Sea Surface Wind Speed Estimation From the Combination of Satellite Scatterometer and Radiometer Parameters
Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications.
Plain Language Summary
As widely recognized, sea surface wind speed is a crucial oceanographic parameter, and satellite remote sensing plays a vital role in obtaining global ocean surface wind speed information. In this study, we utilized observational data from the HY2B satellite, which is equipped with both microwave scatterometer and radiometer. Leveraging a joint approach using passive and active microwave observations, we employed various ML techniques (random forest regression, convolutional neural network regression, multiple linear regression) to construct a hybrid model for sea surface wind speed retrieval. The model's accuracy was assessed using wind field data from ERA5, CCMP, buoys, and other sources. The results demonstrated that the hybrid model outperforms wind speeds obtained solely from either scatterometer or radiometer, offering a promising avenue for enhancing global sea surface wind speed accuracy.
Key Points
The joint active‐passive retrieval accuracy of microwave scatterometer and radiometer surpasses that of individual scatterometer or radiometer retrievals
Random forest and convolutional neural network demonstrate robust performance in wind speed retrieval
The findings have implications for oceanographic applications, advancing remote sensing methodologies for improved wind speed estimation |
---|---|
AbstractList | Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications.
As widely recognized, sea surface wind speed is a crucial oceanographic parameter, and satellite remote sensing plays a vital role in obtaining global ocean surface wind speed information. In this study, we utilized observational data from the HY2B satellite, which is equipped with both microwave scatterometer and radiometer. Leveraging a joint approach using passive and active microwave observations, we employed various ML techniques (random forest regression, convolutional neural network regression, multiple linear regression) to construct a hybrid model for sea surface wind speed retrieval. The model's accuracy was assessed using wind field data from ERA5, CCMP, buoys, and other sources. The results demonstrated that the hybrid model outperforms wind speeds obtained solely from either scatterometer or radiometer, offering a promising avenue for enhancing global sea surface wind speed accuracy.
The joint active‐passive retrieval accuracy of microwave scatterometer and radiometer surpasses that of individual scatterometer or radiometer retrievals
Random forest and convolutional neural network demonstrate robust performance in wind speed retrieval
The findings have implications for oceanographic applications, advancing remote sensing methodologies for improved wind speed estimation Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications. Plain Language Summary As widely recognized, sea surface wind speed is a crucial oceanographic parameter, and satellite remote sensing plays a vital role in obtaining global ocean surface wind speed information. In this study, we utilized observational data from the HY2B satellite, which is equipped with both microwave scatterometer and radiometer. Leveraging a joint approach using passive and active microwave observations, we employed various ML techniques (random forest regression, convolutional neural network regression, multiple linear regression) to construct a hybrid model for sea surface wind speed retrieval. The model's accuracy was assessed using wind field data from ERA5, CCMP, buoys, and other sources. The results demonstrated that the hybrid model outperforms wind speeds obtained solely from either scatterometer or radiometer, offering a promising avenue for enhancing global sea surface wind speed accuracy. Key Points The joint active‐passive retrieval accuracy of microwave scatterometer and radiometer surpasses that of individual scatterometer or radiometer retrievals Random forest and convolutional neural network demonstrate robust performance in wind speed retrieval The findings have implications for oceanographic applications, advancing remote sensing methodologies for improved wind speed estimation |
Author | Xiang, Kunsheng Bao, Qingliu Zhou, Wu |
Author_xml | – sequence: 1 givenname: Kunsheng orcidid: 0000-0003-1439-6918 surname: Xiang fullname: Xiang, Kunsheng organization: PIESAT Space and Remote Sensing Technology (Shanghai) Company Limited – sequence: 2 givenname: Wu surname: Zhou fullname: Zhou, Wu email: zhouwu@mail.nsoas.org.cn organization: Ministry of Natural Resources – sequence: 3 givenname: Qingliu surname: Bao fullname: Bao, Qingliu organization: PIESAT Space and Remote Sensing Technology (Shanghai) Company Limited |
BookMark | eNp9kM1OwzAQhC1UJErpjQfwAxDw2k1aH1HVH6pKoAbEMVrbG2FIkyo2Qn37BtpDT1x2Z1efRpq5Zr26qYmxWxD3IKR-kEKOVkshBGTpBetLrVWSShC9M33FhiF8doxSUkzEuM--ckKef7clWuLvvnY83xE5PgvRbzH6pubzttny-EF82myNr4_PpuQ5RqoqH4nnFmOkDqNucuxMNuj86XzBFv9UuGGXJVaBhqc9YG_z2et0mayfF0_Tx3ViATKdqMw6BZQZoxRNpLQ6VSSF1eRIS5OlaLUjOwYJI4OpxgwoLaU0YEeEzqgBuzv62rYJoaWy2LVdmHZfgCh-uyrOu-pwccR_fEX7f9litdgAaHUAgeFtJg |
Cites_doi | 10.1016/j.jweia.2019.05.020 10.1016/j.rse.2020.111716 10.1109/jstars.2018.2873257 10.1002/qj.3803 10.1109/jstars.2015.2416514 10.1016/j.rse.2020.112236 10.1175/2010BAMS2946.1 10.1016/j.enconman.2019.05.007 10.1109/tgrs.2019.2963690 10.1109/lgrs.2019.2940384 10.1109/lgrs.2020.2968635 10.1175/1520‐0426(1997)014<1298:SDIMSA>2.0.CO;2 10.1175/MWR3179.1 10.1016/j.isprsjprs.2020.12.010 10.3390/rs14174230 10.1016/j.rse.2016.03.006 10.1002/joc.1176 10.1016/j.rse.2020.112227 10.1080/07055900.1988.9649300 10.3102/1076998619872761 10.1002/2014JC009837 10.1007/978-1-4614-7138-7 10.1175/1520‐0477(2001)082<1965:TEOMWF>2.3.CO;2 10.1007/BF00058655 10.1109/tgrs.2020.3008405 10.1109/tgrs.2018.2876972 10.1029/JC088iC03p01892 10.1007/s10994‐006‐6226‐1 10.1029/1999JC000097 10.1175/JTECH‐D‐15‐0008.1 10.3390/rs13183678 10.1029/96JC01751 10.1023/A:1010933404324 10.1029/98JC02148 10.1109/tgrs.2011.2179662 10.1029/2006JC003743 10.1016/j.gsf.2015.07.003 10.1029/97JC02906 10.1007/s12667‐019‐00338‐y 10.1175/1520‐0477(1986)067<0411:NDBCP>2.0.CO;2 10.1109/tgrs.2010.2049362 10.3390/rs11060627 10.1007/s12524‐021‐01335‐4 10.1109/jstars.2017.2681806 10.1007/s40745‐021‐00332‐1 10.1002/2016JC012619 10.1175/JTECH‐D‐16‐0145.1 10.5589/m02‐035 10.5670/oceanog.2009.49 10.1109/tgrs.2018.2859819 10.3390/rs15102620 10.1016/j.rse.2014.02.016 10.1002/widm.1072 10.1007/s00343‐022‐2047‐8 10.1109/tgrs.2009.2027012 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION |
DOI | 10.1029/2024JH000165 |
DatabaseName | Wiley Open Access (UHCL Subscription) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JH000165 JGR119 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Big Data Cloud Platform for Regional Marine Environment Monitoring and Early Warning funderid: XTCX‐KJ‐2022‐20 |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E WIN AAYXX CITATION |
ID | FETCH-LOGICAL-c1169-36cd31e6bb33e822c953e20c9ede92b65ac9dec71214ba59a61e5f22b1c4eadb3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Tue Jul 01 03:43:13 EDT 2025 Wed Aug 20 07:26:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1169-36cd31e6bb33e822c953e20c9ede92b65ac9dec71214ba59a61e5f22b1c4eadb3 |
ORCID | 0000-0003-1439-6918 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000165 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1029_2024JH000165 wiley_primary_10_1029_2024JH000165_JGR119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
References | 2009; 47 2019; 11 2020; 241 2015; 32 2019; 17 2020; 59 2020; 58 2011; 12 2020; 11 2001; 45 2022a; 14 2006; 134 2001; 106 2005; 25 2020; 18 1997; 102 2006; 63 1997; 14 2017; 34 2013; 112 2020; 45 2019; 195 2017; 122 1996; 24 2009; 22 2014; 119 2023; 10 2021; 49 2019; 191 2023; 15 1996 2020; 146 1999; 104 2015; 8 2012; 50 2002; 28 2021; 13 2001; 82 2007; 112 2016; 7 2023; 41 2012; 2 2010; 48 2023 2021; 255 1986; 67 2011; 92 2017; 10 1988; 26 2016; 178 2021; 173 2022b 1998; 103 2021; 253 2018; 11 2014; 147 1983; 88 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Hersbach H. (e_1_2_8_16_1) 2023 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Pedregosa F. (e_1_2_8_36_1) 2011; 12 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Mears C. (e_1_2_8_29_1) 2022 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 57 start-page: 709 issue: 2 year: 2018 end-page: 721 article-title: Tropical cyclone center automatic determination model based on HY‐2 and QuikSCAT wind vector products publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 32 start-page: 1829 issue: 10 year: 2015 end-page: 1846 article-title: A scatterometer geophysical model function for climate‐quality winds: QuikSCAT Ku‐2011 publication-title: Journal of Atmospheric and Oceanic Technology – volume: 67 start-page: 411 issue: 4 year: 1986 end-page: 415 article-title: National data buoy center programs publication-title: Bulletin of the American Meteorological Society – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 59 start-page: 4513 issue: 6 year: 2020 end-page: 4521 article-title: An evaluation of the Chinese HY‐2B satellite’s microwave scatterometer instrument publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Machine Learning – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 11 start-page: 935 issue: 4 year: 2020 end-page: 946 article-title: Forecasting of wind speed using multiple linear regression and artificial neural networks publication-title: Energy Systems – volume: 47 start-page: 3065 issue: 9 year: 2009 end-page: 3083 article-title: Wind‐vector retrievals under rain with passive satellite microwave radiometers publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 102 start-page: 8703 issue: C4 year: 1997 end-page: 8718 article-title: A well‐calibrated ocean algorithm for special sensor microwave/imager publication-title: Journal of Geophysical Research – volume: 41 start-page: 495 issue: 2 year: 2023 end-page: 517 article-title: Applicability evaluation of ERA5 wind and wave reanalysis data in the South China Sea publication-title: Journal of Oceanology Limnology – volume: 57 start-page: 2766 issue: 5 year: 2018 end-page: 2776 article-title: Surface foam and L‐band microwave radiometer measurements in high winds publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 15 issue: 10 year: 2023 article-title: Evaluation of blended wind products and their implications for offshore wind power estimation publication-title: Remote Sensing – volume: 25 start-page: 979 issue: 7 year: 2005 end-page: 995 article-title: Methods to homogenize wind speeds from ships and buoys publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society – volume: 26 start-page: 203 issue: 2 year: 1988 end-page: 233 article-title: On theoretical wind speed and temperature profiles over the sea with applications to data from Sable Island, Nova Scotia publication-title: Atmosphere‐Ocean – volume: 104 start-page: 11499 issue: C5 year: 1999 end-page: 11514 article-title: A model function for the ocean‐normalized radar cross section at 14 GHz derived from NSCAT observations publication-title: Journal of Geophysical Research – volume: 34 start-page: 1285 issue: 6 year: 2017 end-page: 1306 article-title: Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements publication-title: Journal of Atmospheric and Oceanic Technology – volume: 28 start-page: 404 issue: 3 year: 2002 end-page: 412 article-title: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers publication-title: Canadian Journal of Remote Sensing – volume: 112 year: 2013 – volume: 11 issue: 6 year: 2019 article-title: Objective estimation of tropical cyclone intensity from active and passive microwave remote sensing observations in the Northwestern Pacific Ocean publication-title: Remote Sensing of Environment – volume: 106 start-page: 11719 issue: C6 year: 2001 end-page: 11729 article-title: Comparison of special sensor microwave imager and buoy‐measured wind speeds from 1987 to 1997 publication-title: Journal of Geophysical Research – year: 2022b – volume: 92 start-page: 157 issue: 2 year: 2011 end-page: 174 article-title: A cross‐calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications publication-title: Bulletin of the American Meteorological Society – volume: 18 start-page: 137 issue: 1 year: 2020 end-page: 141 article-title: Evaluation of the initial sea surface temperature from the HY‐2B scanning microwave radiometer publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 147 start-page: 89 year: 2014 end-page: 98 article-title: GCOM‐W1 AMSR2 and MetOp‐A ASCAT wind speeds for the extratropical cyclones over the North Atlantic publication-title: Remote Sensing of Environment – volume: 134 start-page: 2055 issue: 8 year: 2006 end-page: 2071 article-title: On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction publication-title: Monthly Weather Review – volume: 112 issue: C3 year: 2007 article-title: An improved C‐band scatterometer ocean geophysical model function: CMOD5 publication-title: Journal of Geophysical Research – volume: 253 year: 2021 article-title: OC‐SMART: A machine learning based data analysis platform for satellite ocean color sensors publication-title: Remote Sensing of Environment – volume: 13 issue: 18 year: 2021 article-title: Intercalibration of ASCAT scatterometer winds from MetOp‐A,‐B, and‐C, for a stable climate data record publication-title: Remote Sensing – volume: 2 start-page: 493 issue: 6 year: 2012 end-page: 507 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 58 start-page: 4387 issue: 6 year: 2020 end-page: 4394 article-title: Validation of new sea surface wind products from scatterometers onboard the HY‐2B and MetOp‐C satellites publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 191 start-page: 252 year: 2019 end-page: 265 article-title: Wind speed reconstruction using a novel multivariate probabilistic method and multiple linear regression: Advantages compared to the single correlation approach publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 8 start-page: 4248 issue: 9 year: 2015 end-page: 4261 article-title: New possibilities for geophysical parameter retrievals opened by GCOM‐W1 AMSR2 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 45 start-page: 227 issue: 2 year: 2020 end-page: 248 article-title: Deep learning with tensorflow: A review publication-title: Journal of Educational and Behavioral Statistics – volume: 195 start-page: 70 year: 2019 end-page: 75 article-title: One dimensional convolutional neural network architectures for wind prediction publication-title: Energy Conversion and Management – volume: 10 start-page: 851 issue: 4 year: 2023 end-page: 873 article-title: Wind speed prediction of central region of Chhattisgarh (India) using artificial neural network and multiple linear regression technique: A comparative study publication-title: Annals of Data Science – volume: 173 start-page: 24 year: 2021 end-page: 49 article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 119 start-page: 6499 issue: 9 year: 2014 end-page: 6522 article-title: The emission and scattering of L‐band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor publication-title: Journal of Geophysical Research: Oceans – volume: 241 year: 2020 article-title: Deep learning in environmental remote sensing: Achievements and challenges publication-title: Remote Sensing of Environment – volume: 14 issue: 17 year: 2022a article-title: Improving the accuracy of the Cross‐Calibrated Multi‐Platform (CCMP) ocean vector winds publication-title: Remote Sensing – volume: 255 year: 2021 article-title: A machine learning approach to estimating the error in satellite sea surface temperature retrievals publication-title: Remote Sensing of Environment – year: 1996 – volume: 88 start-page: 1892 issue: C3 year: 1983 end-page: 1908 article-title: A model function for ocean microwave brightness temperatures publication-title: Journal of Geophysical Research – volume: 82 start-page: 1965 issue: 9 year: 2001 end-page: 1990 article-title: The effects of marine winds from scatterometer data on weather analysis and forecasting publication-title: Bulletin of the American Meteorological Society – volume: 103 start-page: 14169 issue: C7 year: 1998 end-page: 14240 article-title: The Tropical Ocean‐Global Atmosphere observing system: A decade of progress publication-title: Journal of Geophysical Research – volume: 11 start-page: 4339 issue: 11 year: 2018 end-page: 4348 article-title: High winds from combined active and passive measurements of HY‐2A satellite publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 10 start-page: 2123 issue: 5 year: 2017 end-page: 2134 article-title: The CMOD7 geophysical model function for ASCAT and ERS wind retrievals publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 122 start-page: 3461 issue: 4 year: 2017 end-page: 3480 article-title: An SST‐dependent Ku‐band geophysical model function for RapidScat publication-title: Journal of Geophysical Research: Oceans – year: 2023 – volume: 49 start-page: 1915 issue: 8 year: 2021 end-page: 1925 article-title: Evaluation of winds from SCATSAT‐1 and ASCAT using buoys in the Indian Ocean publication-title: Journal of the Indian Society of Remote Sensing – volume: 146 start-page: 1999 issue: 730 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 48 start-page: 3114 issue: 8 year: 2010 end-page: 3122 article-title: A neural network technique for improving the accuracy of scatterometer winds in rainy conditions publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 178 start-page: 127 year: 2016 end-page: 141 article-title: Downscaling land surface temperatures at regional scales with random forest regression publication-title: Remote Sensing of Environment – volume: 7 start-page: 3 issue: 1 year: 2016 end-page: 10 article-title: Machine learning in geosciences and remote sensing publication-title: Geoscience Frontiers – volume: 14 start-page: 1298 issue: 6 year: 1997 end-page: 1313 article-title: Scatterometer data interpretation: Measurement space and inversion publication-title: Journal of Atmospheric and Oceanic Technology – volume: 17 start-page: 923 issue: 6 year: 2019 end-page: 927 article-title: Evaluating Chinese HY‐2B HSCAT ocean wind products using buoys and other scatterometers publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 22 start-page: 194 issue: 2 year: 2009 end-page: 207 article-title: Operational use and impact of satellite remotely sensed ocean surface vector winds in the marine warning and forecasting environment publication-title: Oceanography – volume: 50 start-page: 3004 issue: 8 year: 2012 end-page: 3026 article-title: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 63 start-page: 3 issue: 1 year: 2006 end-page: 42 article-title: Extremely randomized trees publication-title: Machine Learning – ident: e_1_2_8_8_1 doi: 10.1016/j.jweia.2019.05.020 – ident: e_1_2_8_55_1 doi: 10.1016/j.rse.2020.111716 – ident: e_1_2_8_53_1 doi: 10.1109/jstars.2018.2873257 – ident: e_1_2_8_17_1 doi: 10.1002/qj.3803 – ident: e_1_2_8_57_1 doi: 10.1109/jstars.2015.2416514 – ident: e_1_2_8_11_1 doi: 10.1016/j.rse.2020.112236 – ident: e_1_2_8_3_1 doi: 10.1175/2010BAMS2946.1 – ident: e_1_2_8_15_1 doi: 10.1016/j.enconman.2019.05.007 – ident: e_1_2_8_48_1 doi: 10.1109/tgrs.2019.2963690 – ident: e_1_2_8_45_1 doi: 10.1109/lgrs.2019.2940384 – ident: e_1_2_8_59_1 doi: 10.1109/lgrs.2020.2968635 – ident: e_1_2_8_40_1 doi: 10.1175/1520‐0426(1997)014<1298:SDIMSA>2.0.CO;2 – ident: e_1_2_8_10_1 doi: 10.1175/MWR3179.1 – ident: e_1_2_8_23_1 doi: 10.1016/j.isprsjprs.2020.12.010 – ident: e_1_2_8_28_1 doi: 10.3390/rs14174230 – ident: e_1_2_8_20_1 doi: 10.1016/j.rse.2016.03.006 – ident: e_1_2_8_42_1 doi: 10.1002/joc.1176 – ident: e_1_2_8_24_1 doi: 10.1016/j.rse.2020.112227 – ident: e_1_2_8_44_1 doi: 10.1080/07055900.1988.9649300 – ident: e_1_2_8_35_1 doi: 10.3102/1076998619872761 – ident: e_1_2_8_33_1 doi: 10.1002/2014JC009837 – ident: e_1_2_8_22_1 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_2_8_2_1 doi: 10.1175/1520‐0477(2001)082<1965:TEOMWF>2.3.CO;2 – ident: e_1_2_8_6_1 doi: 10.1007/BF00058655 – ident: e_1_2_8_60_1 doi: 10.1109/tgrs.2020.3008405 – ident: e_1_2_8_21_1 doi: 10.1109/tgrs.2018.2876972 – ident: e_1_2_8_49_1 doi: 10.1029/JC088iC03p01892 – ident: e_1_2_8_13_1 doi: 10.1007/s10994‐006‐6226‐1 – ident: e_1_2_8_30_1 doi: 10.1029/1999JC000097 – ident: e_1_2_8_38_1 doi: 10.1175/JTECH‐D‐15‐0008.1 – ident: e_1_2_8_37_1 doi: 10.3390/rs13183678 – ident: e_1_2_8_26_1 – ident: e_1_2_8_50_1 doi: 10.1029/96JC01751 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_36_1 article-title: Scikit‐learn: Machine learning in Python publication-title: Journal of Machine Learning Research – ident: e_1_2_8_7_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_51_1 doi: 10.1029/98JC02148 – ident: e_1_2_8_32_1 doi: 10.1109/tgrs.2011.2179662 – ident: e_1_2_8_18_1 doi: 10.1029/2006JC003743 – ident: e_1_2_8_25_1 doi: 10.1016/j.gsf.2015.07.003 – volume-title: RSS Cross‐Calibrated Multi‐Platform (CCMP) 6‐hourly ocean vector wind analysis on 0.25 deg grid, Version 3.0 year: 2022 ident: e_1_2_8_29_1 – volume-title: ERA5 hourly data on single levels from 1940 to present year: 2023 ident: e_1_2_8_16_1 – ident: e_1_2_8_27_1 doi: 10.1029/97JC02906 – ident: e_1_2_8_4_1 doi: 10.1007/s12667‐019‐00338‐y – ident: e_1_2_8_14_1 doi: 10.1175/1520‐0477(1986)067<0411:NDBCP>2.0.CO;2 – ident: e_1_2_8_39_1 doi: 10.1109/tgrs.2010.2049362 – ident: e_1_2_8_52_1 doi: 10.3390/rs11060627 – ident: e_1_2_8_34_1 doi: 10.1007/s12524‐021‐01335‐4 – ident: e_1_2_8_41_1 doi: 10.1109/jstars.2017.2681806 – ident: e_1_2_8_43_1 doi: 10.1007/s40745‐021‐00332‐1 – ident: e_1_2_8_47_1 doi: 10.1002/2016JC012619 – ident: e_1_2_8_54_1 doi: 10.1175/JTECH‐D‐16‐0145.1 – ident: e_1_2_8_12_1 doi: 10.5589/m02‐035 – ident: e_1_2_8_9_1 doi: 10.5670/oceanog.2009.49 – ident: e_1_2_8_19_1 doi: 10.1109/tgrs.2018.2859819 – ident: e_1_2_8_46_1 doi: 10.3390/rs15102620 – ident: e_1_2_8_56_1 doi: 10.1016/j.rse.2014.02.016 – ident: e_1_2_8_5_1 doi: 10.1002/widm.1072 – ident: e_1_2_8_58_1 doi: 10.1007/s00343‐022‐2047‐8 – ident: e_1_2_8_31_1 doi: 10.1109/tgrs.2009.2027012 |
SSID | ssj0003320807 |
Score | 2.2667928 |
Snippet | Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
SubjectTerms | combination of satellite scatterometer and radiometer convolutional neural network regression random forest sea surface wind speed |
Title | Sea Surface Wind Speed Estimation From the Combination of Satellite Scatterometer and Radiometer Parameters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000165 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20XryIomL9KHvQg4dg9iOb7lGktRQqpbHYW9jdTECkTant1d_u7CaWehG8BLIsc5jN5M1M3rwQcpuauESYhEgyoyIpwUZGuTICrIAQYkWScj_gPHpRg6kczpJZ03DzszC1PsS24eYjI7yvfYAb-9mIDXiNTKza5XAQcpZknxz46VpP6eNyvO2xCMHjemKae5oaIlXccN_RxMOugV-otJulBpjpH5OjJj-kj_WBnpA9WJySjwwMzTar0jigb1hF02yJqEN7GJ_16CHtr6o5xWSOYoBjsVsvViXNTJDcXAPNXJDSrOaeAEMNGpmY4r25HRtP0vJKm2dk2u-9Pg2i5i8JkWNM6UgoVwgGylohAOHe6UQAj52GAjS3KjFOF-BSxpm0JtFGMUhKzi1zEh8jK85Ja1Et4ILQQmiMcAOpE6XkIA1AV3WFAlCxFZy1yd2Pl_JlLYaRh4_YXOe73myT--DCPzflw-cJY_ryH3uvyKFfrSle16S1Xm3gBnOCte2Eg--Eihqvo6_eN6WnsKM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54HOCCQIAYzxzgwKGieTRdjghtjLFN07qJ3aokdSWEtk7T9v9x2jKNCxLHVpYPbpzPdu3PhNzHJswRJiGQzKhASrCBUS4PADMghFgRxdwPOPcHqjOR3Wk0rfec-lmYih9iU3DznlHe197BfUG6ZhvwJJmYtstupwxaol2yLxWP_QoDLoebIosQPKxGprnvU0OoCuvmd1TxtK3gFyxth6klzrSPyVEdINLn6ouekB2Yn5KvBAxN1svcOKAfmEbTZIGwQ1vooNXsIW0vixnFaI6ih2O2W70scpqYknNzBTRxJZdmMfMdMNSgkpHJPuvHofFdWp5q84xM2q3xSyeo1yQEjjGlA6FcJhgoa4UAxHunIwE8dBoy0NyqyDidgYsZZ9KaSBvFIMo5t8xJPEdWnJO9eTGHC0IzodHFDcRO5JKDNABN1RQKQIVWcNYgDz9WShcVG0Za_sXmOt22ZoM8lib8Uyjtvo4Y05f_kL0jB51xv5f23gbvV-TQS1T9Xtdkb7Vcww0GCCt7Wx6Cb_JHsek |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20gngRRcVv96AHD8HsRzbdo2hjrVpKY7G3sLuZgEibUtr_72wSS70IHhOGPUx28mZm37wl5Do2YYEwCYFkRgVSgg2MckUAWAEhxIoo5n7A-a2vuiPZG0fjpuHmZ2FqfYhVw81HRvW_9gE-y4tGbMBrZGLVLnvdKmeJNsmWP-_zlC4uB6seixA8rCemuaepIVKFDfcdl7hbX-AXKq1nqRXMJHtkt8kP6X39QffJBkwPyFcKhqbLeWEc0A-somk6Q9ShHYzPevSQJvNyQjGZoxjgWOzWL8uCpqaS3FwATV0lpVlOPAGGGlxkaPLP5nFgPEnLK20eklHSeX_oBs0tCYFjTOlAKJcLBspaIQDh3ulIAA-dhhw0tyoyTufgYsaZtCbSRjGICs4tcxK3kRVHpDUtp3BMaC40RriB2IlCcpAGoK3aQgGo0ArOTsjNj5eyWS2GkVWH2Fxn6948IbeVC_80ynpPQ8b06T9sr8j24DHJXp_7L2dkxxvUbK9z0lrMl3CB6cHCXlZ74BsnfLEb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+Surface+Wind+Speed+Estimation+From+the+Combination+of+Satellite+Scatterometer+and+Radiometer+Parameters&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Xiang%2C+Kunsheng&rft.au=Zhou%2C+Wu&rft.au=Bao%2C+Qingliu&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000165&rft.externalDBID=10.1029%252F2024JH000165&rft.externalDocID=JGR119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |