Sea Surface Wind Speed Estimation From the Combination of Satellite Scatterometer and Radiometer Parameters

Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 3
Main Authors Xiang, Kunsheng, Zhou, Wu, Bao, Qingliu
Format Journal Article
LanguageEnglish
Published 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications. Plain Language Summary As widely recognized, sea surface wind speed is a crucial oceanographic parameter, and satellite remote sensing plays a vital role in obtaining global ocean surface wind speed information. In this study, we utilized observational data from the HY2B satellite, which is equipped with both microwave scatterometer and radiometer. Leveraging a joint approach using passive and active microwave observations, we employed various ML techniques (random forest regression, convolutional neural network regression, multiple linear regression) to construct a hybrid model for sea surface wind speed retrieval. The model's accuracy was assessed using wind field data from ERA5, CCMP, buoys, and other sources. The results demonstrated that the hybrid model outperforms wind speeds obtained solely from either scatterometer or radiometer, offering a promising avenue for enhancing global sea surface wind speed accuracy. Key Points The joint active‐passive retrieval accuracy of microwave scatterometer and radiometer surpasses that of individual scatterometer or radiometer retrievals Random forest and convolutional neural network demonstrate robust performance in wind speed retrieval The findings have implications for oceanographic applications, advancing remote sensing methodologies for improved wind speed estimation
AbstractList Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications. As widely recognized, sea surface wind speed is a crucial oceanographic parameter, and satellite remote sensing plays a vital role in obtaining global ocean surface wind speed information. In this study, we utilized observational data from the HY2B satellite, which is equipped with both microwave scatterometer and radiometer. Leveraging a joint approach using passive and active microwave observations, we employed various ML techniques (random forest regression, convolutional neural network regression, multiple linear regression) to construct a hybrid model for sea surface wind speed retrieval. The model's accuracy was assessed using wind field data from ERA5, CCMP, buoys, and other sources. The results demonstrated that the hybrid model outperforms wind speeds obtained solely from either scatterometer or radiometer, offering a promising avenue for enhancing global sea surface wind speed accuracy. The joint active‐passive retrieval accuracy of microwave scatterometer and radiometer surpasses that of individual scatterometer or radiometer retrievals Random forest and convolutional neural network demonstrate robust performance in wind speed retrieval The findings have implications for oceanographic applications, advancing remote sensing methodologies for improved wind speed estimation
Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into weather patterns, climate changes, and oceanographic processes. This study investigates the fusion of active (microwave scatterometer) and passive (microwave radiometer) satellite data using Machine learning (ML) for sea surface wind speed estimation. Employing Random Forest Regression (RF), Convolutional Neural Network Regression (CNN), and Multiple Linear Regression (MLR). Evaluation against reference data sets (Advanced Scatterometer, ERA5, Cross‐Calibrated Multi‐Platform (CCMP), buoy wind speeds) highlights the robustness of the proposed models. The research findings indicate that both RF and CNN exhibit superior accuracy in the active, passive, and joint active‐passive models compared to the simplistic MLR model. The joint models of the three regression methods outperform the individual active or passive models. The root mean square deviation (RMSD) accuracy of RF and CNN joint models, when compared with ASCAT, is in the order of 0.7 m/s, and when compared with buoys, the RMSD accuracy is around 1.1 m/s. The ML models, especially RF and CNN, demonstrate superior performance, providing accurate and reliable estimations crucial for meteorological and oceanographic applications. These findings underscore the potential operational use of ML techniques in enhancing remote sensing applications. Plain Language Summary As widely recognized, sea surface wind speed is a crucial oceanographic parameter, and satellite remote sensing plays a vital role in obtaining global ocean surface wind speed information. In this study, we utilized observational data from the HY2B satellite, which is equipped with both microwave scatterometer and radiometer. Leveraging a joint approach using passive and active microwave observations, we employed various ML techniques (random forest regression, convolutional neural network regression, multiple linear regression) to construct a hybrid model for sea surface wind speed retrieval. The model's accuracy was assessed using wind field data from ERA5, CCMP, buoys, and other sources. The results demonstrated that the hybrid model outperforms wind speeds obtained solely from either scatterometer or radiometer, offering a promising avenue for enhancing global sea surface wind speed accuracy. Key Points The joint active‐passive retrieval accuracy of microwave scatterometer and radiometer surpasses that of individual scatterometer or radiometer retrievals Random forest and convolutional neural network demonstrate robust performance in wind speed retrieval The findings have implications for oceanographic applications, advancing remote sensing methodologies for improved wind speed estimation
Author Xiang, Kunsheng
Bao, Qingliu
Zhou, Wu
Author_xml – sequence: 1
  givenname: Kunsheng
  orcidid: 0000-0003-1439-6918
  surname: Xiang
  fullname: Xiang, Kunsheng
  organization: PIESAT Space and Remote Sensing Technology (Shanghai) Company Limited
– sequence: 2
  givenname: Wu
  surname: Zhou
  fullname: Zhou, Wu
  email: zhouwu@mail.nsoas.org.cn
  organization: Ministry of Natural Resources
– sequence: 3
  givenname: Qingliu
  surname: Bao
  fullname: Bao, Qingliu
  organization: PIESAT Space and Remote Sensing Technology (Shanghai) Company Limited
BookMark eNp9kM1OwzAQhC1UJErpjQfwAxDw2k1aH1HVH6pKoAbEMVrbG2FIkyo2Qn37BtpDT1x2Z1efRpq5Zr26qYmxWxD3IKR-kEKOVkshBGTpBetLrVWSShC9M33FhiF8doxSUkzEuM--ckKef7clWuLvvnY83xE5PgvRbzH6pubzttny-EF82myNr4_PpuQ5RqoqH4nnFmOkDqNucuxMNuj86XzBFv9UuGGXJVaBhqc9YG_z2et0mayfF0_Tx3ViATKdqMw6BZQZoxRNpLQ6VSSF1eRIS5OlaLUjOwYJI4OpxgwoLaU0YEeEzqgBuzv62rYJoaWy2LVdmHZfgCh-uyrOu-pwccR_fEX7f9litdgAaHUAgeFtJg
Cites_doi 10.1016/j.jweia.2019.05.020
10.1016/j.rse.2020.111716
10.1109/jstars.2018.2873257
10.1002/qj.3803
10.1109/jstars.2015.2416514
10.1016/j.rse.2020.112236
10.1175/2010BAMS2946.1
10.1016/j.enconman.2019.05.007
10.1109/tgrs.2019.2963690
10.1109/lgrs.2019.2940384
10.1109/lgrs.2020.2968635
10.1175/1520‐0426(1997)014<1298:SDIMSA>2.0.CO;2
10.1175/MWR3179.1
10.1016/j.isprsjprs.2020.12.010
10.3390/rs14174230
10.1016/j.rse.2016.03.006
10.1002/joc.1176
10.1016/j.rse.2020.112227
10.1080/07055900.1988.9649300
10.3102/1076998619872761
10.1002/2014JC009837
10.1007/978-1-4614-7138-7
10.1175/1520‐0477(2001)082<1965:TEOMWF>2.3.CO;2
10.1007/BF00058655
10.1109/tgrs.2020.3008405
10.1109/tgrs.2018.2876972
10.1029/JC088iC03p01892
10.1007/s10994‐006‐6226‐1
10.1029/1999JC000097
10.1175/JTECH‐D‐15‐0008.1
10.3390/rs13183678
10.1029/96JC01751
10.1023/A:1010933404324
10.1029/98JC02148
10.1109/tgrs.2011.2179662
10.1029/2006JC003743
10.1016/j.gsf.2015.07.003
10.1029/97JC02906
10.1007/s12667‐019‐00338‐y
10.1175/1520‐0477(1986)067<0411:NDBCP>2.0.CO;2
10.1109/tgrs.2010.2049362
10.3390/rs11060627
10.1007/s12524‐021‐01335‐4
10.1109/jstars.2017.2681806
10.1007/s40745‐021‐00332‐1
10.1002/2016JC012619
10.1175/JTECH‐D‐16‐0145.1
10.5589/m02‐035
10.5670/oceanog.2009.49
10.1109/tgrs.2018.2859819
10.3390/rs15102620
10.1016/j.rse.2014.02.016
10.1002/widm.1072
10.1007/s00343‐022‐2047‐8
10.1109/tgrs.2009.2027012
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000165
DatabaseName Wiley Open Access (UHCL Subscription)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000165
JGR119
Genre researchArticle
GrantInformation_xml – fundername: Big Data Cloud Platform for Regional Marine Environment Monitoring and Early Warning
  funderid: XTCX‐KJ‐2022‐20
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
WIN
AAYXX
CITATION
ID FETCH-LOGICAL-c1169-36cd31e6bb33e822c953e20c9ede92b65ac9dec71214ba59a61e5f22b1c4eadb3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Wed Aug 20 07:26:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1169-36cd31e6bb33e822c953e20c9ede92b65ac9dec71214ba59a61e5f22b1c4eadb3
ORCID 0000-0003-1439-6918
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000165
PageCount 14
ParticipantIDs crossref_primary_10_1029_2024JH000165
wiley_primary_10_1029_2024JH000165_JGR119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References 2009; 47
2019; 11
2020; 241
2015; 32
2019; 17
2020; 59
2020; 58
2011; 12
2020; 11
2001; 45
2022a; 14
2006; 134
2001; 106
2005; 25
2020; 18
1997; 102
2006; 63
1997; 14
2017; 34
2013; 112
2020; 45
2019; 195
2017; 122
1996; 24
2009; 22
2014; 119
2023; 10
2021; 49
2019; 191
2023; 15
1996
2020; 146
1999; 104
2015; 8
2012; 50
2002; 28
2021; 13
2001; 82
2007; 112
2016; 7
2023; 41
2012; 2
2010; 48
2023
2021; 255
1986; 67
2011; 92
2017; 10
1988; 26
2016; 178
2021; 173
2022b
1998; 103
2021; 253
2018; 11
2014; 147
1983; 88
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Hersbach H. (e_1_2_8_16_1) 2023
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Pedregosa F. (e_1_2_8_36_1) 2011; 12
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Mears C. (e_1_2_8_29_1) 2022
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 57
  start-page: 709
  issue: 2
  year: 2018
  end-page: 721
  article-title: Tropical cyclone center automatic determination model based on HY‐2 and QuikSCAT wind vector products
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 32
  start-page: 1829
  issue: 10
  year: 2015
  end-page: 1846
  article-title: A scatterometer geophysical model function for climate‐quality winds: QuikSCAT Ku‐2011
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 67
  start-page: 411
  issue: 4
  year: 1986
  end-page: 415
  article-title: National data buoy center programs
  publication-title: Bulletin of the American Meteorological Society
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 59
  start-page: 4513
  issue: 6
  year: 2020
  end-page: 4521
  article-title: An evaluation of the Chinese HY‐2B satellite’s microwave scatterometer instrument
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 11
  start-page: 935
  issue: 4
  year: 2020
  end-page: 946
  article-title: Forecasting of wind speed using multiple linear regression and artificial neural networks
  publication-title: Energy Systems
– volume: 47
  start-page: 3065
  issue: 9
  year: 2009
  end-page: 3083
  article-title: Wind‐vector retrievals under rain with passive satellite microwave radiometers
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 102
  start-page: 8703
  issue: C4
  year: 1997
  end-page: 8718
  article-title: A well‐calibrated ocean algorithm for special sensor microwave/imager
  publication-title: Journal of Geophysical Research
– volume: 41
  start-page: 495
  issue: 2
  year: 2023
  end-page: 517
  article-title: Applicability evaluation of ERA5 wind and wave reanalysis data in the South China Sea
  publication-title: Journal of Oceanology Limnology
– volume: 57
  start-page: 2766
  issue: 5
  year: 2018
  end-page: 2776
  article-title: Surface foam and L‐band microwave radiometer measurements in high winds
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 15
  issue: 10
  year: 2023
  article-title: Evaluation of blended wind products and their implications for offshore wind power estimation
  publication-title: Remote Sensing
– volume: 25
  start-page: 979
  issue: 7
  year: 2005
  end-page: 995
  article-title: Methods to homogenize wind speeds from ships and buoys
  publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society
– volume: 26
  start-page: 203
  issue: 2
  year: 1988
  end-page: 233
  article-title: On theoretical wind speed and temperature profiles over the sea with applications to data from Sable Island, Nova Scotia
  publication-title: Atmosphere‐Ocean
– volume: 104
  start-page: 11499
  issue: C5
  year: 1999
  end-page: 11514
  article-title: A model function for the ocean‐normalized radar cross section at 14 GHz derived from NSCAT observations
  publication-title: Journal of Geophysical Research
– volume: 34
  start-page: 1285
  issue: 6
  year: 2017
  end-page: 1306
  article-title: Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 28
  start-page: 404
  issue: 3
  year: 2002
  end-page: 412
  article-title: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers
  publication-title: Canadian Journal of Remote Sensing
– volume: 112
  year: 2013
– volume: 11
  issue: 6
  year: 2019
  article-title: Objective estimation of tropical cyclone intensity from active and passive microwave remote sensing observations in the Northwestern Pacific Ocean
  publication-title: Remote Sensing of Environment
– volume: 106
  start-page: 11719
  issue: C6
  year: 2001
  end-page: 11729
  article-title: Comparison of special sensor microwave imager and buoy‐measured wind speeds from 1987 to 1997
  publication-title: Journal of Geophysical Research
– year: 2022b
– volume: 92
  start-page: 157
  issue: 2
  year: 2011
  end-page: 174
  article-title: A cross‐calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications
  publication-title: Bulletin of the American Meteorological Society
– volume: 18
  start-page: 137
  issue: 1
  year: 2020
  end-page: 141
  article-title: Evaluation of the initial sea surface temperature from the HY‐2B scanning microwave radiometer
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 147
  start-page: 89
  year: 2014
  end-page: 98
  article-title: GCOM‐W1 AMSR2 and MetOp‐A ASCAT wind speeds for the extratropical cyclones over the North Atlantic
  publication-title: Remote Sensing of Environment
– volume: 134
  start-page: 2055
  issue: 8
  year: 2006
  end-page: 2071
  article-title: On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction
  publication-title: Monthly Weather Review
– volume: 112
  issue: C3
  year: 2007
  article-title: An improved C‐band scatterometer ocean geophysical model function: CMOD5
  publication-title: Journal of Geophysical Research
– volume: 253
  year: 2021
  article-title: OC‐SMART: A machine learning based data analysis platform for satellite ocean color sensors
  publication-title: Remote Sensing of Environment
– volume: 13
  issue: 18
  year: 2021
  article-title: Intercalibration of ASCAT scatterometer winds from MetOp‐A,‐B, and‐C, for a stable climate data record
  publication-title: Remote Sensing
– volume: 2
  start-page: 493
  issue: 6
  year: 2012
  end-page: 507
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 58
  start-page: 4387
  issue: 6
  year: 2020
  end-page: 4394
  article-title: Validation of new sea surface wind products from scatterometers onboard the HY‐2B and MetOp‐C satellites
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 191
  start-page: 252
  year: 2019
  end-page: 265
  article-title: Wind speed reconstruction using a novel multivariate probabilistic method and multiple linear regression: Advantages compared to the single correlation approach
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 8
  start-page: 4248
  issue: 9
  year: 2015
  end-page: 4261
  article-title: New possibilities for geophysical parameter retrievals opened by GCOM‐W1 AMSR2
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 45
  start-page: 227
  issue: 2
  year: 2020
  end-page: 248
  article-title: Deep learning with tensorflow: A review
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 195
  start-page: 70
  year: 2019
  end-page: 75
  article-title: One dimensional convolutional neural network architectures for wind prediction
  publication-title: Energy Conversion and Management
– volume: 10
  start-page: 851
  issue: 4
  year: 2023
  end-page: 873
  article-title: Wind speed prediction of central region of Chhattisgarh (India) using artificial neural network and multiple linear regression technique: A comparative study
  publication-title: Annals of Data Science
– volume: 173
  start-page: 24
  year: 2021
  end-page: 49
  article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 119
  start-page: 6499
  issue: 9
  year: 2014
  end-page: 6522
  article-title: The emission and scattering of L‐band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor
  publication-title: Journal of Geophysical Research: Oceans
– volume: 241
  year: 2020
  article-title: Deep learning in environmental remote sensing: Achievements and challenges
  publication-title: Remote Sensing of Environment
– volume: 14
  issue: 17
  year: 2022a
  article-title: Improving the accuracy of the Cross‐Calibrated Multi‐Platform (CCMP) ocean vector winds
  publication-title: Remote Sensing
– volume: 255
  year: 2021
  article-title: A machine learning approach to estimating the error in satellite sea surface temperature retrievals
  publication-title: Remote Sensing of Environment
– year: 1996
– volume: 88
  start-page: 1892
  issue: C3
  year: 1983
  end-page: 1908
  article-title: A model function for ocean microwave brightness temperatures
  publication-title: Journal of Geophysical Research
– volume: 82
  start-page: 1965
  issue: 9
  year: 2001
  end-page: 1990
  article-title: The effects of marine winds from scatterometer data on weather analysis and forecasting
  publication-title: Bulletin of the American Meteorological Society
– volume: 103
  start-page: 14169
  issue: C7
  year: 1998
  end-page: 14240
  article-title: The Tropical Ocean‐Global Atmosphere observing system: A decade of progress
  publication-title: Journal of Geophysical Research
– volume: 11
  start-page: 4339
  issue: 11
  year: 2018
  end-page: 4348
  article-title: High winds from combined active and passive measurements of HY‐2A satellite
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 10
  start-page: 2123
  issue: 5
  year: 2017
  end-page: 2134
  article-title: The CMOD7 geophysical model function for ASCAT and ERS wind retrievals
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 122
  start-page: 3461
  issue: 4
  year: 2017
  end-page: 3480
  article-title: An SST‐dependent Ku‐band geophysical model function for RapidScat
  publication-title: Journal of Geophysical Research: Oceans
– year: 2023
– volume: 49
  start-page: 1915
  issue: 8
  year: 2021
  end-page: 1925
  article-title: Evaluation of winds from SCATSAT‐1 and ASCAT using buoys in the Indian Ocean
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 48
  start-page: 3114
  issue: 8
  year: 2010
  end-page: 3122
  article-title: A neural network technique for improving the accuracy of scatterometer winds in rainy conditions
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 178
  start-page: 127
  year: 2016
  end-page: 141
  article-title: Downscaling land surface temperatures at regional scales with random forest regression
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 3
  issue: 1
  year: 2016
  end-page: 10
  article-title: Machine learning in geosciences and remote sensing
  publication-title: Geoscience Frontiers
– volume: 14
  start-page: 1298
  issue: 6
  year: 1997
  end-page: 1313
  article-title: Scatterometer data interpretation: Measurement space and inversion
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 17
  start-page: 923
  issue: 6
  year: 2019
  end-page: 927
  article-title: Evaluating Chinese HY‐2B HSCAT ocean wind products using buoys and other scatterometers
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 22
  start-page: 194
  issue: 2
  year: 2009
  end-page: 207
  article-title: Operational use and impact of satellite remotely sensed ocean surface vector winds in the marine warning and forecasting environment
  publication-title: Oceanography
– volume: 50
  start-page: 3004
  issue: 8
  year: 2012
  end-page: 3026
  article-title: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  end-page: 42
  article-title: Extremely randomized trees
  publication-title: Machine Learning
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jweia.2019.05.020
– ident: e_1_2_8_55_1
  doi: 10.1016/j.rse.2020.111716
– ident: e_1_2_8_53_1
  doi: 10.1109/jstars.2018.2873257
– ident: e_1_2_8_17_1
  doi: 10.1002/qj.3803
– ident: e_1_2_8_57_1
  doi: 10.1109/jstars.2015.2416514
– ident: e_1_2_8_11_1
  doi: 10.1016/j.rse.2020.112236
– ident: e_1_2_8_3_1
  doi: 10.1175/2010BAMS2946.1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.enconman.2019.05.007
– ident: e_1_2_8_48_1
  doi: 10.1109/tgrs.2019.2963690
– ident: e_1_2_8_45_1
  doi: 10.1109/lgrs.2019.2940384
– ident: e_1_2_8_59_1
  doi: 10.1109/lgrs.2020.2968635
– ident: e_1_2_8_40_1
  doi: 10.1175/1520‐0426(1997)014<1298:SDIMSA>2.0.CO;2
– ident: e_1_2_8_10_1
  doi: 10.1175/MWR3179.1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.isprsjprs.2020.12.010
– ident: e_1_2_8_28_1
  doi: 10.3390/rs14174230
– ident: e_1_2_8_20_1
  doi: 10.1016/j.rse.2016.03.006
– ident: e_1_2_8_42_1
  doi: 10.1002/joc.1176
– ident: e_1_2_8_24_1
  doi: 10.1016/j.rse.2020.112227
– ident: e_1_2_8_44_1
  doi: 10.1080/07055900.1988.9649300
– ident: e_1_2_8_35_1
  doi: 10.3102/1076998619872761
– ident: e_1_2_8_33_1
  doi: 10.1002/2014JC009837
– ident: e_1_2_8_22_1
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_2_8_2_1
  doi: 10.1175/1520‐0477(2001)082<1965:TEOMWF>2.3.CO;2
– ident: e_1_2_8_6_1
  doi: 10.1007/BF00058655
– ident: e_1_2_8_60_1
  doi: 10.1109/tgrs.2020.3008405
– ident: e_1_2_8_21_1
  doi: 10.1109/tgrs.2018.2876972
– ident: e_1_2_8_49_1
  doi: 10.1029/JC088iC03p01892
– ident: e_1_2_8_13_1
  doi: 10.1007/s10994‐006‐6226‐1
– ident: e_1_2_8_30_1
  doi: 10.1029/1999JC000097
– ident: e_1_2_8_38_1
  doi: 10.1175/JTECH‐D‐15‐0008.1
– ident: e_1_2_8_37_1
  doi: 10.3390/rs13183678
– ident: e_1_2_8_26_1
– ident: e_1_2_8_50_1
  doi: 10.1029/96JC01751
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_36_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_7_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_51_1
  doi: 10.1029/98JC02148
– ident: e_1_2_8_32_1
  doi: 10.1109/tgrs.2011.2179662
– ident: e_1_2_8_18_1
  doi: 10.1029/2006JC003743
– ident: e_1_2_8_25_1
  doi: 10.1016/j.gsf.2015.07.003
– volume-title: RSS Cross‐Calibrated Multi‐Platform (CCMP) 6‐hourly ocean vector wind analysis on 0.25 deg grid, Version 3.0
  year: 2022
  ident: e_1_2_8_29_1
– volume-title: ERA5 hourly data on single levels from 1940 to present
  year: 2023
  ident: e_1_2_8_16_1
– ident: e_1_2_8_27_1
  doi: 10.1029/97JC02906
– ident: e_1_2_8_4_1
  doi: 10.1007/s12667‐019‐00338‐y
– ident: e_1_2_8_14_1
  doi: 10.1175/1520‐0477(1986)067<0411:NDBCP>2.0.CO;2
– ident: e_1_2_8_39_1
  doi: 10.1109/tgrs.2010.2049362
– ident: e_1_2_8_52_1
  doi: 10.3390/rs11060627
– ident: e_1_2_8_34_1
  doi: 10.1007/s12524‐021‐01335‐4
– ident: e_1_2_8_41_1
  doi: 10.1109/jstars.2017.2681806
– ident: e_1_2_8_43_1
  doi: 10.1007/s40745‐021‐00332‐1
– ident: e_1_2_8_47_1
  doi: 10.1002/2016JC012619
– ident: e_1_2_8_54_1
  doi: 10.1175/JTECH‐D‐16‐0145.1
– ident: e_1_2_8_12_1
  doi: 10.5589/m02‐035
– ident: e_1_2_8_9_1
  doi: 10.5670/oceanog.2009.49
– ident: e_1_2_8_19_1
  doi: 10.1109/tgrs.2018.2859819
– ident: e_1_2_8_46_1
  doi: 10.3390/rs15102620
– ident: e_1_2_8_56_1
  doi: 10.1016/j.rse.2014.02.016
– ident: e_1_2_8_5_1
  doi: 10.1002/widm.1072
– ident: e_1_2_8_58_1
  doi: 10.1007/s00343‐022‐2047‐8
– ident: e_1_2_8_31_1
  doi: 10.1109/tgrs.2009.2027012
SSID ssj0003320807
Score 2.2667928
Snippet Satellite research on global sea surface winds is crucial for understanding and monitoring the dynamics of earth's oceans, providing valuable insights into...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms combination of satellite scatterometer and radiometer
convolutional neural network regression
random forest
sea surface wind speed
Title Sea Surface Wind Speed Estimation From the Combination of Satellite Scatterometer and Radiometer Parameters
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000165
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20XryIomL9KHvQg4dg9iOb7lGktRQqpbHYW9jdTECkTant1d_u7CaWehG8BLIsc5jN5M1M3rwQcpuauESYhEgyoyIpwUZGuTICrIAQYkWScj_gPHpRg6kczpJZ03DzszC1PsS24eYjI7yvfYAb-9mIDXiNTKza5XAQcpZknxz46VpP6eNyvO2xCMHjemKae5oaIlXccN_RxMOugV-otJulBpjpH5OjJj-kj_WBnpA9WJySjwwMzTar0jigb1hF02yJqEN7GJ_16CHtr6o5xWSOYoBjsVsvViXNTJDcXAPNXJDSrOaeAEMNGpmY4r25HRtP0vJKm2dk2u-9Pg2i5i8JkWNM6UgoVwgGylohAOHe6UQAj52GAjS3KjFOF-BSxpm0JtFGMUhKzi1zEh8jK85Ja1Et4ILQQmiMcAOpE6XkIA1AV3WFAlCxFZy1yd2Pl_JlLYaRh4_YXOe73myT--DCPzflw-cJY_ryH3uvyKFfrSle16S1Xm3gBnOCte2Eg--Eihqvo6_eN6WnsKM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54HOCCQIAYzxzgwKGieTRdjghtjLFN07qJ3aokdSWEtk7T9v9x2jKNCxLHVpYPbpzPdu3PhNzHJswRJiGQzKhASrCBUS4PADMghFgRxdwPOPcHqjOR3Wk0rfec-lmYih9iU3DznlHe197BfUG6ZhvwJJmYtstupwxaol2yLxWP_QoDLoebIosQPKxGprnvU0OoCuvmd1TxtK3gFyxth6klzrSPyVEdINLn6ouekB2Yn5KvBAxN1svcOKAfmEbTZIGwQ1vooNXsIW0vixnFaI6ih2O2W70scpqYknNzBTRxJZdmMfMdMNSgkpHJPuvHofFdWp5q84xM2q3xSyeo1yQEjjGlA6FcJhgoa4UAxHunIwE8dBoy0NyqyDidgYsZZ9KaSBvFIMo5t8xJPEdWnJO9eTGHC0IzodHFDcRO5JKDNABN1RQKQIVWcNYgDz9WShcVG0Za_sXmOt22ZoM8lib8Uyjtvo4Y05f_kL0jB51xv5f23gbvV-TQS1T9Xtdkb7Vcww0GCCt7Wx6Cb_JHsek
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20gngRRcVv96AHD8HsRzbdo2hjrVpKY7G3sLuZgEibUtr_72wSS70IHhOGPUx28mZm37wl5Do2YYEwCYFkRgVSgg2MckUAWAEhxIoo5n7A-a2vuiPZG0fjpuHmZ2FqfYhVw81HRvW_9gE-y4tGbMBrZGLVLnvdKmeJNsmWP-_zlC4uB6seixA8rCemuaepIVKFDfcdl7hbX-AXKq1nqRXMJHtkt8kP6X39QffJBkwPyFcKhqbLeWEc0A-somk6Q9ShHYzPevSQJvNyQjGZoxjgWOzWL8uCpqaS3FwATV0lpVlOPAGGGlxkaPLP5nFgPEnLK20eklHSeX_oBs0tCYFjTOlAKJcLBspaIQDh3ulIAA-dhhw0tyoyTufgYsaZtCbSRjGICs4tcxK3kRVHpDUtp3BMaC40RriB2IlCcpAGoK3aQgGo0ArOTsjNj5eyWS2GkVWH2Fxn6948IbeVC_80ynpPQ8b06T9sr8j24DHJXp_7L2dkxxvUbK9z0lrMl3CB6cHCXlZ74BsnfLEb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+Surface+Wind+Speed+Estimation+From+the+Combination+of+Satellite+Scatterometer+and+Radiometer+Parameters&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Xiang%2C+Kunsheng&rft.au=Zhou%2C+Wu&rft.au=Bao%2C+Qingliu&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000165&rft.externalDBID=10.1029%252F2024JH000165&rft.externalDocID=JGR119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon