A Diffusion‐Based Uncertainty Quantification Method to Advance E3SM Land Model Calibration

Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional cal...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 3
Main Authors Lu, Dan, Liu, Yanfang, Zhang, Zezhong, Bao, Feng, Zhang, Guannan
Format Journal Article
LanguageEnglish
Published 01.09.2024
Online AccessGet full text

Cover

Loading…
Abstract Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional calibration methods, however, face challenges of high computational costs and difficulties in accurately quantifying parameter uncertainties. To address these issues, we develop a diffusion‐based uncertainty quantification (DBUQ) method. Unlike conventional generative diffusion methods, which are computationally expensive and memory‐intensive, DBUQ innovates by formulating a parameterized generative model and approximates this model through supervised learning, which enables quick generation of parameter posterior samples to quantify its uncertainty. DBUQ is effective, efficient, and general‐purpose, making it suitable for site‐specific ecosystem model calibration and broadly applicable for parameter uncertainty quantification across various earth system models. In this study, we applied DBUQ to calibrate the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site. Results indicated that DBUQ produced accurate parameter posterior distributions similar to those from Markov Chain Monte Carlo sampling but with 30 times less computing time. This significant improvement in efficiency suggests that DBUQ can enable rapid, site‐level model calibration at a global scale, enhancing our predictive understanding of climate impacts on terrestrial ecosystems. Plain Language Summary Land surface models are essential for simulating environmental processes and aiding climate‐resilient decision‐making. Traditionally, calibrating these models has been costly and time‐consuming. To address this, we developed a new method called diffusion‐based uncertainty quantification (DBUQ), which is faster and less memory‐intensive than previous methods. Using supervised learning, DBUQ quickly generates samples to accurately approximate parameter posterior distributions. We tested this method on the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site, finding that it can produce results similar to traditional methods but 30 times faster. This efficiency suggests that DBUQ could revolutionize the calibration of land surface models globally, enhancing our predictive understanding of climate impacts on ecosystems. Key Points A novel diffusion model‐based uncertainty quantification method was developed for efficient model calibration This method produced accurate parameter posterior distributions comparable to those from Markov Chain Monte Carlo sampling, but 30 times faster The method performs amortized Bayesian inference and can be broadly applied to accelerate earth system model calibration
AbstractList Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional calibration methods, however, face challenges of high computational costs and difficulties in accurately quantifying parameter uncertainties. To address these issues, we develop a diffusion‐based uncertainty quantification (DBUQ) method. Unlike conventional generative diffusion methods, which are computationally expensive and memory‐intensive, DBUQ innovates by formulating a parameterized generative model and approximates this model through supervised learning, which enables quick generation of parameter posterior samples to quantify its uncertainty. DBUQ is effective, efficient, and general‐purpose, making it suitable for site‐specific ecosystem model calibration and broadly applicable for parameter uncertainty quantification across various earth system models. In this study, we applied DBUQ to calibrate the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site. Results indicated that DBUQ produced accurate parameter posterior distributions similar to those from Markov Chain Monte Carlo sampling but with 30 times less computing time. This significant improvement in efficiency suggests that DBUQ can enable rapid, site‐level model calibration at a global scale, enhancing our predictive understanding of climate impacts on terrestrial ecosystems. Plain Language Summary Land surface models are essential for simulating environmental processes and aiding climate‐resilient decision‐making. Traditionally, calibrating these models has been costly and time‐consuming. To address this, we developed a new method called diffusion‐based uncertainty quantification (DBUQ), which is faster and less memory‐intensive than previous methods. Using supervised learning, DBUQ quickly generates samples to accurately approximate parameter posterior distributions. We tested this method on the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site, finding that it can produce results similar to traditional methods but 30 times faster. This efficiency suggests that DBUQ could revolutionize the calibration of land surface models globally, enhancing our predictive understanding of climate impacts on ecosystems. Key Points A novel diffusion model‐based uncertainty quantification method was developed for efficient model calibration This method produced accurate parameter posterior distributions comparable to those from Markov Chain Monte Carlo sampling, but 30 times faster The method performs amortized Bayesian inference and can be broadly applied to accelerate earth system model calibration
Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional calibration methods, however, face challenges of high computational costs and difficulties in accurately quantifying parameter uncertainties. To address these issues, we develop a diffusion‐based uncertainty quantification (DBUQ) method. Unlike conventional generative diffusion methods, which are computationally expensive and memory‐intensive, DBUQ innovates by formulating a parameterized generative model and approximates this model through supervised learning, which enables quick generation of parameter posterior samples to quantify its uncertainty. DBUQ is effective, efficient, and general‐purpose, making it suitable for site‐specific ecosystem model calibration and broadly applicable for parameter uncertainty quantification across various earth system models. In this study, we applied DBUQ to calibrate the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site. Results indicated that DBUQ produced accurate parameter posterior distributions similar to those from Markov Chain Monte Carlo sampling but with 30 times less computing time. This significant improvement in efficiency suggests that DBUQ can enable rapid, site‐level model calibration at a global scale, enhancing our predictive understanding of climate impacts on terrestrial ecosystems. Land surface models are essential for simulating environmental processes and aiding climate‐resilient decision‐making. Traditionally, calibrating these models has been costly and time‐consuming. To address this, we developed a new method called diffusion‐based uncertainty quantification (DBUQ), which is faster and less memory‐intensive than previous methods. Using supervised learning, DBUQ quickly generates samples to accurately approximate parameter posterior distributions. We tested this method on the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site, finding that it can produce results similar to traditional methods but 30 times faster. This efficiency suggests that DBUQ could revolutionize the calibration of land surface models globally, enhancing our predictive understanding of climate impacts on ecosystems. A novel diffusion model‐based uncertainty quantification method was developed for efficient model calibration This method produced accurate parameter posterior distributions comparable to those from Markov Chain Monte Carlo sampling, but 30 times faster The method performs amortized Bayesian inference and can be broadly applied to accelerate earth system model calibration
Author Zhang, Zezhong
Lu, Dan
Zhang, Guannan
Liu, Yanfang
Bao, Feng
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0001-5162-9843
  surname: Lu
  fullname: Lu, Dan
  organization: Oak Ridge National Laboratory
– sequence: 2
  givenname: Yanfang
  surname: Liu
  fullname: Liu, Yanfang
  organization: Oak Ridge National Laboratory
– sequence: 3
  givenname: Zezhong
  surname: Zhang
  fullname: Zhang, Zezhong
  organization: Oak Ridge National Laboratory
– sequence: 4
  givenname: Feng
  surname: Bao
  fullname: Bao, Feng
  organization: Florida State University
– sequence: 5
  givenname: Guannan
  orcidid: 0000-0001-7256-150X
  surname: Zhang
  fullname: Zhang, Guannan
  email: zhangg@ornl.gov
  organization: Oak Ridge National Laboratory
BookMark eNp90EtOwzAYBGALFYlSuuMAPgCB34848bKUPqhSIR7dIUVObAuj4KA4BWXHETgjJyFQFl2xmll8msUco4GvvUHolMA5ASovKFC-WgIAZfwADamULIopgcFeP0LjEJ57wxiFFJIhepzgK2ftNrjaf318XqpgNN740jStcr7t8O1W-dZZV6q2J3ht2qda47bGE_2meodn7H6NM-U1XtfaVHiqKlc0v_oEHVpVBTP-yxHazGcP02WU3Syup5MsKgkRIkokiW0heQIl51YUqS6oFCqNuaAm6YWVKS21JZIXJuFCcE01AasI4aoQnI3Q2W63bOoQGmPz18a9qKbLCeQ_5-T75_QcdvzdVab71-arxR1hgn0D5jJmSQ
Cites_doi 10.1002/2015JG003302
10.1073/pnas.1413090112
10.5281/zenodo.12110816
10.5194/acp‐20‐2303‐2020
10.1002/2015WR016967
10.1029/2011WR011289
10.1002/2017MS001134
10.5194/gmd‐12‐1791‐2019
10.1615/jmachlearnmodelcomput.2024051346
10.1146/annurev-statistics-112723-034123
10.1109/ICCVW54120.2021.00213
10.1109/TCI.2024.3449114
10.1016/j.cageo.2019.01.012
10.1109/TCI.2023.3248949
10.1002/2013JG002535
10.1109/TPAMI.2022.3204461
10.1109/CVPR52688.2022.01581
10.1016/j.envsoft.2015.08.013
10.1029/2018MS001603
10.5194/bg‐9‐3857‐2012
10.1002/wrcr.20467
10.1029/2020MS002454
10.3390/e22080802
10.1002/2017MS000962
10.1007/978-3-030-58580-8_22
10.1016/j.jcp.2024.113207
10.1016/j.neucom.2022.01.029
10.1016/j.jhydrol.2016.11.051
10.1109/CVPRW56347.2022.00462
10.48550/arXiv.2206.09012
10.1029/2019MS001821
10.1162/NECO_a_00142
10.1086/670067
10.5194/bg‐14‐4295‐2017
10.1175/1087‐3562(2000)004〈0003:PASAOT〉2.0.CO;2
10.1029/2011GB004185
10.1175/1520‐0477(2001)082〈2415:FANTTS〉2.3.CO;2
10.1002/2017WR021622
ContentType Journal Article
Copyright 2024 Oak Ridge National Laboratory, managed by UT–Battelle, LLC and The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 Oak Ridge National Laboratory, managed by UT–Battelle, LLC and The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000234
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000234
JGR136
Genre researchArticle
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐2142672
– fundername: Biological and Environmental Research
– fundername: Advanced Scientific Computing Research
  funderid: ERKJ387
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
WIN
AAYXX
CITATION
ID FETCH-LOGICAL-c1166-7915fb9470c44f6b8db296a85462e7166f982cdf194be74664d2d10fa114ab643
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Wed Aug 20 07:26:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1166-7915fb9470c44f6b8db296a85462e7166f982cdf194be74664d2d10fa114ab643
ORCID 0000-0001-5162-9843
0000-0001-7256-150X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000234
PageCount 17
ParticipantIDs crossref_primary_10_1029_2024JH000234
wiley_primary_10_1029_2024JH000234_JGR136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References 2014; 119
2015; 37
2021; 22
2013; 49
2020; 20
2015; 51
2019; 11
2000; 4
2019; 32
2023; 9
2019; 12
2022; 23
2016; 75
2013; 125
2016; 121
2019; 125
2020; 12
2020; 33
2024
2022; 479
2021; 13
2001; 82
2017; 53
2021; 34
2023; 45
2023
2022
2024; 5
2017; 14
2021
2024; 514
2015; 112
2020; 12348
2011; 23
2020; 22
2012; 48
2012; 26
2018; 10
2017; 544
2012; 9
e_1_2_10_23_1
Ho J. (e_1_2_10_21_1) 2022; 23
e_1_2_10_42_1
Luo S. (e_1_2_10_34_1) 2021
Meng C. (e_1_2_10_37_1) 2022
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
Kim B. (e_1_2_10_24_1) 2021
Papamakarios G. (e_1_2_10_40_1) 2021; 22
Song Y. (e_1_2_10_46_1) 2021
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
Sohl‐Dickstein J. (e_1_2_10_44_1) 2015
e_1_2_10_22_1
e_1_2_10_43_1
Dhariwal P. (e_1_2_10_12_1) 2021
Bao F. (e_1_2_10_7_1) 2023
Baldassari L. (e_1_2_10_4_1) 2023
Yang M. (e_1_2_10_55_1) 2023
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
Ho J. (e_1_2_10_20_1) 2020
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Song Y. (e_1_2_10_45_1) 2019
e_1_2_10_56_1
e_1_2_10_15_1
Lu D. (e_1_2_10_30_1) 2022
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Qiao X. (e_1_2_10_41_1) 2024
e_1_2_10_50_1
Baranchuk D. (e_1_2_10_9_1) 2022
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 10
  start-page: 297
  issue: 2
  year: 2018
  end-page: 319
  article-title: The impact of parametric uncertainties on biogeochemistry in the E3SM land model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 125
  start-page: 69
  year: 2019
  end-page: 77
  article-title: An adaptive Kriging surrogate method for efficient uncertainty quantification with an application to geological carbon sequestration modeling
  publication-title: Computers & Geosciences
– start-page: 1866
  year: 2021
  end-page: 1875
– year: 2021
– volume: 112
  start-page: 2788
  issue: 9
  year: 2015
  end-page: 2793
  article-title: Joint control of terrestrial gross primary productivity by plant phenology and physiology
  publication-title: Proceedings of the National Academy of Sciences
– volume: 479
  start-page: 47
  year: 2022
  end-page: 59
  article-title: SRDiff: Single image super‐resolution with diffusion probabilistic models
  publication-title: Neurocomputing
– year: 2024
– volume: 10
  start-page: 1337
  issue: 6
  year: 2018
  end-page: 1356
  article-title: Calibration of the E3SM land model using surrogate‐based global optimization
  publication-title: Journal of Advances in Modeling Earth Systems
– start-page: 16272
  year: 2022
  end-page: 16282
– year: 2021
  article-title: Diffusemorph: Unsupervised deformable image registration along continuous trajectory using diffusion models
  publication-title: CoRR
– volume: 23
  start-page: 1661
  issue: 7
  year: 2011
  end-page: 1674
  article-title: A connection between score matching and denoising autoencoders
  publication-title: Neural Computation
– volume: 544
  start-page: 456
  year: 2017
  end-page: 466
  article-title: Calibration of an agricultural‐hydrological model (RZWQM2) using surrogate global optimization
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 3857
  issue: 10
  year: 2012
  end-page: 3874
  article-title: A framework for benchmarking land models
  publication-title: Biogeosciences
– year: 2023
  article-title: A pseudo‐reversible normalizing flow for stochastic dynamical systems with various initial distributions
  publication-title: arXiv Preprint
– volume: 26
  issue: 3
  year: 2012
  article-title: On the capability of Monte Carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models
  publication-title: Global Biogeochemical Cycles
– start-page: 4563
  year: 2021
  end-page: 4572
– volume: 4
  start-page: 1
  issue: 3
  year: 2000
  end-page: 85
  article-title: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls
  publication-title: Earth Interactions
– year: 2022
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
– volume: 119
  start-page: 403
  issue: 3
  year: 2014
  end-page: 417
  article-title: Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov Chain Monte Carlo Method
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 12348
  start-page: 364
  year: 2020
  end-page: 381
– year: 2022
  article-title: Diffusion models as plug‐and‐play priors
  publication-title: CoRR
– volume: 32
  year: 2019
– volume: 75
  start-page: 273
  year: 2016
  end-page: 316
  article-title: Markov Chain Monte Carlo simulation using the dream software package: Theory, concepts, and Matlab implementation
  publication-title: Environmental Modelling & Software
– volume: 12
  issue: 11
  year: 2020
  article-title: An introduction to the E3SM special collection: Goals, science drivers, development, and analysis
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 11
  start-page: 2089
  issue: 7
  year: 2019
  end-page: 2129
  article-title: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 125
  start-page: 306
  issue: 925
  year: 2013
  end-page: 312
  article-title: EMCEE: The MCMC hammer
  publication-title: Publications of the Astronomical Society of the Pacific
– year: 2024
  article-title: Yanfangliu11/diffusion_uq: Diffusion_uq_v1
  publication-title: Zenodo
– volume: 48
  issue: 9
  year: 2012
  article-title: Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification
  publication-title: Water Resources Research
– volume: 514
  issue: 1
  year: 2024
  article-title: A score‐based filter for nonlinear data assimilation
  publication-title: Journal of Computational Physics
– volume: 45
  start-page: 4713
  issue: 4
  year: 2023
  end-page: 4726
  article-title: Image super‐resolution via iterative refinement
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 14
  start-page: 4295
  issue: 18
  year: 2017
  end-page: 4314
  article-title: Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov Chain Monte Carlo methods
  publication-title: Biogeosciences
– volume: 51
  start-page: 5957
  issue: 8
  year: 2015
  end-page: 5973
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resources Research
– volume: 13
  issue: 9
  year: 2021
  article-title: Calibration and uncertainty quantification of convective parameters in an idealized GCM
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 53
  start-page: 10802
  issue: 12
  year: 2017
  end-page: 10823
  article-title: A Taylor expansion‐based adaptive design strategy for global surrogate modeling with applications in groundwater modeling
  publication-title: Water Resources Research
– volume: 23
  start-page: 1
  issue: 47
  year: 2022
  end-page: 47:33
  article-title: Cascaded diffusion models for high fidelity image generation
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 224
  year: 2023
  end-page: 237
  article-title: Conditional injective flows for Bayesian imaging
  publication-title: IEEE Transactions on Computational Imaging
– year: 2024
  article-title: Score‐based generative priors guided model‐driven network for MRI reconstruction
  publication-title: ArXiv
– volume: 12
  start-page: 1791
  issue: 5
  year: 2019
  end-page: 1807
  article-title: Efficient surrogate modeling methods for large‐scale Earth system models based on machine‐learning techniques
  publication-title: Geoscientific Model Development
– volume: 49
  start-page: 6871
  issue: 10
  year: 2013
  end-page: 6892
  article-title: An adaptive sparse‐grid high‐order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling
  publication-title: Water Resources Research
– volume: 37
  start-page: 2256
  year: 2015
  end-page: 2265
– volume: 22
  start-page: 1
  issue: 57
  year: 2021
  end-page: 64
  article-title: Normalizing flows for probabilistic modeling and inference
  publication-title: Journal of Machine Learning Research
– volume: 121
  start-page: 1884
  issue: 7
  year: 2016
  end-page: 1902
  article-title: Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a central U.S. forest
  publication-title: Journal of Geophysical Research: Biogeosciences
– year: 2023
– year: 2023
  article-title: A score‐based nonlinear filter for data assimilation
  publication-title: arXiv
– volume: 20
  start-page: 2303
  issue: 4
  year: 2020
  end-page: 2317
  article-title: Technical note: Deep learning for creating surrogate models of precipitation in earth system models
  publication-title: Atmospheric Chemistry and Physics
– year: 2023
  article-title: Conditional score‐based diffusion models for Bayesian inference in infinite dimensions
  publication-title: arXiv Preprint
– volume: 82
  start-page: 2415
  issue: 11
  year: 2001
  end-page: 2434
  article-title: Fluxnet: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bulletin of the American Meteorological Society
– start-page: 4174
  year: 2022
  end-page: 4185
– volume: 22
  issue: 8
  year: 2020
  article-title: Interacting particle solutions of Fokker–Planck equations through gradient–log–density estimation
  publication-title: Entropy
– volume: 34
  start-page: 8780
  year: 2021
  end-page: 8794
– volume: 5
  start-page: 25
  issue: 1
  year: 2024
  end-page: 38
  article-title: Diffusion‐model‐assisted supervised learning of generative models for density estimation
  publication-title: Journal of Machine Learning for Modeling and Computing
– ident: e_1_2_10_17_1
  doi: 10.1002/2015JG003302
– ident: e_1_2_10_54_1
  doi: 10.1073/pnas.1413090112
– ident: e_1_2_10_5_1
– ident: e_1_2_10_27_1
  doi: 10.5281/zenodo.12110816
– ident: e_1_2_10_50_1
  doi: 10.5194/acp‐20‐2303‐2020
– ident: e_1_2_10_3_1
  doi: 10.1002/2015WR016967
– ident: e_1_2_10_33_1
  doi: 10.1029/2011WR011289
– ident: e_1_2_10_31_1
  doi: 10.1002/2017MS001134
– year: 2023
  ident: e_1_2_10_55_1
  article-title: A pseudo‐reversible normalizing flow for stochastic dynamical systems with various initial distributions
  publication-title: arXiv Preprint
– ident: e_1_2_10_29_1
  doi: 10.5194/gmd‐12‐1791‐2019
– ident: e_1_2_10_28_1
  doi: 10.1615/jmachlearnmodelcomput.2024051346
– year: 2023
  ident: e_1_2_10_7_1
  article-title: A score‐based nonlinear filter for data assimilation
  publication-title: arXiv
– ident: e_1_2_10_56_1
  doi: 10.1146/annurev-statistics-112723-034123
– ident: e_1_2_10_22_1
  doi: 10.1109/ICCVW54120.2021.00213
– start-page: 6840
  volume-title: Advances in neural information processing systems
  year: 2020
  ident: e_1_2_10_20_1
– ident: e_1_2_10_47_1
  doi: 10.1109/TCI.2024.3449114
– volume-title: The tenth international conference on learning representations, ICLR 2022, virtual event, April 25–29, 2022
  year: 2022
  ident: e_1_2_10_37_1
– ident: e_1_2_10_39_1
  doi: 10.1016/j.cageo.2019.01.012
– ident: e_1_2_10_23_1
  doi: 10.1109/TCI.2023.3248949
– volume-title: Advances in neural information processing systems
  year: 2019
  ident: e_1_2_10_45_1
– year: 2023
  ident: e_1_2_10_4_1
  article-title: Conditional score‐based diffusion models for Bayesian inference in infinite dimensions
  publication-title: arXiv Preprint
– ident: e_1_2_10_18_1
– ident: e_1_2_10_19_1
  doi: 10.1002/2013JG002535
– ident: e_1_2_10_43_1
  doi: 10.1109/TPAMI.2022.3204461
– volume: 22
  start-page: 1
  issue: 57
  year: 2021
  ident: e_1_2_10_40_1
  article-title: Normalizing flows for probabilistic modeling and inference
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_51_1
  doi: 10.1109/CVPR52688.2022.01581
– year: 2021
  ident: e_1_2_10_24_1
  article-title: Diffusemorph: Unsupervised deformable image registration along continuous trajectory using diffusion models
  publication-title: CoRR
– ident: e_1_2_10_49_1
  doi: 10.1016/j.envsoft.2015.08.013
– volume: 23
  start-page: 1
  issue: 47
  year: 2022
  ident: e_1_2_10_21_1
  article-title: Cascaded diffusion models for high fidelity image generation
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_15_1
  doi: 10.1029/2018MS001603
– ident: e_1_2_10_35_1
  doi: 10.5194/bg‐9‐3857‐2012
– ident: e_1_2_10_57_1
  doi: 10.1002/wrcr.20467
– ident: e_1_2_10_13_1
  doi: 10.1029/2020MS002454
– ident: e_1_2_10_36_1
  doi: 10.3390/e22080802
– ident: e_1_2_10_42_1
  doi: 10.1002/2017MS000962
– ident: e_1_2_10_11_1
  doi: 10.1007/978-3-030-58580-8_22
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jcp.2024.113207
– ident: e_1_2_10_2_1
– volume-title: International conference on learning representations
  year: 2021
  ident: e_1_2_10_46_1
– ident: e_1_2_10_26_1
  doi: 10.1016/j.neucom.2022.01.029
– ident: e_1_2_10_53_1
  doi: 10.1016/j.jhydrol.2016.11.051
– ident: e_1_2_10_10_1
  doi: 10.1109/CVPRW56347.2022.00462
– ident: e_1_2_10_16_1
  doi: 10.48550/arXiv.2206.09012
– volume-title: Proceedings of ICLR AI for earth and space sciences workshop
  year: 2022
  ident: e_1_2_10_30_1
– start-page: 4563
  volume-title: 2021 IEEE/CVF international conference on computer vision, ICCV 2021, Montreal, QC, Canada, October 10–17, 2021
  year: 2021
  ident: e_1_2_10_34_1
– ident: e_1_2_10_25_1
  doi: 10.1029/2019MS001821
– ident: e_1_2_10_48_1
  doi: 10.1162/NECO_a_00142
– start-page: 8780
  volume-title: Advances in neural information processing systems
  year: 2021
  ident: e_1_2_10_12_1
– start-page: 2256
  volume-title: Deep unsupervised learning using nonequilibrium thermodynamics
  year: 2015
  ident: e_1_2_10_44_1
– ident: e_1_2_10_14_1
  doi: 10.1086/670067
– ident: e_1_2_10_32_1
  doi: 10.5194/bg‐14‐4295‐2017
– ident: e_1_2_10_52_1
  doi: 10.1175/1087‐3562(2000)004〈0003:PASAOT〉2.0.CO;2
– ident: e_1_2_10_58_1
  doi: 10.1029/2011GB004185
– volume-title: International conference on learning representations
  year: 2022
  ident: e_1_2_10_9_1
– ident: e_1_2_10_6_1
  doi: 10.1175/1520‐0477(2001)082〈2415:FANTTS〉2.3.CO;2
– year: 2024
  ident: e_1_2_10_41_1
  article-title: Score‐based generative priors guided model‐driven network for MRI reconstruction
  publication-title: ArXiv
– ident: e_1_2_10_38_1
  doi: 10.1002/2017WR021622
SSID ssj0003320807
Score 2.2670977
Snippet Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental...
SourceID crossref
wiley
SourceType Index Database
Publisher
Title A Diffusion‐Based Uncertainty Quantification Method to Advance E3SM Land Model Calibration
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000234
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL15EUbE-Sg568LC4m2Szm2PV1lKs-Cr0ICx5bECQrej24EX8Cf5Gf4mZZC31InjJIYQcZkjmm9c3CB1m0kjLEhYxmemIORsYCec1REzrjCrJc659tcUVH4zZcJJOmoAb9MIEfoh5wA1ehv-v4YFL9dqQDQBHpvPa2XDgCVvYMlqB7lrgzifseh5joZTEoWOaQJmas1RxU_vurjhZvOCXVVpEqd7M9NfRWoMPcTcodAMtldUmeuji80drZxDZ-vr4PHWWx-CxU5dP59dv-GYmQ9GPlzMe-bHQuJ7ibkjx4x69G-FLWRkMw8-eMLRkqaD8LTTu9-7PBlEzFiHSScI5EEymVgmWxZoxy1VuFBFc5injpHTuD7ciJ9rYRDBVZkAfb4hJYiudiKRyCGQbtappVe4gbKgEQsKUSmEdklK5cmDbGCsUBRwSt9HRj1iK58B-UfisNRHFovja6NjL7M9DxfDiNqF89x9n99Aq7Iaarn3Uql9m5YEDAbXqeE13vAvt1tF77xuLBalu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDK0wMMDBGJ7TrxWKAllLbi0UodkCI7jiUklCKUDmz8BH4jvwSfHaqyILGfPNzpfN-9vkPoJJZaGhaxgMk4D5iNgYGwWUPA8jymSvKE527aYsjTMetNWpP6zinswnh-iHnBDTzD_dfg4FCQrtkGgCTTpu2slzrGFraMVhgnMXgmYXfzIgulJPQr0wTm1GyoCuvhd_vE-eIDv8LSIkx1caa7gdZrgIjb3qKbaKkot9BTG189GzOD0tbXx-eFDT0aj629XD-_esf3M-mnfpyi8cDdhcbVFLd9jx936OMA92WpMVw_e8Gwk6W89bfRuNsZXaZBfRchyKOIc2CYbBklWBzmjBmuEq2I4DJpWRUUNv_hRiQk1yYSTBUx8MdroqPQSJv7SGUhyA5qlNOy2EVYUwmMhC0qhbFQSiXKom2tjVAUgEjYRKc_aslePf1F5trWRGSL6muiM6ezP4Wy3vVDRPneP2SP0Wo6GvSz_s3wdh-tgYQf8DpAjeptVhxaRFCpI2f1b9AVqrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIomJ95qAHD4u7STa7OVbbWmtb6qPQg7DksQFBtkV2D978Cf5Gf4l5rKVeBO9DDjNM5pvXNwCcJVxxTSISEJ7IgJgYGDCTNQREygQLTlMq3bTFiPYmpD-Np3XBze7CeH6IRcHNeob7r62Dz5WuyQYsR6bJ2km_5whbyCpYc_0-y-xMxosaC8Yo9BvTyI6pmUgV1rPv5onL5Qd-RaVllOrCTHcLbNb4ELa8QbfBSl7sgOcWbL9oXdnK1tfH55WJPApOjLlcO798h_cV90M_Ts9w6M5Cw3IGW77FDzv4cQgHvFDQHj97hXYlS3jj74JJt_N03QvqswiBjCJKLcFkrAUjSSgJ0VSkSiBGeRoTinKT_lDNUiSVjhgReWLp4xVSUai5SX24MAhkDzSKWZHvA6gwt4SEMeZMGyQlUmHAtlKaCWxxSNgE5z9qyeae_SJzXWvEsmX1NcGF09mfQln_5iHC9OAfsqdgfdzuZoPb0d0h2LACfrzrCDTKtyo_NnigFCfO6N8TH6nm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Diffusion%E2%80%90Based+Uncertainty+Quantification+Method+to+Advance+E3SM+Land+Model+Calibration&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Lu%2C+Dan&rft.au=Liu%2C+Yanfang&rft.au=Zhang%2C+Zezhong&rft.au=Bao%2C+Feng&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon