An Aqueous Electrolyte Gated Artificial Synapse with Synaptic Plasticity Selectively Mediated by Biomolecules

The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 135; no. 29
Main Authors Xu, Xinzhao, Zhang, Haoqin, Shao, Lin, Ma, Rong, Guo, Meng, Liu, Yunqi, Zhao, Yan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 17.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose. The enzymatic reaction between glucose and glucose oxidase results in long‐term modulation of the channel conductance, mimicking selective binding of biomolecules to their receptors and consequent long‐term modulation of the synaptic weight. Moreover, the device shows enhanced synaptic behaviors in the blood serum at a higher glucose concentration, which suggests its potential application in vivo as artificial neurons. This work provides a step towards the fabrication of ANNs with synaptic plasticity selectively mediated by biomolecules for neuro‐prosthetics and human‐machine interfaces. We report an artificial synapse where non‐relevant biomolecules (urea, lactic acid (LA) and fructose (Fru)) cannot modulate its plasticity, while only relevant biomolecules (glucose) can selectively activate the device and induce long‐term modulation and memory effect. The device works properly in blood serum and shows enhanced synaptic behaviors at high glucose concentrations, suggesting its potential application as artificial neurons in vivo.
AbstractList The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose. The enzymatic reaction between glucose and glucose oxidase results in long‐term modulation of the channel conductance, mimicking selective binding of biomolecules to their receptors and consequent long‐term modulation of the synaptic weight. Moreover, the device shows enhanced synaptic behaviors in the blood serum at a higher glucose concentration, which suggests its potential application in vivo as artificial neurons. This work provides a step towards the fabrication of ANNs with synaptic plasticity selectively mediated by biomolecules for neuro‐prosthetics and human‐machine interfaces.
The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in biomedical interfaces. Despite the achievements, artificial synapses that can be selectively responsive to non‐electroactive biomolecules and directly operate in biological environments are still lacking. Herein, we report an artificial synapse based on organic electrochemical transistors and investigate the selective modulation of its synaptic plasticity by glucose. The enzymatic reaction between glucose and glucose oxidase results in long‐term modulation of the channel conductance, mimicking selective binding of biomolecules to their receptors and consequent long‐term modulation of the synaptic weight. Moreover, the device shows enhanced synaptic behaviors in the blood serum at a higher glucose concentration, which suggests its potential application in vivo as artificial neurons. This work provides a step towards the fabrication of ANNs with synaptic plasticity selectively mediated by biomolecules for neuro‐prosthetics and human‐machine interfaces. We report an artificial synapse where non‐relevant biomolecules (urea, lactic acid (LA) and fructose (Fru)) cannot modulate its plasticity, while only relevant biomolecules (glucose) can selectively activate the device and induce long‐term modulation and memory effect. The device works properly in blood serum and shows enhanced synaptic behaviors at high glucose concentrations, suggesting its potential application as artificial neurons in vivo.
Author Guo, Meng
Shao, Lin
Xu, Xinzhao
Ma, Rong
Liu, Yunqi
Zhang, Haoqin
Zhao, Yan
Author_xml – sequence: 1
  givenname: Xinzhao
  surname: Xu
  fullname: Xu, Xinzhao
  organization: Fudan University
– sequence: 2
  givenname: Haoqin
  surname: Zhang
  fullname: Zhang, Haoqin
  organization: Fudan University
– sequence: 3
  givenname: Lin
  surname: Shao
  fullname: Shao, Lin
  organization: Fudan University
– sequence: 4
  givenname: Rong
  surname: Ma
  fullname: Ma, Rong
  organization: Fudan University
– sequence: 5
  givenname: Meng
  surname: Guo
  fullname: Guo, Meng
  email: guo918meng@163.com
  organization: Navy Medical University
– sequence: 6
  givenname: Yunqi
  surname: Liu
  fullname: Liu, Yunqi
  email: liuyq@fudan.edu.cn
  organization: Fudan University
– sequence: 7
  givenname: Yan
  orcidid: 0000-0002-4216-2150
  surname: Zhao
  fullname: Zhao, Yan
  email: zhaoy@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkEtPwzAQhC1UJNrClbMlzil-5OVjqEpBKg-pcLYcew2u3KTEKVX-PSlBcOS0Ws18s9qZoFFVV4DQJSUzSgi7VtUbzBhhnLCM8RM0pgmjEc-SbITGhMRxlLNYnKFJCBtCSMoyMUbbosLFxx7qfcALD7ptat-1gJeqBYOLpnXWaac8XneV2gXAB9e-D0vrNH72KvTTtR1ewxF3n-A7_ADGfQeUHb5x9bbupb2HcI5OrfIBLn7mFL3eLl7md9HqaXk_L1aRpjTjUcmE5UYwA2kuhE6SLI-NoISrNDFcp8CJFtzGyug81lBSkya27CVb2iSLUz5FV0Purqn750IrN_W-qfqTkuU84UwQkveu2eDSTR1CA1buGrdVTScpkcdK5bFS-VtpD4gBODgP3T9uWTwuF3_sF9J7fgI
Cites_doi 10.1002/adfm.201902105
10.1038/s41587-019-0045-y
10.1088/2058-8585/ab4dce
10.1038/s41586-019-1677-2
10.1016/j.xcrp.2022.100962
10.1002/adfm.201002117
10.1021/acsami.1c07073
10.1126/sciadv.aat7387
10.1038/s41563-020-0703-y
10.1038/nn.3840
10.1002/adma.201606088
10.1002/adfm.201800553
10.1002/adma.201905399
10.1126/science.adc9931
10.1021/nn202983n
10.1038/s41467-021-21319-9
10.1039/D1TC01211H
10.1002/adma.201800051
10.1002/adma.202110194
10.1038/s41928-020-00501-9
10.1002/adma.202107754
10.1021/acsami.0c15553
10.1038/s41928-022-00836-5
10.1038/s41928-020-0435-7
10.1038/nature16521
10.1002/adma.202100119
10.1042/bse0590001
10.1039/c3tb20451k
10.1038/s41928-022-00859-y
10.1063/1.5122249
10.1038/s41563-022-01402-2
10.1126/sciadv.aax4961
10.1038/s41467-020-18375-y
10.1063/1.4938553
10.1039/D0MH01520B
10.1002/adma.201902434
10.1002/adfm.202201593
10.1038/s41586-021-03748-0
10.1073/pnas.1010930108
10.1038/nnano.2016.54
10.1002/adfm.202200497
10.1126/sciadv.abb2958
10.1038/s43586-021-00065-8
10.1038/s41928-022-00803-0
10.1038/s41587-021-01036-w
10.1038/ncomms15448
10.1002/advs.201801339
10.1038/nrn920
10.1126/science.6322304
10.1126/science.adc9150
10.1038/s41586-020-03154-y
10.1038/nmat4856
10.1126/scitranslmed.aal2298
10.1002/advs.202001544
10.1002/adfm.201909645
10.1016/j.bios.2018.11.023
10.1038/s41593-022-01186-3
10.1002/adfm.202105345
10.1002/adma.202007350
10.1136/jnnp.2003.024885
10.1038/s41467-023-36480-6
10.1038/natrevmats.2017.86
10.1039/C9TC03247A
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202302723
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202302723
ANGE202302723
Genre article
GrantInformation_xml – fundername: Postdoctoral Research Foundation of China
  funderid: 2022M720763
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2018YFA0703200
– fundername: National Natural Science Foundation of China
  funderid: 61890940
– fundername: Natural Science Foundation of Shanghai
  funderid: 22ZR1407800
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c1173-b29f3d92de6899c55784d9103a65d3c6e30c93f4adc84ceb1d65fb5d3fbf57463
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 10:41:34 EDT 2025
Tue Jul 01 00:48:12 EDT 2025
Wed Jan 22 16:21:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1173-b29f3d92de6899c55784d9103a65d3c6e30c93f4adc84ceb1d65fb5d3fbf57463
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4216-2150
PQID 2835329008
PQPubID 866336
PageCount 8
ParticipantIDs proquest_journals_2835329008
crossref_primary_10_1002_ange_202302723
wiley_primary_10_1002_ange_202302723_ANGE202302723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 17, 2023
PublicationDateYYYYMMDD 2023-07-17
PublicationDate_xml – month: 07
  year: 2023
  text: July 17, 2023
  day: 17
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2013; 1
2019; 126
2022; 25
2020; 12
2020; 11
2022; 21
2015; 107
2017; 9
2020; 19
2020; 7
2020; 6
2004; 75
2018; 3
2020; 3
2021; 31
2018; 4
2021; 33
2021; 597
2022; 40
2022; 34
2023; 379
2021; 591
2019; 29
2011; 21
2018; 30
2022; 32
2014; 17
2021; 9
2021; 8
2019; 7
2015; 59
2018; 28
2019; 4
2023; 14
2019; 6
2019; 5
1984; 224
2019; 37
2016; 529
2002; 3
2017; 29
2020; 32
2021; 1
2011; 5
2016; 11
2021; 13
2011; 108
2021; 12
2022; 3
2020; 30
2022; 5
2017; 16
2019; 575
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_71_1
e_1_2_7_75_2
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_79_2
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_80_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_63_1
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_67_1
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_78_2
e_1_2_7_38_2
References_xml – volume: 126
  start-page: 751
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 409
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 12754
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 597
  start-page: 51
  year: 2021
  publication-title: Nature
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 1403
  year: 2022
  publication-title: Nat. Mater.
– volume: 12
  start-page: 49915
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 447
  year: 2021
  publication-title: Mater. Horiz.
– volume: 12
  start-page: 1068
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  start-page: 660
  year: 2022
  publication-title: Nat. Electron.
– volume: 224
  start-page: 22
  year: 1984
  publication-title: Science
– volume: 40
  start-page: 262
  year: 2022
  publication-title: Nat. Biotechnol.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 75
  start-page: 972
  year: 2004
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 59
  start-page: 1
  year: 2015
  publication-title: Essays Biochem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 3820
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 728
  year: 2002
  publication-title: Nat. Rev. Neurosci.
– volume: 5
  start-page: 586
  year: 2022
  publication-title: Nat. Electron.
– volume: 21
  start-page: 2264
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 379
  start-page: 156
  year: 2023
  publication-title: Science
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phys. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 15448
  year: 2017
  publication-title: Nat. Commun.
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2020
  publication-title: Appl. Phys. Rev.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 1
  start-page: 66
  year: 2021
  publication-title: Nat. Rev. Methods Primers
– volume: 575
  start-page: 607
  year: 2019
  publication-title: Nature
– volume: 5
  start-page: 7669
  year: 2011
  publication-title: ACS Nano
– volume: 3
  start-page: 371
  year: 2020
  publication-title: Nat. Electron.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 37
  start-page: 389
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 4602
  year: 2020
  publication-title: Nat. Commun.
– volume: 14
  start-page: 821
  year: 2023
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 3
  start-page: 17086
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 8372
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 19
  start-page: 969
  year: 2020
  publication-title: Nat. Mater.
– volume: 16
  start-page: 414
  year: 2017
  publication-title: Nat. Mater.
– volume: 17
  start-page: 1432
  year: 2014
  publication-title: Nat. Neurosci.
– volume: 3
  start-page: 664
  year: 2020
  publication-title: Nat. Electron.
– volume: 591
  start-page: 426
  year: 2021
  publication-title: Nature
– volume: 9
  year: 2017
  publication-title: Sci. Transl. Med.
– volume: 379
  start-page: 161
  year: 2023
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 108
  start-page: 834
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 5
  start-page: 774
  year: 2022
  publication-title: Nat. Electron.
– volume: 4
  year: 2019
  publication-title: Flexible Printed Electron.
– volume: 13
  start-page: 34597
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1569
  year: 2022
  publication-title: Nat. Neurosci.
– ident: e_1_2_7_5_2
  doi: 10.1002/adfm.201902105
– ident: e_1_2_7_60_2
  doi: 10.1038/s41587-019-0045-y
– ident: e_1_2_7_20_1
– ident: e_1_2_7_49_2
  doi: 10.1088/2058-8585/ab4dce
– ident: e_1_2_7_11_2
  doi: 10.1038/s41586-019-1677-2
– ident: e_1_2_7_61_2
  doi: 10.1016/j.xcrp.2022.100962
– ident: e_1_2_7_68_2
  doi: 10.1002/adfm.201002117
– ident: e_1_2_7_27_2
  doi: 10.1021/acsami.1c07073
– ident: e_1_2_7_33_2
  doi: 10.1126/sciadv.aat7387
– ident: e_1_2_7_55_1
  doi: 10.1038/s41563-020-0703-y
– ident: e_1_2_7_43_2
  doi: 10.1038/nn.3840
– ident: e_1_2_7_56_1
– ident: e_1_2_7_30_2
  doi: 10.1002/adma.201606088
– ident: e_1_2_7_25_1
– ident: e_1_2_7_8_2
  doi: 10.1002/adfm.201800553
– ident: e_1_2_7_17_2
  doi: 10.1002/adma.201905399
– ident: e_1_2_7_23_2
  doi: 10.1126/science.adc9931
– ident: e_1_2_7_79_2
  doi: 10.1021/nn202983n
– ident: e_1_2_7_74_1
– ident: e_1_2_7_14_2
  doi: 10.1038/s41467-021-21319-9
– ident: e_1_2_7_3_2
  doi: 10.1039/D1TC01211H
– ident: e_1_2_7_64_2
  doi: 10.1002/adma.201800051
– ident: e_1_2_7_53_2
  doi: 10.1002/adma.202110194
– ident: e_1_2_7_2_2
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_7_52_1
– ident: e_1_2_7_21_2
  doi: 10.1002/adma.202107754
– ident: e_1_2_7_50_2
  doi: 10.1021/acsami.0c15553
– ident: e_1_2_7_26_2
  doi: 10.1038/s41928-022-00836-5
– ident: e_1_2_7_10_2
  doi: 10.1038/s41928-020-0435-7
– ident: e_1_2_7_32_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_65_2
  doi: 10.1038/nature16521
– ident: e_1_2_7_37_2
  doi: 10.1002/adma.202100119
– ident: e_1_2_7_58_2
  doi: 10.1042/bse0590001
– ident: e_1_2_7_69_2
  doi: 10.1039/c3tb20451k
– ident: e_1_2_7_38_2
  doi: 10.1038/s41928-022-00859-y
– ident: e_1_2_7_45_2
  doi: 10.1063/1.5122249
– ident: e_1_2_7_18_2
  doi: 10.1038/s41563-022-01402-2
– ident: e_1_2_7_31_2
  doi: 10.1126/sciadv.aax4961
– ident: e_1_2_7_16_2
  doi: 10.1038/s41467-020-18375-y
– ident: e_1_2_7_46_2
  doi: 10.1063/1.4938553
– ident: e_1_2_7_6_2
  doi: 10.1039/D0MH01520B
– ident: e_1_2_7_13_2
  doi: 10.1002/adma.201902434
– ident: e_1_2_7_28_2
  doi: 10.1002/adfm.202201593
– ident: e_1_2_7_19_2
  doi: 10.1038/s41586-021-03748-0
– ident: e_1_2_7_75_2
  doi: 10.1073/pnas.1010930108
– ident: e_1_2_7_29_1
– ident: e_1_2_7_57_2
  doi: 10.1038/nnano.2016.54
– ident: e_1_2_7_54_2
  doi: 10.1002/adfm.202200497
– ident: e_1_2_7_59_1
– ident: e_1_2_7_15_2
  doi: 10.1126/sciadv.abb2958
– ident: e_1_2_7_40_1
– ident: e_1_2_7_51_2
  doi: 10.1038/s43586-021-00065-8
– ident: e_1_2_7_36_2
  doi: 10.1038/s41928-022-00803-0
– ident: e_1_2_7_82_2
  doi: 10.1038/s41587-021-01036-w
– ident: e_1_2_7_4_2
  doi: 10.1038/ncomms15448
– ident: e_1_2_7_67_1
– ident: e_1_2_7_71_1
– ident: e_1_2_7_48_2
  doi: 10.1002/advs.201801339
– ident: e_1_2_7_78_2
  doi: 10.1038/nrn920
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_72_2
  doi: 10.1126/science.6322304
– ident: e_1_2_7_39_2
  doi: 10.1126/science.adc9150
– ident: e_1_2_7_63_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_42_2
  doi: 10.1038/s41586-020-03154-y
– ident: e_1_2_7_9_2
  doi: 10.1038/nmat4856
– ident: e_1_2_7_81_2
  doi: 10.1126/scitranslmed.aal2298
– ident: e_1_2_7_47_2
  doi: 10.1002/advs.202001544
– ident: e_1_2_7_22_2
  doi: 10.1002/adfm.201909645
– ident: e_1_2_7_62_2
  doi: 10.1016/j.bios.2018.11.023
– ident: e_1_2_7_73_2
  doi: 10.1038/s41593-022-01186-3
– ident: e_1_2_7_77_1
– ident: e_1_2_7_80_1
– ident: e_1_2_7_34_2
  doi: 10.1002/adfm.202105345
– ident: e_1_2_7_41_2
  doi: 10.1002/adma.202007350
– ident: e_1_2_7_76_2
  doi: 10.1136/jnnp.2003.024885
– ident: e_1_2_7_24_2
  doi: 10.1038/s41467-023-36480-6
– ident: e_1_2_7_12_1
– ident: e_1_2_7_70_2
  doi: 10.1038/natrevmats.2017.86
– ident: e_1_2_7_66_2
  doi: 10.1039/C9TC03247A
SSID ssj0006279
Score 2.2263372
Snippet The emulation of functions and behaviors of biological synapses using electronic devices has inspired the development of artificial neural networks (ANNs) in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aqueous Electrolyte
Aqueous electrolytes
Artificial neural networks
Artificial Synapse
Biomedical materials
Biomolecules
Chemistry
Electrochemistry
Electronic equipment
Fabrication
Glucose oxidase
Interfaces
Modulation
Neural networks
Neuro-Prosthetics
Plasticity
Prostheses
Prosthetics
Selective binding
Selectivity
Synapses
Synaptic plasticity
Synaptic strength
Title An Aqueous Electrolyte Gated Artificial Synapse with Synaptic Plasticity Selectively Mediated by Biomolecules
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202302723
https://www.proquest.com/docview/2835329008
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqexA8pSa7yTY51tJahBaxFryFfQVETYtJD_HXO7vb9OFF0FuWsMNmZ2fnm2HyDULXcZCBl1dtr61UDAGKz71EKuXFKuFRwKJMWlKf4YgNJuHDS_Sy9he_44dYJtyMZdj72hg4F8XtijTU1N63TPNvCKyIofs0BVsGFT2t-KMYcWR7fhh6MQQaNWujT243p296pRXUXAes1uP09xGv1-oKTd5a81K05NcPGsf_fMwB2lvAUdxx5-cQben8CO106y5wx-ijk-MOLHM6L3DPtcx5r0qNTdZN2XmOggKPq5zPCo1NYtcNQCR-BHBu6rbLCo9txx24XN8rPLQNQkCAqPDd6_TD9ejVxQma9HvP3YG3aNHgySBoU0-QJKMqIUozCNxkBPYfKkAglLNIUck09WVCs5ArGYcS_IIC9Qt4lYksaoeMnqLtfJrrM4QFS0igdcJJpkOQEjMaaO5HgCgE9YVsoJtaRenMMXGkjnOZpGb70uX2NVCz1mC6sMgiNbxylCQAeRqIWFX8IiXtjO57y9H5XyZdoF3z7FkezibaLj_n-hIwTCmu7Dn9BumH6go
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RONBLebRVU6DsoRInB3vX3tjHEBICTSLEQ-rN8j4soRInqp2D--uZ3Y0T0kulclxbO1rva74Zjb8P4Hsc5OjlVcfrKBVjgOJnXiKV8mKVZFHAo1xaUp_xhA8fw5ufUVNNaP6FcfwQq4SbORn2vjYH3CSkz9esoab4vm3UvzGyouwd7BhZb0Off3m3ZpDi1NHt-WHoxRhqNLyNPj3f7L_pl9Zg8zVktT5nsAeiGa0rNfnVXlSiLf_8ReT4ps_Zhw9LREq6bgsdwJYuDmG31wjBfYRptyBdHOdsUZK-U815ritNTOJN2X6OhYLc10U2LzUxuV3XQJPkFvG5Kd2uanJvRXfwfn2uydhqhKABUZOLp9nUyfTq8hM8DvoPvaG3VGnwZBB0mCdokjOVUKU5xm4ywisgVAhCWMYjxSTXzJcJy8NMyTiU6BoU7gCBr3KRR52Qs8-wXcwK_QWI4AkNtE4ymusQrcScBTrzIwQVgvlCtuCsWaN07sg4Uke7TFMzfelq-lpw3CxhujyUZWqo5RhNEPW0gNq1-IeVtDu56q9aX_-n0ynsDh_Go3R0PflxBO_Nc8_Sch7DdvV7oU8Q0lTim920L5S47iY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VGp7gUKLuuVRHypxypLYjjc-LvuAlrJCpUjcovgRqSpkV93sIfx6xvZmF3pBao9O5JHjsT3fWJPvA_iSJSVGedOLesZkmKDERSS1MVFmZJEmIi21J_W5mIiza_7tJr159Bd_4IdYXbi5neHPa7fBZ6Y8XpOGutr7rhP_xsSKspfwiotYOvGG4Y81gZSggW0v5jzKMNNoaRtjevy0_9OwtMaajxGrDznjLSjawYZKk9_dRa26-v4vHsf_-Zp3sLnEo6QfFtA2vLDVDrwZtDJw7-GuX5E-DnO6mJNR0My5bWpL3LWb8f0CBwW5aqpiNrfE3eyGBpokl4jOXeF23ZArL7mDp-ttQy68QggaUA05-TW9CyK9dv4Brsejn4OzaKnREOkk6bFIUVkyI6mxAjM3neIBwA1CEFaI1DAtLIu1ZCUvjM64xsBg0P8KX5WqTHtcsF3YqKaV_QhECUkTa2VBS8vRSiZYYos4RUihWKx0B45aF-WzQMWRB9Jlmrvpy1fT14H91oP5ckvOc0csx6hEzNMB6l3xjJW8PzkdrVqf_qXTZ3h9ORzn379OzvfgrXsceU7Ofdio_yzsAeKZWh36JfsA2Dfs1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Aqueous+Electrolyte+Gated+Artificial+Synapse+with+Synaptic+Plasticity+Selectively+Mediated+by+Biomolecules&rft.jtitle=Angewandte+Chemie&rft.au=Xu%2C+Xinzhao&rft.au=Zhang%2C+Haoqin&rft.au=Shao%2C+Lin&rft.au=Ma%2C+Rong&rft.date=2023-07-17&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=135&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202302723&rft.externalDBID=10.1002%252Fange.202302723&rft.externalDocID=ANGE202302723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon