A Light‐Powered Single‐Stranded DNA Molecular Motor with Colour‐Selective Single‐Step Control
Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desira...
Saved in:
Published in | Angewandte Chemie Vol. 136; no. 32 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single‐stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track‐walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano‐optomechanical driving mechanism pushes the top‐down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor‐based precision technology and also motor synchronization for amplified effects.
Molecular motors access small length scale and have potential for precision technology. But the top‐down control of these motors is a challenge as they are molecular objects subject to stochastic fluctuations. Now a rationally designed single‐stranded DNA molecular motor demonstrates a novel nano‐optomechanical driving mechanism that pushes the top‐down control of molecular motors down to every single step. |
---|---|
AbstractList | Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single‐stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track‐walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano‐optomechanical driving mechanism pushes the top‐down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor‐based precision technology and also motor synchronization for amplified effects. Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or nano‐electromechanical systems) in the current precision technology. Improving top‐down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single‐stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track‐walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano‐optomechanical driving mechanism pushes the top‐down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor‐based precision technology and also motor synchronization for amplified effects. Molecular motors access small length scale and have potential for precision technology. But the top‐down control of these motors is a challenge as they are molecular objects subject to stochastic fluctuations. Now a rationally designed single‐stranded DNA molecular motor demonstrates a novel nano‐optomechanical driving mechanism that pushes the top‐down control of molecular motors down to every single step. |
Author | Kou, Bo Sirbu, Olga Tong, Keshao Murayama, Keiji Asanuma, Hiroyuki Anderson, Tommy Wu, Wei Rui Liu, Xiao Siti, Winna Wang, Zhisong |
Author_xml | – sequence: 1 givenname: Tommy surname: Anderson fullname: Anderson, Tommy organization: National University of Singapore – sequence: 2 givenname: Wei surname: Wu fullname: Wu, Wei organization: National University of Singapore – sequence: 3 givenname: Olga surname: Sirbu fullname: Sirbu, Olga organization: National University of Singapore – sequence: 4 givenname: Keshao surname: Tong fullname: Tong, Keshao organization: National University of Singapore – sequence: 5 givenname: Winna surname: Siti fullname: Siti, Winna organization: National University of Singapore – sequence: 6 givenname: Xiao surname: Rui Liu fullname: Rui Liu, Xiao organization: National University of Singapore – sequence: 7 givenname: Bo surname: Kou fullname: Kou, Bo organization: Nanjing Institute of Technology – sequence: 8 givenname: Keiji surname: Murayama fullname: Murayama, Keiji organization: Nagoya University – sequence: 9 givenname: Hiroyuki surname: Asanuma fullname: Asanuma, Hiroyuki organization: Nagoya University – sequence: 10 givenname: Zhisong orcidid: 0000-0001-5707-5909 surname: Wang fullname: Wang, Zhisong email: phywangz@nus.edu.sg organization: NUS Graduate School |
BookMark | eNqFkM9OwkAQxjcGExG9em7iuTj7j-0eCSKaIJqg503ZTqGkdnFbJNx8BJ_RJ3EbjHrzNJNvft_M5DslncpVSMgFhT4FYFdptcQ-AyZAMglHpEslozFXUnVIF0CIOGFCn5DTul4DwIAp3SU4jKbFctV8vn88uh16zKJ5US1LDMK88WmVBeV6NozuXYl2W6Y-dI3z0a5oVtHIlW7rWxTDtCne8K8bNwGoGu_KM3Kcp2WN59-1R55vxk-j23j6MLkbDaexpVRBTAeZkCpjCRdcLnhuNV8kmc6VVXqAEpVEqQRqjtJqWDBJqU0SSxPKQGtkvEcuD3s33r1usW7MOvxXhZOGQyI5FZS3VP9AWe_q2mNuNr54Sf3eUDBtlKaN0vxEGQz6YNgVJe7_oc1wNhn_er8Ast58fQ |
Cites_doi | 10.1021/nn406187u 10.1038/nprot.2006.465 10.1038/43646 10.1039/C9NR00033J 10.1021/nn302388e 10.1038/s41467-019-13444-3 10.1038/nature09026 10.1039/D2NH00565D 10.1126/science.abd6179 10.1126/sciadv.adi8444 10.1103/PhysRevLett.109.238104 10.1021/acs.nanolett.9b02565 10.1038/s41565-018-0130-2 10.1002/anie.201901272 10.1016/j.ymeth.2014.02.029 10.1039/C7NR03809G 10.1021/acsnano.6b01035 10.1038/nature09012 10.1073/pnas.1712784115 10.1038/nature18013 10.1038/nature04586 10.1039/D1NR07964F 10.1021/nn5034983 10.1039/C7NR09724G 10.1039/D1NR02296B |
ContentType | Journal Article |
Copyright | 2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH – notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202405250 |
DatabaseName | WIley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ange_202405250 ANGE202405250 |
Genre | article |
GrantInformation_xml | – fundername: Office of deputy president (Research & Technology) of National University of Singapore funderid: A-8000628-01 – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI grant, Grant-in-Aid for Transformative Research Areas "Molecular Cybernetics" funderid: 20H05968 – fundername: Ministry of Education of Singapore funderid: A-8000982-00-00, A-0008378-00-00, A-8000628-00 – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI grant funderid: JP21H05025 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 7SR 7U5 8BQ 8FD ACUHS JG9 L7M TUS |
ID | FETCH-LOGICAL-c1170-16d457d283435b3fc93b8d9f7c796e5e75e574e93e5c90b2511c88c1812099e23 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Wed Aug 13 08:09:22 EDT 2025 Thu Jul 03 08:12:57 EDT 2025 Wed Jan 22 17:17:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1170-16d457d283435b3fc93b8d9f7c796e5e75e574e93e5c90b2511c88c1812099e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5707-5909 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202405250 |
PQID | 3085314132 |
PQPubID | 866336 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3085314132 crossref_primary_10_1002_ange_202405250 wiley_primary_10_1002_ange_202405250_ANGE202405250 |
PublicationCentury | 2000 |
PublicationDate | August 5, 2024 2024-08-05 20240805 |
PublicationDateYYYYMMDD | 2024-08-05 |
PublicationDate_xml | – month: 08 year: 2024 text: August 5, 2024 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 13 2019; 11 2019; 10 2023; 8 2023; 9 2018; 115 2019; 58 2010; 465 2016; 10 2022; 14 2006; 440 2019; 19 2021; 371 2016; 534 2007; 2 2012; 6 2014; 8 1999; 401 2018; 10 2014; 67 2017; 9 2012; 109 2018; 13 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 |
References_xml | – volume: 534 start-page: 235 year: 2016 end-page: 240 publication-title: Nature – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 5882 year: 2016 end-page: 5890 publication-title: ACS Nano – volume: 401 start-page: 152 year: 1999 end-page: 155 publication-title: Nature – volume: 440 start-page: 297 year: 2006 end-page: 302 publication-title: Nature – volume: 10 start-page: 9199 year: 2018 end-page: 9211 publication-title: Nanoscale – volume: 8 start-page: 10293 year: 2014 end-page: 10304 publication-title: ACS Nano – volume: 371 year: 2021 publication-title: Science – volume: 11 start-page: 9240 year: 2019 end-page: 9263 publication-title: Nanoscale – volume: 14 start-page: 5899 year: 2022 end-page: 5914 publication-title: Nanoscale – volume: 8 start-page: 1792 year: 2014 end-page: 1803 publication-title: ACS Nano – volume: 58 start-page: 6948 year: 2019 end-page: 6951 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 723 year: 2018 end-page: 729 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 203 year: 2007 end-page: 212 publication-title: Nature Protocols – volume: 6 start-page: 7935 year: 2012 end-page: 7941 publication-title: ACS Nano – volume: 67 start-page: 227 year: 2014 end-page: 233 publication-title: Methods – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 8 start-page: 827 year: 2023 end-page: 841 publication-title: Nanoscale Horiz. – volume: 13 start-page: 13195 year: 2021 end-page: 13207 publication-title: Nanoscale – volume: 10 start-page: 5394 year: 2019 publication-title: Nature Communcations – volume: 19 start-page: 6385 year: 2019 end-page: 6390 publication-title: Nano Lett. – volume: 9 start-page: 12142 year: 2017 end-page: 12149 publication-title: Nanoscale – volume: 115 start-page: 9423 year: 2018 end-page: 9431 publication-title: Proc. Natl. Acad. Sci. USA – volume: 465 start-page: 206 year: 2010 end-page: 210 publication-title: Nature – volume: 465 start-page: 202 year: 2010 end-page: 206 publication-title: Nature – ident: e_1_2_7_13_2 doi: 10.1021/nn406187u – ident: e_1_2_7_26_1 doi: 10.1038/nprot.2006.465 – ident: e_1_2_7_8_1 doi: 10.1038/43646 – ident: e_1_2_7_3_2 doi: 10.1039/C9NR00033J – ident: e_1_2_7_10_1 doi: 10.1021/nn302388e – ident: e_1_2_7_23_2 doi: 10.1038/s41467-019-13444-3 – ident: e_1_2_7_22_2 doi: 10.1038/nature09026 – ident: e_1_2_7_25_2 doi: 10.1039/D2NH00565D – ident: e_1_2_7_11_1 – ident: e_1_2_7_28_1 doi: 10.1126/science.abd6179 – ident: e_1_2_7_7_2 doi: 10.1126/sciadv.adi8444 – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevLett.109.238104 – ident: e_1_2_7_24_2 doi: 10.1021/acs.nanolett.9b02565 – ident: e_1_2_7_27_1 doi: 10.1038/s41565-018-0130-2 – ident: e_1_2_7_17_2 doi: 10.1002/anie.201901272 – ident: e_1_2_7_12_2 doi: 10.1016/j.ymeth.2014.02.029 – ident: e_1_2_7_1_1 – ident: e_1_2_7_15_2 doi: 10.1039/C7NR03809G – ident: e_1_2_7_4_2 doi: 10.1021/acsnano.6b01035 – ident: e_1_2_7_21_2 doi: 10.1038/nature09012 – ident: e_1_2_7_2_2 doi: 10.1073/pnas.1712784115 – ident: e_1_2_7_5_2 doi: 10.1038/nature18013 – ident: e_1_2_7_20_2 doi: 10.1038/nature04586 – ident: e_1_2_7_18_2 doi: 10.1039/D1NR07964F – ident: e_1_2_7_19_1 – ident: e_1_2_7_14_2 doi: 10.1021/nn5034983 – ident: e_1_2_7_16_2 doi: 10.1039/C7NR09724G – ident: e_1_2_7_6_2 doi: 10.1039/D1NR02296B |
SSID | ssj0006279 |
Score | 2.2642934 |
Snippet | Top‐down control of small motion is possible through top‐down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro‐ or... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Actuators Deoxyribonucleic acid DNA DNA nanotechnology Microelectromechanical systems molecular control Molecular machines Molecular motors Motor task performance optomechanical conversion Synchronism Synchronization |
Title | A Light‐Powered Single‐Stranded DNA Molecular Motor with Colour‐Selective Single‐Step Control |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202405250 https://www.proquest.com/docview/3085314132 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYWCPCAxpU0dO4nHKLRUiFYVUKlbFDvOAipVHwsTP4HfyC_hzmn6YEGCzYnsKH7dfXc-f0fItVCe0TxgjuJCgYGSZY6SoesYrnWehkxre7eq2_M7A34_FMO1W_wFP8TS4YY7w8pr3OCpmjZWpKEYew_2HWgkPJkDIYwBW4iKHlf8UT4ryPZczp0QDI2StdFljc3mm1ppBTXXAavVOO19kpb_WgSavNTnM1XX7z9oHP_TmQOyt4CjNCrWzyHZMqMjshOXWeCOiYnoA9rvXx-ffUyoZjL6BNru1cALZLZFBzq97UW0W-bZhRLY8RQdvDQG0TqfYFWbbgck63prM6ZxESl_Qgbt1nPccRapGRxtU9U0_YyLIANsAnBLebmWngozmQc6kL4RJhBGBNxIzwgtXYV2jA5DjXACIKlh3impjN5G5ozQXIapGyioBlgo1a4MVTPD8z7jqibP3Sq5KacmGRcMHEnBtcwSHLZkOWxVUitnLlnsxGniAab0mqCqWZUwOwW_fCWJenet5dP5XxpdkF0s2zhBUSOV2WRuLgG7zNQV2Wa8f2VX6Tc2WOmV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvDi24ii7sHEU6G0u30cCYKo0BiFxFvDbrcXDRKEiyd_gr_RX-LMlvLwYqK3ttlt2n3NN7Oz3wdwIaSrFfcdS3Ih0UFJEkuGgW1prlQ6CBylzNmqbuS1-_z2SeTZhHQWJuOHmAfcaGaY9ZomOAWkqwvWUEq-RwcPTRJtza3DBsl6G6_qYcEg5TkZ3Z7NuRWgq5HzNtpOdbX-ql1agM1lyGpsTmsbZP61WarJc2U6kRX1_oPI8V-_swNbM0TK6tkQ2oU1PdyDYiMXgtsHXWcdcuG_Pj7vSVNNJ-wRDd6LxgdEbksxdHYV1Vk3l9rFK3TlGcV4WQNX1-mYihrFHVxcl2vrEWtkyfIH0G81e422NVNnsJRRq6l5CRd-gvAEEZd0UxW6MkjC1Fd-6GmhfaGFz3XoaqFCW5Iro4JAEaJAVKod9xAKw9ehPgKWhsHA9iUWQzg0UHYYyFpCW37aljWe2iW4zPsmHmUkHHFGt-zE1GzxvNlKUM67Lp5NxrfYRVjp1tBaOyVwTB_88pa4Hl0353fHf6l0DsV2r9uJOzfR3Qls0nOTNijKUJiMp_oUocxEnpnB-g1QvOzZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BkYCFf0ShgAckprRuYifOWKUtBdqoAip1i2rHWUClKu3CxCPwjDwJ56TpDwsSbIllR7HPvvvOPn8HcMWloxXzbEsyLtFBiWNL-oJamimVDIStVHq3qhO6rR676_P-0i3-jB9ivuFmVkaqr80CH8VJZUEaamLv0b9Di2RO5tZhg7lUmHldf1gQSLl2xrZHGbMEeho5bSO1K6vtV83SAmsuI9bU5DR3YZD_bBZp8lyeTmRZvf_gcfxPb_ZgZ4ZHSS2bQPuwpocHsBXkaeAOQddI2zjwXx-fXZNRTcfkEc3di8YCQ21rdtBJPayRTp5oF5_QkSdmh5cEqFunY1M1zbeDqnW5tR6RIAuVP4Jes_EUtKxZbgZLpblqqm7MuBcjOEG8JZ1E-Y4UsZ94yvNdzbXHNfeY9h3NlU-lcWSUEMrgCcSk2naOoTB8HeoTIIkvBtSTWA3B0EBRX8hqbA78NJVVltAiXOeiiUYZBUeUkS3bkRm2aD5sRSjlkotmS_EtchBUOlW01XYR7FQEv3wlqoU3jfnb6V8aXcJmt96M2rfh_Rlsm-I0ZpCXoDAZT_U54piJvEin6je0f-uR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Light%E2%80%90Powered+Single%E2%80%90Stranded+DNA+Molecular+Motor+with+Colour%E2%80%90Selective+Single%E2%80%90Step+Control&rft.jtitle=Angewandte+Chemie&rft.au=Anderson%2C+Tommy&rft.au=Wu%2C+Wei&rft.au=Sirbu%2C+Olga&rft.au=Tong%2C+Keshao&rft.date=2024-08-05&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=136&rft.issue=32&rft_id=info:doi/10.1002%2Fange.202405250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202405250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |