentrations, suggesting its potential application as artificial neurons in vivo. |
Author | Guo, Meng Shao, Lin Xu, Xinzhao Ma, Rong Liu, Yunqi Zhang, Haoqin Zhao, Yan |
Author_xml | – sequence: 1 givenname: Xinzhao surname: Xu fullname: Xu, Xinzhao organization: Fudan University – sequence: 2 givenname: Haoqin surname: Zhang fullname: Zhang, Haoqin organization: Fudan University – sequence: 3 givenname: Lin surname: Shao fullname: Shao, Lin organization: Fudan University – sequence: 4 givenname: Rong surname: Ma fullname: Ma, Rong organization: Fudan University – sequence: 5 givenname: Meng surname: Guo fullname: Guo, Meng email: guo918meng@163.com organization: Navy Medical University – sequence: 6 givenname: Yunqi surname: Liu fullname: Liu, Yunqi email: liuyq@fudan.edu.cn organization: Fudan University – sequence: 7 givenname: Yan orcidid: 0000-0002-4216-2150 surname: Zhao fullname: Zhao, Yan email: zhaoy@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkEtPwzAQhC1UJNrClbMlzil-5OVjqEpBKg-pcLYcew2u3KTEKVX-PSlBcOS0Ws18s9qZoFFVV4DQJSUzSgi7VtUbzBhhnLCM8RM0pgmjEc-SbITGhMRxlLNYnKFJCBtCSMoyMUbbosLFxx7qfcALD7ptat-1gJeqBYOLpnXWaac8XneV2gXAB9e-D0vrNH72KvTTtR1ewxF3n-A7_ADGfQeUHb5x9bbupb2HcI5OrfIBLn7mFL3eLl7md9HqaXk_L1aRpjTjUcmE5UYwA2kuhE6SLI-NoISrNDFcp8CJFtzGyug81lBSkya27CVb2iSLUz5FV0Purqn750IrN_W-qfqTkuU84UwQkveu2eDSTR1CA1buGrdVTScpkcdK5bFS-VtpD4gBODgP3T9uWTwuF3_sF9J7fgI |
Cites_doi | 10.1002/adfm.201902105 10.1038/s41587-019-0045-y 10.1088/2058-8585/ab4dce 10.1038/s41586-019-1677-2 10.1016/j.xcrp.2022.100962 10.1002/adfm.201002117 10.1021/acsami.1c07073 10.1126/sciadv.aat7387 10.1038/s41563-020-0703-y 10.1038/nn.3840 10.1002/adma.201606088 10.1002/adfm.201800553 10.1002/adma.201905399 10.1126/science.adc9931 10.1021/nn202983n 10.1038/s41467-021-21319-9 10.1039/D1TC01211H 10.1002/adma.201800051 10.1002/adma.202110194 10.1038/s41928-020-00501-9 10.1002/adma.202107754 10.1021/acsami.0c15553 10.1038/s41928-022-00836-5 10.1038/s41928-020-0435-7 10.1038/nature16521 10.1002/adma.202100119 10.1042/bse0590001 10.1039/c3tb20451k 10.1038/s41928-022-00859-y 10.1063/1.5122249 10.1038/s41563-022-01402-2 10.1126/sciadv.aax4961 10.1038/s41467-020-18375-y 10.1063/1.4938553 10.1039/D0MH01520B 10.1002/adma.201902434 10.1002/adfm.202201593 10.1038/s41586-021-03748-0 10.1073/pnas.1010930108 10.1038/nnano.2016.54 10.1002/adfm.202200497 10.1126/sciadv.abb2958 10.1038/s43586-021-00065-8 10.1038/s41928-022-00803-0 10.1038/s41587-021-01036-w 10.1038/ncomms15448 10.1002/advs.201801339 10.1038/nrn920 10.1126/science.6322304 10.1126/science.adc9150 10.1038/s41586-020-03154-y 10.1038/nmat4856 10.1126/scitranslmed.aal2298 10.1002/advs.202001544 10.1002/adfm.201909645 10.1016/j.bios.2018.11.023 10.1038/s41593-022-01186-3 10.1002/adfm.202105345 10.1002/adma.202007350 10.1136/jnnp.2003.024885 10.1038/s41467-023-36480-6 10.1038/natrevmats.2017.86 10.1039/C9TC03247A |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202302723 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202302723 ANGE202302723 |
Genre | article |
GrantInformation_xml | – fundername: Postdoctoral Research Foundation of China funderid: 2022M720763 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2018YFA0703200 – fundername: National Natural Science Foundation of China funderid: 61890940 – fundername: Natural Science Foundation of Shanghai funderid: 22ZR1407800 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c1173-b29f3d92de6899c55784d9103a65d3c6e30c93f4adc84ceb1d65fb5d3fbf57463 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:41:34 EDT 2025 Tue Jul 01 00:48:12 EDT 2025 Wed Jan 22 16:21:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1173-b29f3d92de6899c55784d9103a65d3c6e30c93f4adc84ceb1d65fb5d3fbf57463 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4216-2150 |
PQID | 2835329008 |
PQPubID | 866336 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2835329008 crossref_primary_10_1002_ange_202302723 wiley_primary_10_1002_ange_202302723_ANGE202302723 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 17, 2023 |
PublicationDateYYYYMMDD | 2023-07-17 |
PublicationDate_xml | – month: 07 year: 2023 text: July 17, 2023 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 1 2019; 126 2022; 25 2020; 12 2020; 11 2022; 21 2015; 107 2017; 9 2020; 19 2020; 7 2020; 6 2004; 75 2018; 3 2020; 3 2021; 31 2018; 4 2021; 33 2021; 597 2022; 40 2022; 34 2023; 379 2021; 591 2019; 29 2011; 21 2018; 30 2022; 32 2014; 17 2021; 9 2021; 8 2019; 7 2015; 59 2018; 28 2019; 4 2023; 14 2019; 6 2019; 5 1984; 224 2019; 37 2016; 529 2002; 3 2017; 29 2020; 32 2021; 1 2011; 5 2016; 11 2021; 13 2011; 108 2021; 12 2022; 3 2020; 30 2022; 5 2017; 16 2019; 575 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_71_1 e_1_2_7_75_2 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_79_2 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_63_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_67_1 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_76_2 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_78_2 e_1_2_7_38_2 |
References_xml | – volume: 126 start-page: 751 year: 2019 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 409 year: 2016 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 12754 year: 2019 publication-title: J. Mater. Chem. C – volume: 597 start-page: 51 year: 2021 publication-title: Nature – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 1403 year: 2022 publication-title: Nat. Mater. – volume: 12 start-page: 49915 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 447 year: 2021 publication-title: Mater. Horiz. – volume: 12 start-page: 1068 year: 2021 publication-title: Nat. Commun. – volume: 5 start-page: 660 year: 2022 publication-title: Nat. Electron. – volume: 224 start-page: 22 year: 1984 publication-title: Science – volume: 40 start-page: 262 year: 2022 publication-title: Nat. Biotechnol. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 75 start-page: 972 year: 2004 publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 59 start-page: 1 year: 2015 publication-title: Essays Biochem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 3820 year: 2013 publication-title: J. Mater. Chem. B – volume: 3 start-page: 728 year: 2002 publication-title: Nat. Rev. Neurosci. – volume: 5 start-page: 586 year: 2022 publication-title: Nat. Electron. – volume: 21 start-page: 2264 year: 2011 publication-title: Adv. Funct. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 379 start-page: 156 year: 2023 publication-title: Science – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 15448 year: 2017 publication-title: Nat. Commun. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 7 year: 2020 publication-title: Appl. Phys. Rev. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 1 start-page: 66 year: 2021 publication-title: Nat. Rev. Methods Primers – volume: 575 start-page: 607 year: 2019 publication-title: Nature – volume: 5 start-page: 7669 year: 2011 publication-title: ACS Nano – volume: 3 start-page: 371 year: 2020 publication-title: Nat. Electron. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 37 start-page: 389 year: 2019 publication-title: Nat. Biotechnol. – volume: 11 start-page: 4602 year: 2020 publication-title: Nat. Commun. – volume: 14 start-page: 821 year: 2023 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 3 start-page: 17086 year: 2018 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 8372 year: 2021 publication-title: J. Mater. Chem. C – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 19 start-page: 969 year: 2020 publication-title: Nat. Mater. – volume: 16 start-page: 414 year: 2017 publication-title: Nat. Mater. – volume: 17 start-page: 1432 year: 2014 publication-title: Nat. Neurosci. – volume: 3 start-page: 664 year: 2020 publication-title: Nat. Electron. – volume: 591 start-page: 426 year: 2021 publication-title: Nature – volume: 9 year: 2017 publication-title: Sci. Transl. Med. – volume: 379 start-page: 161 year: 2023 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 108 start-page: 834 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 5 start-page: 774 year: 2022 publication-title: Nat. Electron. – volume: 4 year: 2019 publication-title: Flexible Printed Electron. – volume: 13 start-page: 34597 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1569 year: 2022 publication-title: Nat. Neurosci. – ident: e_1_2_7_5_2 doi: 10.1002/adfm.201902105 – ident: e_1_2_7_60_2 doi: 10.1038/s41587-019-0045-y – ident: e_1_2_7_20_1 – ident: e_1_2_7_49_2 doi: 10.1088/2058-8585/ab4dce – ident: e_1_2_7_11_2 doi: 10.1038/s41586-019-1677-2 – ident: e_1_2_7_61_2 doi: 10.1016/j.xcrp.2022.100962 – ident: e_1_2_7_68_2 doi: 10.1002/adfm.201002117 – ident: e_1_2_7_27_2 doi: 10.1021/acsami.1c07073 – ident: e_1_2_7_33_2 doi: 10.1126/sciadv.aat7387 – ident: e_1_2_7_55_1 doi: 10.1038/s41563-020-0703-y – ident: e_1_2_7_43_2 doi: 10.1038/nn.3840 – ident: e_1_2_7_56_1 – ident: e_1_2_7_30_2 doi: 10.1002/adma.201606088 – ident: e_1_2_7_25_1 – ident: e_1_2_7_8_2 doi: 10.1002/adfm.201800553 – ident: e_1_2_7_17_2 doi: 10.1002/adma.201905399 – ident: e_1_2_7_23_2 doi: 10.1126/science.adc9931 – ident: e_1_2_7_79_2 doi: 10.1021/nn202983n – ident: e_1_2_7_74_1 – ident: e_1_2_7_14_2 doi: 10.1038/s41467-021-21319-9 – ident: e_1_2_7_3_2 doi: 10.1039/D1TC01211H – ident: e_1_2_7_64_2 doi: 10.1002/adma.201800051 – ident: e_1_2_7_53_2 doi: 10.1002/adma.202110194 – ident: e_1_2_7_2_2 doi: 10.1038/s41928-020-00501-9 – ident: e_1_2_7_52_1 – ident: e_1_2_7_21_2 doi: 10.1002/adma.202107754 – ident: e_1_2_7_50_2 doi: 10.1021/acsami.0c15553 – ident: e_1_2_7_26_2 doi: 10.1038/s41928-022-00836-5 – ident: e_1_2_7_10_2 doi: 10.1038/s41928-020-0435-7 – ident: e_1_2_7_32_1 – ident: e_1_2_7_35_1 – ident: e_1_2_7_65_2 doi: 10.1038/nature16521 – ident: e_1_2_7_37_2 doi: 10.1002/adma.202100119 – ident: e_1_2_7_58_2 doi: 10.1042/bse0590001 – ident: e_1_2_7_69_2 doi: 10.1039/c3tb20451k – ident: e_1_2_7_38_2 doi: 10.1038/s41928-022-00859-y – ident: e_1_2_7_45_2 doi: 10.1063/1.5122249 – ident: e_1_2_7_18_2 doi: 10.1038/s41563-022-01402-2 – ident: e_1_2_7_31_2 doi: 10.1126/sciadv.aax4961 – ident: e_1_2_7_16_2 doi: 10.1038/s41467-020-18375-y – ident: e_1_2_7_46_2 doi: 10.1063/1.4938553 – ident: e_1_2_7_6_2 doi: 10.1039/D0MH01520B – ident: e_1_2_7_13_2 doi: 10.1002/adma.201902434 – ident: e_1_2_7_28_2 doi: 10.1002/adfm.202201593 – ident: e_1_2_7_19_2 doi: 10.1038/s41586-021-03748-0 – ident: e_1_2_7_75_2 doi: 10.1073/pnas.1010930108 – ident: e_1_2_7_29_1 – ident: e_1_2_7_57_2 doi: 10.1038/nnano.2016.54 – ident: e_1_2_7_54_2 doi: 10.1002/adfm.202200497 – ident: e_1_2_7_59_1 – ident: e_1_2_7_15_2 doi: 10.1126/sciadv.abb2958 – ident: e_1_2_7_40_1 – ident: e_1_2_7_51_2 doi: 10.1038/s43586-021-00065-8 – ident: e_1_2_7_36_2 doi: 10.1038/s41928-022-00803-0 – ident: e_1_2_7_82_2 doi: 10.1038/s41587-021-01036-w – ident: e_1_2_7_4_2 doi: 10.1038/ncomms15448 – ident: e_1_2_7_67_1 – ident: e_1_2_7_71_1 – ident: e_1_2_7_48_2 doi: 10.1002/advs.201801339 – ident: e_1_2_7_78_2 doi: 10.1038/nrn920 – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_72_2 doi: 10.1126/science.6322304 – ident: e_1_2_7_39_2 doi: 10.1126/science.adc9150 – ident: e_1_2_7_63_1 – ident: e_1_2_7_44_1 – ident: e_1_2_7_42_2 doi: 10.1038/s41586-020-03154-y – ident: e_1_2_7_9_2 doi: 10.1038/nmat4856 – ident: e_1_2_7_81_2 doi: 10.1126/scitranslmed.aal2298 – ident: e_1_2_7_47_2 doi: 10.1002/advs.202001544 – ident: e_1_2_7_22_2 doi: 10.1002/adfm.201909645 – ident: e_1_2_7_62_2 doi: 10.1016/j.bios.2018.11.023 – ident: e_1_2_7_73_2 doi: 10.1038/s41593-022-01186-3 – ident: e_1_2_7_77_1 – ident: e_1_2_7_80_1 – ident: e_1_2_7_34_2 doi: 10.1002/adfm.202105345 – ident: e_1_2_7_41_2 doi: 10.1002/adma.202007350 – ident: e_1_2_7_76_2 doi: 10.1136/jnnp.2003.024885 – ident: e_1_2_7_24_2 doi: 10.1038/s41467-023-36480-6 – ident: e_1_2_7_12_1 – ident: e_1_2_7_70_2 doi: 10.1038/natrevmats.2017.86 – ident: e_1_2_7_66_2 doi: 10.1039/C9TC03247A |
SSID | ssj0006279 |
Score | 2.2263372 |
Snippet | The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aqueous Electrolyte Aqueous electrolytes Artificial neural networks Artificial Synapse Biomedical materials Biomolecules Chemistry Electrochemistry Electronic equipment Fabrication Glucose oxidase Interfaces Modulation Neural networks Neuro-Prosthetics Plasticity Prostheses Prosthetics Selective binding Selectivity Synapses Synaptic plasticity Synaptic strength |
Title | An Aqueous Electrolyte Gated Artificial Synapse with Synaptic Plasticity Selectively Mediated by Biomolecules |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202302723 https://www.proquest.com/docview/2835329008 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqexA8pSa7yTY51tJahBaxFryFfQVETYtJD_HXO7vb9OFF0FuWsMNmZ2fnm2HyDULXcZCBl1dtr61UDAGKz71EKuXFKuFRwKJMWlKf4YgNJuHDS_Sy9he_44dYJtyMZdj72hg4F8XtijTU1N63TPNvCKyIofs0BVsGFT2t-KMYcWR7fhh6MQQaNWujT243p296pRXUXAes1uP09xGv1-oKTd5a81K05NcPGsf_fMwB2lvAUdxx5-cQben8CO106y5wx-ijk-MOLHM6L3DPtcx5r0qNTdZN2XmOggKPq5zPCo1NYtcNQCR-BHBu6rbLCo9txx24XN8rPLQNQkCAqPDd6_TD9ejVxQma9HvP3YG3aNHgySBoU0-QJKMqIUozCNxkBPYfKkAglLNIUck09WVCs5ArGYcS_IIC9Qt4lYksaoeMnqLtfJrrM4QFS0igdcJJpkOQEjMaaO5HgCgE9YVsoJtaRenMMXGkjnOZpGb70uX2NVCz1mC6sMgiNbxylCQAeRqIWFX8IiXtjO57y9H5XyZdoF3z7FkezibaLj_n-hIwTCmu7Dn9BumH6go |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RONBLebRVU6DsoRInB3vX3tjHEBICTSLEQ-rN8j4soRInqp2D--uZ3Y0T0kulclxbO1rva74Zjb8P4Hsc5OjlVcfrKBVjgOJnXiKV8mKVZFHAo1xaUp_xhA8fw5ufUVNNaP6FcfwQq4SbORn2vjYH3CSkz9esoab4vm3UvzGyouwd7BhZb0Off3m3ZpDi1NHt-WHoxRhqNLyNPj3f7L_pl9Zg8zVktT5nsAeiGa0rNfnVXlSiLf_8ReT4ps_Zhw9LREq6bgsdwJYuDmG31wjBfYRptyBdHOdsUZK-U815ritNTOJN2X6OhYLc10U2LzUxuV3XQJPkFvG5Kd2uanJvRXfwfn2uydhqhKABUZOLp9nUyfTq8hM8DvoPvaG3VGnwZBB0mCdokjOVUKU5xm4ywisgVAhCWMYjxSTXzJcJy8NMyTiU6BoU7gCBr3KRR52Qs8-wXcwK_QWI4AkNtE4ymusQrcScBTrzIwQVgvlCtuCsWaN07sg4Uke7TFMzfelq-lpw3CxhujyUZWqo5RhNEPW0gNq1-IeVtDu56q9aX_-n0ynsDh_Go3R0PflxBO_Nc8_Sch7DdvV7oU8Q0lTim920L5S47iY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VGp7gUKLuuVRHypxypLYjjc-LvuAlrJCpUjcovgRqSpkV93sIfx6xvZmF3pBao9O5JHjsT3fWJPvA_iSJSVGedOLesZkmKDERSS1MVFmZJEmIi21J_W5mIiza_7tJr159Bd_4IdYXbi5neHPa7fBZ6Y8XpOGutr7rhP_xsSKspfwiotYOvGG4Y81gZSggW0v5jzKMNNoaRtjevy0_9OwtMaajxGrDznjLSjawYZKk9_dRa26-v4vHsf_-Zp3sLnEo6QfFtA2vLDVDrwZtDJw7-GuX5E-DnO6mJNR0My5bWpL3LWb8f0CBwW5aqpiNrfE3eyGBpokl4jOXeF23ZArL7mDp-ttQy68QggaUA05-TW9CyK9dv4Brsejn4OzaKnREOkk6bFIUVkyI6mxAjM3neIBwA1CEFaI1DAtLIu1ZCUvjM64xsBg0P8KX5WqTHtcsF3YqKaV_QhECUkTa2VBS8vRSiZYYos4RUihWKx0B45aF-WzQMWRB9Jlmrvpy1fT14H91oP5ckvOc0csx6hEzNMB6l3xjJW8PzkdrVqf_qXTZ3h9ORzn379OzvfgrXsceU7Ofdio_yzsAeKZWh36JfsA2Dfs1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Aqueous+Electrolyte+Gated+Artificial+Synapse+with+Synaptic+Plasticity+Selectively+Mediated+by+Biomolecules&rft.jtitle=Angewandte+Chemie&rft.au=Xu%2C+Xinzhao&rft.au=Zhang%2C+Haoqin&rft.au=Shao%2C+Lin&rft.au=Ma%2C+Rong&rft.date=2023-07-17&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=135&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202302723&rft.externalDBID=10.1002%252Fange.202302723&rft.externalDocID=ANGE202302723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |