A Light‐Powered Single‐Stranded DNA Molecular Motor with Colour‐Selective Single‐Step Control

Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desira...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 136; no. 32
Main Authors Anderson, Tommy, Wu, Wei, Sirbu, Olga, Tong, Keshao, Siti, Winna, Rui Liu, Xiao, Kou, Bo, Murayama, Keiji, Asanuma, Hiroyuki, Wang, Zhisong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single‐stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track‐walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano‐optomechanical driving mechanism pushes the top‐down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor‐based precision technology and also motor synchronization for amplified effects. Molecular motors access small length scale and have potential for precision technology. But the top‐down control of these motors is a challenge as they are molecular objects subject to stochastic fluctuations. Now a rationally designed single‐stranded DNA molecular motor demonstrates a novel nano‐optomechanical driving mechanism that pushes the top‐down control of molecular motors down to every single step.
AbstractList Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single‐stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track‐walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano‐optomechanical driving mechanism pushes the top‐down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor‐based precision technology and also motor synchronization for amplified effects.
Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single‐stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track‐walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano‐optomechanical driving mechanism pushes the top‐down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor‐based precision technology and also motor synchronization for amplified effects. Molecular motors access small length scale and have potential for precision technology. But the top‐down control of these motors is a challenge as they are molecular objects subject to stochastic fluctuations. Now a rationally designed single‐stranded DNA molecular motor demonstrates a novel nano‐optomechanical driving mechanism that pushes the top‐down control of molecular motors down to every single step.
Author Kou, Bo
Sirbu, Olga
Tong, Keshao
Murayama, Keiji
Asanuma, Hiroyuki
Anderson, Tommy
Wu, Wei
Rui Liu, Xiao
Siti, Winna
Wang, Zhisong
Author_xml – sequence: 1
  givenname: Tommy
  surname: Anderson
  fullname: Anderson, Tommy
  organization: National University of Singapore
– sequence: 2
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  organization: National University of Singapore
– sequence: 3
  givenname: Olga
  surname: Sirbu
  fullname: Sirbu, Olga
  organization: National University of Singapore
– sequence: 4
  givenname: Keshao
  surname: Tong
  fullname: Tong, Keshao
  organization: National University of Singapore
– sequence: 5
  givenname: Winna
  surname: Siti
  fullname: Siti, Winna
  organization: National University of Singapore
– sequence: 6
  givenname: Xiao
  surname: Rui Liu
  fullname: Rui Liu, Xiao
  organization: National University of Singapore
– sequence: 7
  givenname: Bo
  surname: Kou
  fullname: Kou, Bo
  organization: Nanjing Institute of Technology
– sequence: 8
  givenname: Keiji
  surname: Murayama
  fullname: Murayama, Keiji
  organization: Nagoya University
– sequence: 9
  givenname: Hiroyuki
  surname: Asanuma
  fullname: Asanuma, Hiroyuki
  organization: Nagoya University
– sequence: 10
  givenname: Zhisong
  orcidid: 0000-0001-5707-5909
  surname: Wang
  fullname: Wang, Zhisong
  email: phywangz@nus.edu.sg
  organization: NUS Graduate School
BookMark eNqFkM9OwkAQxjcGExG9em7iuTj7j-0eCSKaIJqg503ZTqGkdnFbJNx8BJ_RJ3EbjHrzNJNvft_M5DslncpVSMgFhT4FYFdptcQ-AyZAMglHpEslozFXUnVIF0CIOGFCn5DTul4DwIAp3SU4jKbFctV8vn88uh16zKJ5US1LDMK88WmVBeV6NozuXYl2W6Y-dI3z0a5oVtHIlW7rWxTDtCne8K8bNwGoGu_KM3Kcp2WN59-1R55vxk-j23j6MLkbDaexpVRBTAeZkCpjCRdcLnhuNV8kmc6VVXqAEpVEqQRqjtJqWDBJqU0SSxPKQGtkvEcuD3s33r1usW7MOvxXhZOGQyI5FZS3VP9AWe_q2mNuNr54Sf3eUDBtlKaN0vxEGQz6YNgVJe7_oc1wNhn_er8Ast58fQ
Cites_doi 10.1021/nn406187u
10.1038/nprot.2006.465
10.1038/43646
10.1039/C9NR00033J
10.1021/nn302388e
10.1038/s41467-019-13444-3
10.1038/nature09026
10.1039/D2NH00565D
10.1126/science.abd6179
10.1126/sciadv.adi8444
10.1103/PhysRevLett.109.238104
10.1021/acs.nanolett.9b02565
10.1038/s41565-018-0130-2
10.1002/anie.201901272
10.1016/j.ymeth.2014.02.029
10.1039/C7NR03809G
10.1021/acsnano.6b01035
10.1038/nature09012
10.1073/pnas.1712784115
10.1038/nature18013
10.1038/nature04586
10.1039/D1NR07964F
10.1021/nn5034983
10.1039/C7NR09724G
10.1039/D1NR02296B
ContentType Journal Article
Copyright 2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH
2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH
– notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202405250
DatabaseName WIley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202405250
ANGE202405250
Genre article
GrantInformation_xml – fundername: Office of deputy president (Research & Technology) of National University of Singapore
  funderid: A-8000628-01
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI grant, Grant-in-Aid for Transformative Research Areas "Molecular Cybernetics"
  funderid: 20H05968
– fundername: Ministry of Education of Singapore
  funderid: A-8000982-00-00, A-0008378-00-00, A-8000628-00
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI grant
  funderid: JP21H05025
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SR
7U5
8BQ
8FD
ACUHS
JG9
L7M
TUS
ID FETCH-LOGICAL-c1170-16d457d283435b3fc93b8d9f7c796e5e75e574e93e5c90b2511c88c1812099e23
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Wed Aug 13 08:09:22 EDT 2025
Thu Jul 03 08:12:57 EDT 2025
Wed Jan 22 17:17:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1170-16d457d283435b3fc93b8d9f7c796e5e75e574e93e5c90b2511c88c1812099e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5707-5909
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202405250
PQID 3085314132
PQPubID 866336
PageCount 8
ParticipantIDs proquest_journals_3085314132
crossref_primary_10_1002_ange_202405250
wiley_primary_10_1002_ange_202405250_ANGE202405250
PublicationCentury 2000
PublicationDate August 5, 2024
2024-08-05
20240805
PublicationDateYYYYMMDD 2024-08-05
PublicationDate_xml – month: 08
  year: 2024
  text: August 5, 2024
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 13
2019; 11
2019; 10
2023; 8
2023; 9
2018; 115
2019; 58
2010; 465
2016; 10
2022; 14
2006; 440
2019; 19
2021; 371
2016; 534
2007; 2
2012; 6
2014; 8
1999; 401
2018; 10
2014; 67
2017; 9
2012; 109
2018; 13
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
References_xml – volume: 534
  start-page: 235
  year: 2016
  end-page: 240
  publication-title: Nature
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 5882
  year: 2016
  end-page: 5890
  publication-title: ACS Nano
– volume: 401
  start-page: 152
  year: 1999
  end-page: 155
  publication-title: Nature
– volume: 440
  start-page: 297
  year: 2006
  end-page: 302
  publication-title: Nature
– volume: 10
  start-page: 9199
  year: 2018
  end-page: 9211
  publication-title: Nanoscale
– volume: 8
  start-page: 10293
  year: 2014
  end-page: 10304
  publication-title: ACS Nano
– volume: 371
  year: 2021
  publication-title: Science
– volume: 11
  start-page: 9240
  year: 2019
  end-page: 9263
  publication-title: Nanoscale
– volume: 14
  start-page: 5899
  year: 2022
  end-page: 5914
  publication-title: Nanoscale
– volume: 8
  start-page: 1792
  year: 2014
  end-page: 1803
  publication-title: ACS Nano
– volume: 58
  start-page: 6948
  year: 2019
  end-page: 6951
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 723
  year: 2018
  end-page: 729
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 203
  year: 2007
  end-page: 212
  publication-title: Nature Protocols
– volume: 6
  start-page: 7935
  year: 2012
  end-page: 7941
  publication-title: ACS Nano
– volume: 67
  start-page: 227
  year: 2014
  end-page: 233
  publication-title: Methods
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 8
  start-page: 827
  year: 2023
  end-page: 841
  publication-title: Nanoscale Horiz.
– volume: 13
  start-page: 13195
  year: 2021
  end-page: 13207
  publication-title: Nanoscale
– volume: 10
  start-page: 5394
  year: 2019
  publication-title: Nature Communcations
– volume: 19
  start-page: 6385
  year: 2019
  end-page: 6390
  publication-title: Nano Lett.
– volume: 9
  start-page: 12142
  year: 2017
  end-page: 12149
  publication-title: Nanoscale
– volume: 115
  start-page: 9423
  year: 2018
  end-page: 9431
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 465
  start-page: 206
  year: 2010
  end-page: 210
  publication-title: Nature
– volume: 465
  start-page: 202
  year: 2010
  end-page: 206
  publication-title: Nature
– ident: e_1_2_7_13_2
  doi: 10.1021/nn406187u
– ident: e_1_2_7_26_1
  doi: 10.1038/nprot.2006.465
– ident: e_1_2_7_8_1
  doi: 10.1038/43646
– ident: e_1_2_7_3_2
  doi: 10.1039/C9NR00033J
– ident: e_1_2_7_10_1
  doi: 10.1021/nn302388e
– ident: e_1_2_7_23_2
  doi: 10.1038/s41467-019-13444-3
– ident: e_1_2_7_22_2
  doi: 10.1038/nature09026
– ident: e_1_2_7_25_2
  doi: 10.1039/D2NH00565D
– ident: e_1_2_7_11_1
– ident: e_1_2_7_28_1
  doi: 10.1126/science.abd6179
– ident: e_1_2_7_7_2
  doi: 10.1126/sciadv.adi8444
– ident: e_1_2_7_9_1
  doi: 10.1103/PhysRevLett.109.238104
– ident: e_1_2_7_24_2
  doi: 10.1021/acs.nanolett.9b02565
– ident: e_1_2_7_27_1
  doi: 10.1038/s41565-018-0130-2
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.201901272
– ident: e_1_2_7_12_2
  doi: 10.1016/j.ymeth.2014.02.029
– ident: e_1_2_7_1_1
– ident: e_1_2_7_15_2
  doi: 10.1039/C7NR03809G
– ident: e_1_2_7_4_2
  doi: 10.1021/acsnano.6b01035
– ident: e_1_2_7_21_2
  doi: 10.1038/nature09012
– ident: e_1_2_7_2_2
  doi: 10.1073/pnas.1712784115
– ident: e_1_2_7_5_2
  doi: 10.1038/nature18013
– ident: e_1_2_7_20_2
  doi: 10.1038/nature04586
– ident: e_1_2_7_18_2
  doi: 10.1039/D1NR07964F
– ident: e_1_2_7_19_1
– ident: e_1_2_7_14_2
  doi: 10.1021/nn5034983
– ident: e_1_2_7_16_2
  doi: 10.1039/C7NR09724G
– ident: e_1_2_7_6_2
  doi: 10.1039/D1NR02296B
SSID ssj0006279
Score 2.2642934
Snippet Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Actuators
Deoxyribonucleic acid
DNA
DNA nanotechnology
Microelectromechanical systems
molecular control
Molecular machines
Molecular motors
Motor task performance
optomechanical conversion
Synchronism
Synchronization
Title A Light‐Powered Single‐Stranded DNA Molecular Motor with Colour‐Selective Single‐Step Control
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202405250
https://www.proquest.com/docview/3085314132
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYWCPCAxpU0dO4nHKLRUiFYVUKlbFDvOAipVHwsTP4HfyC_hzmn6YEGCzYnsKH7dfXc-f0fItVCe0TxgjuJCgYGSZY6SoesYrnWehkxre7eq2_M7A34_FMO1W_wFP8TS4YY7w8pr3OCpmjZWpKEYew_2HWgkPJkDIYwBW4iKHlf8UT4ryPZczp0QDI2StdFljc3mm1ppBTXXAavVOO19kpb_WgSavNTnM1XX7z9oHP_TmQOyt4CjNCrWzyHZMqMjshOXWeCOiYnoA9rvXx-ffUyoZjL6BNru1cALZLZFBzq97UW0W-bZhRLY8RQdvDQG0TqfYFWbbgck63prM6ZxESl_Qgbt1nPccRapGRxtU9U0_YyLIANsAnBLebmWngozmQc6kL4RJhBGBNxIzwgtXYV2jA5DjXACIKlh3impjN5G5ozQXIapGyioBlgo1a4MVTPD8z7jqibP3Sq5KacmGRcMHEnBtcwSHLZkOWxVUitnLlnsxGniAab0mqCqWZUwOwW_fCWJenet5dP5XxpdkF0s2zhBUSOV2WRuLgG7zNQV2Wa8f2VX6Tc2WOmV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvDi24ii7sHEU6G0u30cCYKo0BiFxFvDbrcXDRKEiyd_gr_RX-LMlvLwYqK3ttlt2n3NN7Oz3wdwIaSrFfcdS3Ih0UFJEkuGgW1prlQ6CBylzNmqbuS1-_z2SeTZhHQWJuOHmAfcaGaY9ZomOAWkqwvWUEq-RwcPTRJtza3DBsl6G6_qYcEg5TkZ3Z7NuRWgq5HzNtpOdbX-ql1agM1lyGpsTmsbZP61WarJc2U6kRX1_oPI8V-_swNbM0TK6tkQ2oU1PdyDYiMXgtsHXWcdcuG_Pj7vSVNNJ-wRDd6LxgdEbksxdHYV1Vk3l9rFK3TlGcV4WQNX1-mYihrFHVxcl2vrEWtkyfIH0G81e422NVNnsJRRq6l5CRd-gvAEEZd0UxW6MkjC1Fd-6GmhfaGFz3XoaqFCW5Iro4JAEaJAVKod9xAKw9ehPgKWhsHA9iUWQzg0UHYYyFpCW37aljWe2iW4zPsmHmUkHHFGt-zE1GzxvNlKUM67Lp5NxrfYRVjp1tBaOyVwTB_88pa4Hl0353fHf6l0DsV2r9uJOzfR3Qls0nOTNijKUJiMp_oUocxEnpnB-g1QvOzZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BkYCFf0ShgAckprRuYifOWKUtBdqoAip1i2rHWUClKu3CxCPwjDwJ56TpDwsSbIllR7HPvvvOPn8HcMWloxXzbEsyLtFBiWNL-oJamimVDIStVHq3qhO6rR676_P-0i3-jB9ivuFmVkaqr80CH8VJZUEaamLv0b9Di2RO5tZhg7lUmHldf1gQSLl2xrZHGbMEeho5bSO1K6vtV83SAmsuI9bU5DR3YZD_bBZp8lyeTmRZvf_gcfxPb_ZgZ4ZHSS2bQPuwpocHsBXkaeAOQddI2zjwXx-fXZNRTcfkEc3di8YCQ21rdtBJPayRTp5oF5_QkSdmh5cEqFunY1M1zbeDqnW5tR6RIAuVP4Jes_EUtKxZbgZLpblqqm7MuBcjOEG8JZ1E-Y4UsZ94yvNdzbXHNfeY9h3NlU-lcWSUEMrgCcSk2naOoTB8HeoTIIkvBtSTWA3B0EBRX8hqbA78NJVVltAiXOeiiUYZBUeUkS3bkRm2aD5sRSjlkotmS_EtchBUOlW01XYR7FQEv3wlqoU3jfnb6V8aXcJmt96M2rfh_Rlsm-I0ZpCXoDAZT_U54piJvEin6je0f-uR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Light%E2%80%90Powered+Single%E2%80%90Stranded+DNA+Molecular+Motor+with+Colour%E2%80%90Selective+Single%E2%80%90Step+Control&rft.jtitle=Angewandte+Chemie&rft.au=Anderson%2C+Tommy&rft.au=Wu%2C+Wei&rft.au=Sirbu%2C+Olga&rft.au=Tong%2C+Keshao&rft.date=2024-08-05&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=136&rft.issue=32&rft_id=info:doi/10.1002%2Fange.202405250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202405250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon