Data Quality Test Method for Factory Energy Management System

Because data is an important factor in the software industry, how to reliably test data is important. This is even more essential for building Industry 4.0 and smart industrial complexes. This study prepares ISO/IEC 25024-based test methods and guidelines and uses them for energy management at the i...

Full description

Saved in:
Bibliographic Details
Published inWebology Vol. 19; no. 1; pp. 4420 - 4427
Main Authors Ju, Seung-Hwan, Seo, Hee-Suk
Format Journal Article
LanguageEnglish
Published Tehran Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 20.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Because data is an important factor in the software industry, how to reliably test data is important. This is even more essential for building Industry 4.0 and smart industrial complexes. This study prepares ISO/IEC 25024-based test methods and guidelines and uses them for energy management at the industrial complex level. In order to provide services by collecting energy data from industrial complexes, it is necessary to verify data quality based on data reliability and compatibility of each plant. Data quality technology needs to conform to ISO TC184/SC4/WG13 (industrial data quality standard) based technology. The study defines the data quality evaluation matrix for the energy management system of industrial parks and factories. It defines five categories and maps detailed indicators to each. The category has three detailed items, which are evaluation items for core requirements, interoperability, and conformity to standards. Each data requirement category covers functionality and reliability, usability and efficiency, and portability as data requirements in the system. Core requirements for system operation such as data consistency are basic evaluation items, and interoperability, which is the semantic compatibility of data for integrated operation of multiple sites, is verified. In addition, data quality is evaluated by verifying standard conformance. Through this evaluation system, the requirements for linking the factory energy management system data with the industrial complex energy management system can be evaluated. This can be used to monitor data quality and develop improvement technologies by developing a master data quality management technology standard suitable for industrial sites.
AbstractList Because data is an important factor in the software industry, how to reliably test data is important. This is even more essential for building Industry 4.0 and smart industrial complexes. This study prepares ISO/IEC 25024-based test methods and guidelines and uses them for energy management at the industrial complex level. In order to provide services by collecting energy data from industrial complexes, it is necessary to verify data quality based on data reliability and compatibility of each plant. Data quality technology needs to conform to ISO TC184/SC4/WG13 (industrial data quality standard) based technology. The study defines the data quality evaluation matrix for the energy management system of industrial parks and factories. It defines five categories and maps detailed indicators to each. The category has three detailed items, which are evaluation items for core requirements, interoperability, and conformity to standards. Each data requirement category covers functionality and reliability, usability and efficiency, and portability as data requirements in the system. Core requirements for system operation such as data consistency are basic evaluation items, and interoperability, which is the semantic compatibility of data for integrated operation of multiple sites, is verified. In addition, data quality is evaluated by verifying standard conformance. Through this evaluation system, the requirements for linking the factory energy management system data with the industrial complex energy management system can be evaluated. This can be used to monitor data quality and develop improvement technologies by developing a master data quality management technology standard suitable for industrial sites.
Author Seo, Hee-Suk
Ju, Seung-Hwan
Author_xml – sequence: 1
  givenname: Seung-Hwan
  surname: Ju
  fullname: Ju, Seung-Hwan
– sequence: 2
  givenname: Hee-Suk
  surname: Seo
  fullname: Seo, Hee-Suk
BookMark eNpNkE1PAjEQhhuDiYD-Ai9NPK902m67PXhQBCWBGCN-3Jput0UIbLG7HPbfs4Amnuad5Mk7k6eHOmUoHULXQG6BS8IHn6OHwQeoCRwSKKrgDHVBsjSBLPvq_MsXqFdVK0I4p4R00d2jqQ1-3Zn1sm7w3FU1nrn6OxTYh4jHxtYhNnhUurho8MyUZuE2rqzxW1PVbnOJzr1ZV-7qd_bR-3g0Hz4n05enyfB-mlgACQljVCoQ1qlc5pxaWajDKrwpUpGDlakrOC2UFzZNc2upz0zuM9YyihfAWB_dnHq3Mfzs2if1Kuxi2Z7UVKi2nAomWoqdKBtDVUXn9TYuNyY2Gog-etKtHX30pP88sT3pEl0K
ContentType Journal Article
Copyright Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022
Copyright_xml – notice: Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022
DBID AAYXX
CITATION
ABUWG
AFKRA
ALSLI
BENPR
CCPQU
CNYFK
CWDGH
DWQXO
E3H
F2A
M1O
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.14704/WEB/V19I1/WEB19291
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
Social Science Premium Collection
ProQuest Central
ProQuest One Community College
Library & Information Science Collection
Middle East & Africa Database
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Library Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Social Science Premium Collection
Library and Information Science Abstracts (LISA)
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Library Science
Middle East & Africa Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Library & Information Science Collection
ProQuest One Academic
DatabaseTitleList Social Science Premium Collection
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1735-188X
EndPage 4427
ExternalDocumentID 10_14704_WEB_V19I1_WEB19291
GroupedDBID .4I
123
29R
2WC
3V.
5VS
8R4
8R5
AAYXX
ABDBF
ABUWG
ACGFO
ADBBV
AEGXH
AFKRA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
CNYFK
CWDGH
DWQXO
E3Z
EBS
EJD
ELW
FRS
GROUPED_DOAJ
KQ8
M1O
MK~
OK1
P2P
PQQKQ
PROAC
Q2X
RNS
TR2
XSB
E3H
F2A
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c1171-3327916ce9b7b42c7d9916c6fad56b1c75ed42d9f6c55bcc2f8abf8316c94d133
IEDL.DBID BENPR
ISSN 1735-188X
IngestDate Thu Oct 10 19:55:43 EDT 2024
Fri Aug 23 00:56:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1171-3327916ce9b7b42c7d9916c6fad56b1c75ed42d9f6c55bcc2f8abf8316c94d133
OpenAccessLink https://doi.org/10.14704/web/v19i1/web19291
PQID 2692792636
PQPubID 287914
PageCount 8
ParticipantIDs proquest_journals_2692792636
crossref_primary_10_14704_WEB_V19I1_WEB19291
PublicationCentury 2000
PublicationDate 2022-01-20
PublicationDateYYYYMMDD 2022-01-20
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-20
  day: 20
PublicationDecade 2020
PublicationPlace Tehran
PublicationPlace_xml – name: Tehran
PublicationTitle Webology
PublicationYear 2022
Publisher Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science
Publisher_xml – name: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science
SSID ssj0044200
Score 2.245052
Snippet Because data is an important factor in the software industry, how to reliably test data is important. This is even more essential for building Industry 4.0 and...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 4420
SubjectTerms Accuracy
Cost control
Efficiency
Energy management
Factories
Internet of Things
Interoperability
Product quality
Quality management
Quality standards
Renewable resources
Semantics
Software industry
Software quality
Standardization
Tariffs
Test methods
Testing laboratories
Usability
Use statistics
Title Data Quality Test Method for Factory Energy Management System
URI https://www.proquest.com/docview/2692792636
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuHgxfkYUSA_Gkwtr13XbwRiQLWgCGgPKbdna9QgoeOC_93XrQrh4W9KXHn5v76vt-z2AO80kU0JnVW3Cc891IpVRh-a08F2uQ6ZNo_BkKsZz_rrwF_bAbWOfVdY-sXTUaiXNGXmfichw3QlPPK2_HTM1ytyu2hEaDWgxrBTcJrSG8fT9o_bFnONPYLmGeODy_lc87H_S6IWaL0xuInoYjw7dcRljklM4sckhGVTaPIOjYnkOXdtaQO6J7R0yWBJrlBfwOMq2Gam4MHZkhtuSSTkWmqAwScp5OjsSlz1-ZP_ahVRc5ZcwT-LZ89ixQxEcSWlAHc9DGKiQRZQHOWcyUCbDkwi38kVOZeAXijMVaSF9P5eS6TDLdeihTMQVVqRX0FyulsU1EKF0SCmqw40k5mUMSyWpUA79jmF1V214qKFJ1xX3RWpqBoNkivilJZJpjWQbOjV8qTWETbpX283_y7dwzExngUvRcDvQ3P78Fl2M99u8B63BcDRMela5PWhM6Nsf2Bur_g
link.rule.ids 315,783,787,11950,21400,27936,27937,33756,36187,43817,44398,74630,75246
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRhRa8ICYSBs7jpMMCPFo1UJblha6WbGdLEhtoelQfj3nxFFVBga2SLGUk7_zPZy77xC6SqmimqdxkZsw6blOpGPiEEkS32VpSFPTKNwf8M6IPY_9sb1wm9uyytIm5oZaT5W5I29SHhmuO-7xu9mnY6ZGmb-rdoTGJtpi4FlNSVefvJaWmDFQAcs0xAKXNd9bD803EnWJeYLQJiLr3mjdGOcepr2HRClbUVjy0VhksqG-f9E2_l_4fbRrg098X2jLAdpIJoeoblsX8DW2vUkGK2wP_RG6fYqzGBdcG0s8hI_ifj52GsNi3M7n9SxxK-8hxKtqGlxwoR-jUbs1fOw4duiCowgJiON5ICnhKolkIBlVgTYRpAI4tc8lUYGfaEZ1lHLl-1IpmoaxTEMP1kRMQ8Z7giqT6SQ5RZjrNCQE4HYjBXEfhVRMaVgHds2wxusquik3X8wKbg1hchKDlQCERI6VKLGqolq5ucIetLlY7ezZ368v0XZn2O-JXnfwco52qOlicAkYiRqqZF-LpA6xRSYvcgX6AQXvzjU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4UE-PF30YUtAfjycHadR07GKMCARX0AMptWdv1QgIo44B_va9bF4IHT96WrIe3fm9f39ve-x5CV5pKqriO89yECc91QhUThwiS-C7TDapNo3CvzztD9jTyR7b-aW7LKgtOzIhaTaX5Rl6nPDRad9zjdW3LIt6a7bvZp2MmSJk_rXacxibaCnzKjLf3yGvByoyBO1jVIRa4rP7Reqi_k7BLzBWEOSFZP5nWiTk7bdp7aFzYmReZjGuLVNTk9y8Jx_95kH20a4NSfJ970QHaSCaHqGpbGvA1tj1LBkNsyeAI3TbjNMa5BscSD8AA3MvGUWNYjNvZHJ8lbmW9hXhVZYNzjfRjNGy3Bo8dxw5jcCQhAXE8D6wmXCahCASjMlAmspQAs_K5IDLwE8WoCjWXvi-kpLoRC93wYE3IFGTCJ6g0mU6SU4S50g1CwA3cUEI8SCFFkwrWAd8ZNXlVRjcFENEs19yITK5icIsArSjDLSpwK6NKsdGRfQHn0WqXz_6-fYm2Yfujl27_-RztUNPc4BLgjgoqpV-LpAohRyouMl_6AQYL1u8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Quality+Test+Method+for+Factory+Energy+Management+System&rft.jtitle=Webology&rft.au=Ju%2C+Seung-Hwan&rft.au=Seo%2C+Hee-Suk&rft.date=2022-01-20&rft.pub=Dr.+Alireza+Noruzi%2C+University+of+Tehran%2C+Department+of+Library+and+Information+Science&rft.eissn=1735-188X&rft.volume=19&rft.issue=1&rft.spage=4420&rft.epage=4427&rft_id=info:doi/10.14704%2FWEB%2FV19I1%2FWEB19291&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1735-188X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1735-188X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1735-188X&client=summon