A Diffusion‐Based Uncertainty Quantification Method to Advance E3SM Land Model Calibration
Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional cal...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional calibration methods, however, face challenges of high computational costs and difficulties in accurately quantifying parameter uncertainties. To address these issues, we develop a diffusion‐based uncertainty quantification (DBUQ) method. Unlike conventional generative diffusion methods, which are computationally expensive and memory‐intensive, DBUQ innovates by formulating a parameterized generative model and approximates this model through supervised learning, which enables quick generation of parameter posterior samples to quantify its uncertainty. DBUQ is effective, efficient, and general‐purpose, making it suitable for site‐specific ecosystem model calibration and broadly applicable for parameter uncertainty quantification across various earth system models. In this study, we applied DBUQ to calibrate the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site. Results indicated that DBUQ produced accurate parameter posterior distributions similar to those from Markov Chain Monte Carlo sampling but with 30 times less computing time. This significant improvement in efficiency suggests that DBUQ can enable rapid, site‐level model calibration at a global scale, enhancing our predictive understanding of climate impacts on terrestrial ecosystems.
Plain Language Summary
Land surface models are essential for simulating environmental processes and aiding climate‐resilient decision‐making. Traditionally, calibrating these models has been costly and time‐consuming. To address this, we developed a new method called diffusion‐based uncertainty quantification (DBUQ), which is faster and less memory‐intensive than previous methods. Using supervised learning, DBUQ quickly generates samples to accurately approximate parameter posterior distributions. We tested this method on the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site, finding that it can produce results similar to traditional methods but 30 times faster. This efficiency suggests that DBUQ could revolutionize the calibration of land surface models globally, enhancing our predictive understanding of climate impacts on ecosystems.
Key Points
A novel diffusion model‐based uncertainty quantification method was developed for efficient model calibration
This method produced accurate parameter posterior distributions comparable to those from Markov Chain Monte Carlo sampling, but 30 times faster
The method performs amortized Bayesian inference and can be broadly applied to accelerate earth system model calibration |
---|---|
AbstractList | Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional calibration methods, however, face challenges of high computational costs and difficulties in accurately quantifying parameter uncertainties. To address these issues, we develop a diffusion‐based uncertainty quantification (DBUQ) method. Unlike conventional generative diffusion methods, which are computationally expensive and memory‐intensive, DBUQ innovates by formulating a parameterized generative model and approximates this model through supervised learning, which enables quick generation of parameter posterior samples to quantify its uncertainty. DBUQ is effective, efficient, and general‐purpose, making it suitable for site‐specific ecosystem model calibration and broadly applicable for parameter uncertainty quantification across various earth system models. In this study, we applied DBUQ to calibrate the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site. Results indicated that DBUQ produced accurate parameter posterior distributions similar to those from Markov Chain Monte Carlo sampling but with 30 times less computing time. This significant improvement in efficiency suggests that DBUQ can enable rapid, site‐level model calibration at a global scale, enhancing our predictive understanding of climate impacts on terrestrial ecosystems.
Plain Language Summary
Land surface models are essential for simulating environmental processes and aiding climate‐resilient decision‐making. Traditionally, calibrating these models has been costly and time‐consuming. To address this, we developed a new method called diffusion‐based uncertainty quantification (DBUQ), which is faster and less memory‐intensive than previous methods. Using supervised learning, DBUQ quickly generates samples to accurately approximate parameter posterior distributions. We tested this method on the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site, finding that it can produce results similar to traditional methods but 30 times faster. This efficiency suggests that DBUQ could revolutionize the calibration of land surface models globally, enhancing our predictive understanding of climate impacts on ecosystems.
Key Points
A novel diffusion model‐based uncertainty quantification method was developed for efficient model calibration
This method produced accurate parameter posterior distributions comparable to those from Markov Chain Monte Carlo sampling, but 30 times faster
The method performs amortized Bayesian inference and can be broadly applied to accelerate earth system model calibration Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental processes. This, in turn, advances our predictive understanding of ecosystems and supports climate‐resilient decision‐making. Traditional calibration methods, however, face challenges of high computational costs and difficulties in accurately quantifying parameter uncertainties. To address these issues, we develop a diffusion‐based uncertainty quantification (DBUQ) method. Unlike conventional generative diffusion methods, which are computationally expensive and memory‐intensive, DBUQ innovates by formulating a parameterized generative model and approximates this model through supervised learning, which enables quick generation of parameter posterior samples to quantify its uncertainty. DBUQ is effective, efficient, and general‐purpose, making it suitable for site‐specific ecosystem model calibration and broadly applicable for parameter uncertainty quantification across various earth system models. In this study, we applied DBUQ to calibrate the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site. Results indicated that DBUQ produced accurate parameter posterior distributions similar to those from Markov Chain Monte Carlo sampling but with 30 times less computing time. This significant improvement in efficiency suggests that DBUQ can enable rapid, site‐level model calibration at a global scale, enhancing our predictive understanding of climate impacts on terrestrial ecosystems. Land surface models are essential for simulating environmental processes and aiding climate‐resilient decision‐making. Traditionally, calibrating these models has been costly and time‐consuming. To address this, we developed a new method called diffusion‐based uncertainty quantification (DBUQ), which is faster and less memory‐intensive than previous methods. Using supervised learning, DBUQ quickly generates samples to accurately approximate parameter posterior distributions. We tested this method on the Energy Exascale Earth System Model land model at the Missouri Ozark AmeriFlux forest site, finding that it can produce results similar to traditional methods but 30 times faster. This efficiency suggests that DBUQ could revolutionize the calibration of land surface models globally, enhancing our predictive understanding of climate impacts on ecosystems. A novel diffusion model‐based uncertainty quantification method was developed for efficient model calibration This method produced accurate parameter posterior distributions comparable to those from Markov Chain Monte Carlo sampling, but 30 times faster The method performs amortized Bayesian inference and can be broadly applied to accelerate earth system model calibration |
Author | Zhang, Zezhong Lu, Dan Zhang, Guannan Liu, Yanfang Bao, Feng |
Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0001-5162-9843 surname: Lu fullname: Lu, Dan organization: Oak Ridge National Laboratory – sequence: 2 givenname: Yanfang surname: Liu fullname: Liu, Yanfang organization: Oak Ridge National Laboratory – sequence: 3 givenname: Zezhong surname: Zhang fullname: Zhang, Zezhong organization: Oak Ridge National Laboratory – sequence: 4 givenname: Feng surname: Bao fullname: Bao, Feng organization: Florida State University – sequence: 5 givenname: Guannan orcidid: 0000-0001-7256-150X surname: Zhang fullname: Zhang, Guannan email: zhangg@ornl.gov organization: Oak Ridge National Laboratory |
BookMark | eNp90EtOwzAYBGALFYlSuuMAPgCB34848bKUPqhSIR7dIUVObAuj4KA4BWXHETgjJyFQFl2xmll8msUco4GvvUHolMA5ASovKFC-WgIAZfwADamULIopgcFeP0LjEJ57wxiFFJIhepzgK2ftNrjaf318XqpgNN740jStcr7t8O1W-dZZV6q2J3ht2qda47bGE_2meodn7H6NM-U1XtfaVHiqKlc0v_oEHVpVBTP-yxHazGcP02WU3Syup5MsKgkRIkokiW0heQIl51YUqS6oFCqNuaAm6YWVKS21JZIXJuFCcE01AasI4aoQnI3Q2W63bOoQGmPz18a9qKbLCeQ_5-T75_QcdvzdVab71-arxR1hgn0D5jJmSQ |
Cites_doi | 10.1002/2015JG003302 10.1073/pnas.1413090112 10.5281/zenodo.12110816 10.5194/acp‐20‐2303‐2020 10.1002/2015WR016967 10.1029/2011WR011289 10.1002/2017MS001134 10.5194/gmd‐12‐1791‐2019 10.1615/jmachlearnmodelcomput.2024051346 10.1146/annurev-statistics-112723-034123 10.1109/ICCVW54120.2021.00213 10.1109/TCI.2024.3449114 10.1016/j.cageo.2019.01.012 10.1109/TCI.2023.3248949 10.1002/2013JG002535 10.1109/TPAMI.2022.3204461 10.1109/CVPR52688.2022.01581 10.1016/j.envsoft.2015.08.013 10.1029/2018MS001603 10.5194/bg‐9‐3857‐2012 10.1002/wrcr.20467 10.1029/2020MS002454 10.3390/e22080802 10.1002/2017MS000962 10.1007/978-3-030-58580-8_22 10.1016/j.jcp.2024.113207 10.1016/j.neucom.2022.01.029 10.1016/j.jhydrol.2016.11.051 10.1109/CVPRW56347.2022.00462 10.48550/arXiv.2206.09012 10.1029/2019MS001821 10.1162/NECO_a_00142 10.1086/670067 10.5194/bg‐14‐4295‐2017 10.1175/1087‐3562(2000)004〈0003:PASAOT〉2.0.CO;2 10.1029/2011GB004185 10.1175/1520‐0477(2001)082〈2415:FANTTS〉2.3.CO;2 10.1002/2017WR021622 |
ContentType | Journal Article |
Copyright | 2024 Oak Ridge National Laboratory, managed by UT–Battelle, LLC and The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 Oak Ridge National Laboratory, managed by UT–Battelle, LLC and The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION |
DOI | 10.1029/2024JH000234 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JH000234 JGR136 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMS‐2142672 – fundername: Biological and Environmental Research – fundername: Advanced Scientific Computing Research funderid: ERKJ387 |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E WIN AAYXX CITATION |
ID | FETCH-LOGICAL-c1166-7915fb9470c44f6b8db296a85462e7166f982cdf194be74664d2d10fa114ab643 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Tue Jul 01 03:43:13 EDT 2025 Wed Aug 20 07:26:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1166-7915fb9470c44f6b8db296a85462e7166f982cdf194be74664d2d10fa114ab643 |
ORCID | 0000-0001-5162-9843 0000-0001-7256-150X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000234 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1029_2024JH000234 wiley_primary_10_1029_2024JH000234_JGR136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
References | 2014; 119 2015; 37 2021; 22 2013; 49 2020; 20 2015; 51 2019; 11 2000; 4 2019; 32 2023; 9 2019; 12 2022; 23 2016; 75 2013; 125 2016; 121 2019; 125 2020; 12 2020; 33 2024 2022; 479 2021; 13 2001; 82 2017; 53 2021; 34 2023; 45 2023 2022 2024; 5 2017; 14 2021 2024; 514 2015; 112 2020; 12348 2011; 23 2020; 22 2012; 48 2012; 26 2018; 10 2017; 544 2012; 9 e_1_2_10_23_1 Ho J. (e_1_2_10_21_1) 2022; 23 e_1_2_10_42_1 Luo S. (e_1_2_10_34_1) 2021 Meng C. (e_1_2_10_37_1) 2022 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 Kim B. (e_1_2_10_24_1) 2021 Papamakarios G. (e_1_2_10_40_1) 2021; 22 Song Y. (e_1_2_10_46_1) 2021 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 Sohl‐Dickstein J. (e_1_2_10_44_1) 2015 e_1_2_10_22_1 e_1_2_10_43_1 Dhariwal P. (e_1_2_10_12_1) 2021 Bao F. (e_1_2_10_7_1) 2023 Baldassari L. (e_1_2_10_4_1) 2023 Yang M. (e_1_2_10_55_1) 2023 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 Ho J. (e_1_2_10_20_1) 2020 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Song Y. (e_1_2_10_45_1) 2019 e_1_2_10_56_1 e_1_2_10_15_1 Lu D. (e_1_2_10_30_1) 2022 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Qiao X. (e_1_2_10_41_1) 2024 e_1_2_10_50_1 Baranchuk D. (e_1_2_10_9_1) 2022 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 10 start-page: 297 issue: 2 year: 2018 end-page: 319 article-title: The impact of parametric uncertainties on biogeochemistry in the E3SM land model publication-title: Journal of Advances in Modeling Earth Systems – volume: 125 start-page: 69 year: 2019 end-page: 77 article-title: An adaptive Kriging surrogate method for efficient uncertainty quantification with an application to geological carbon sequestration modeling publication-title: Computers & Geosciences – start-page: 1866 year: 2021 end-page: 1875 – year: 2021 – volume: 112 start-page: 2788 issue: 9 year: 2015 end-page: 2793 article-title: Joint control of terrestrial gross primary productivity by plant phenology and physiology publication-title: Proceedings of the National Academy of Sciences – volume: 479 start-page: 47 year: 2022 end-page: 59 article-title: SRDiff: Single image super‐resolution with diffusion probabilistic models publication-title: Neurocomputing – year: 2024 – volume: 10 start-page: 1337 issue: 6 year: 2018 end-page: 1356 article-title: Calibration of the E3SM land model using surrogate‐based global optimization publication-title: Journal of Advances in Modeling Earth Systems – start-page: 16272 year: 2022 end-page: 16282 – year: 2021 article-title: Diffusemorph: Unsupervised deformable image registration along continuous trajectory using diffusion models publication-title: CoRR – volume: 23 start-page: 1661 issue: 7 year: 2011 end-page: 1674 article-title: A connection between score matching and denoising autoencoders publication-title: Neural Computation – volume: 544 start-page: 456 year: 2017 end-page: 466 article-title: Calibration of an agricultural‐hydrological model (RZWQM2) using surrogate global optimization publication-title: Journal of Hydrology – volume: 9 start-page: 3857 issue: 10 year: 2012 end-page: 3874 article-title: A framework for benchmarking land models publication-title: Biogeosciences – year: 2023 article-title: A pseudo‐reversible normalizing flow for stochastic dynamical systems with various initial distributions publication-title: arXiv Preprint – volume: 26 issue: 3 year: 2012 article-title: On the capability of Monte Carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models publication-title: Global Biogeochemical Cycles – start-page: 4563 year: 2021 end-page: 4572 – volume: 4 start-page: 1 issue: 3 year: 2000 end-page: 85 article-title: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls publication-title: Earth Interactions – year: 2022 – volume: 33 start-page: 6840 year: 2020 end-page: 6851 – volume: 119 start-page: 403 issue: 3 year: 2014 end-page: 417 article-title: Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov Chain Monte Carlo Method publication-title: Journal of Geophysical Research: Biogeosciences – volume: 12348 start-page: 364 year: 2020 end-page: 381 – year: 2022 article-title: Diffusion models as plug‐and‐play priors publication-title: CoRR – volume: 32 year: 2019 – volume: 75 start-page: 273 year: 2016 end-page: 316 article-title: Markov Chain Monte Carlo simulation using the dream software package: Theory, concepts, and Matlab implementation publication-title: Environmental Modelling & Software – volume: 12 issue: 11 year: 2020 article-title: An introduction to the E3SM special collection: Goals, science drivers, development, and analysis publication-title: Journal of Advances in Modeling Earth Systems – volume: 11 start-page: 2089 issue: 7 year: 2019 end-page: 2129 article-title: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution publication-title: Journal of Advances in Modeling Earth Systems – volume: 125 start-page: 306 issue: 925 year: 2013 end-page: 312 article-title: EMCEE: The MCMC hammer publication-title: Publications of the Astronomical Society of the Pacific – year: 2024 article-title: Yanfangliu11/diffusion_uq: Diffusion_uq_v1 publication-title: Zenodo – volume: 48 issue: 9 year: 2012 article-title: Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification publication-title: Water Resources Research – volume: 514 issue: 1 year: 2024 article-title: A score‐based filter for nonlinear data assimilation publication-title: Journal of Computational Physics – volume: 45 start-page: 4713 issue: 4 year: 2023 end-page: 4726 article-title: Image super‐resolution via iterative refinement publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 14 start-page: 4295 issue: 18 year: 2017 end-page: 4314 article-title: Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov Chain Monte Carlo methods publication-title: Biogeosciences – volume: 51 start-page: 5957 issue: 8 year: 2015 end-page: 5973 article-title: A review of surrogate models and their application to groundwater modeling publication-title: Water Resources Research – volume: 13 issue: 9 year: 2021 article-title: Calibration and uncertainty quantification of convective parameters in an idealized GCM publication-title: Journal of Advances in Modeling Earth Systems – volume: 53 start-page: 10802 issue: 12 year: 2017 end-page: 10823 article-title: A Taylor expansion‐based adaptive design strategy for global surrogate modeling with applications in groundwater modeling publication-title: Water Resources Research – volume: 23 start-page: 1 issue: 47 year: 2022 end-page: 47:33 article-title: Cascaded diffusion models for high fidelity image generation publication-title: Journal of Machine Learning Research – volume: 9 start-page: 224 year: 2023 end-page: 237 article-title: Conditional injective flows for Bayesian imaging publication-title: IEEE Transactions on Computational Imaging – year: 2024 article-title: Score‐based generative priors guided model‐driven network for MRI reconstruction publication-title: ArXiv – volume: 12 start-page: 1791 issue: 5 year: 2019 end-page: 1807 article-title: Efficient surrogate modeling methods for large‐scale Earth system models based on machine‐learning techniques publication-title: Geoscientific Model Development – volume: 49 start-page: 6871 issue: 10 year: 2013 end-page: 6892 article-title: An adaptive sparse‐grid high‐order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling publication-title: Water Resources Research – volume: 37 start-page: 2256 year: 2015 end-page: 2265 – volume: 22 start-page: 1 issue: 57 year: 2021 end-page: 64 article-title: Normalizing flows for probabilistic modeling and inference publication-title: Journal of Machine Learning Research – volume: 121 start-page: 1884 issue: 7 year: 2016 end-page: 1902 article-title: Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a central U.S. forest publication-title: Journal of Geophysical Research: Biogeosciences – year: 2023 – year: 2023 article-title: A score‐based nonlinear filter for data assimilation publication-title: arXiv – volume: 20 start-page: 2303 issue: 4 year: 2020 end-page: 2317 article-title: Technical note: Deep learning for creating surrogate models of precipitation in earth system models publication-title: Atmospheric Chemistry and Physics – year: 2023 article-title: Conditional score‐based diffusion models for Bayesian inference in infinite dimensions publication-title: arXiv Preprint – volume: 82 start-page: 2415 issue: 11 year: 2001 end-page: 2434 article-title: Fluxnet: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities publication-title: Bulletin of the American Meteorological Society – start-page: 4174 year: 2022 end-page: 4185 – volume: 22 issue: 8 year: 2020 article-title: Interacting particle solutions of Fokker–Planck equations through gradient–log–density estimation publication-title: Entropy – volume: 34 start-page: 8780 year: 2021 end-page: 8794 – volume: 5 start-page: 25 issue: 1 year: 2024 end-page: 38 article-title: Diffusion‐model‐assisted supervised learning of generative models for density estimation publication-title: Journal of Machine Learning for Modeling and Computing – ident: e_1_2_10_17_1 doi: 10.1002/2015JG003302 – ident: e_1_2_10_54_1 doi: 10.1073/pnas.1413090112 – ident: e_1_2_10_5_1 – ident: e_1_2_10_27_1 doi: 10.5281/zenodo.12110816 – ident: e_1_2_10_50_1 doi: 10.5194/acp‐20‐2303‐2020 – ident: e_1_2_10_3_1 doi: 10.1002/2015WR016967 – ident: e_1_2_10_33_1 doi: 10.1029/2011WR011289 – ident: e_1_2_10_31_1 doi: 10.1002/2017MS001134 – year: 2023 ident: e_1_2_10_55_1 article-title: A pseudo‐reversible normalizing flow for stochastic dynamical systems with various initial distributions publication-title: arXiv Preprint – ident: e_1_2_10_29_1 doi: 10.5194/gmd‐12‐1791‐2019 – ident: e_1_2_10_28_1 doi: 10.1615/jmachlearnmodelcomput.2024051346 – year: 2023 ident: e_1_2_10_7_1 article-title: A score‐based nonlinear filter for data assimilation publication-title: arXiv – ident: e_1_2_10_56_1 doi: 10.1146/annurev-statistics-112723-034123 – ident: e_1_2_10_22_1 doi: 10.1109/ICCVW54120.2021.00213 – start-page: 6840 volume-title: Advances in neural information processing systems year: 2020 ident: e_1_2_10_20_1 – ident: e_1_2_10_47_1 doi: 10.1109/TCI.2024.3449114 – volume-title: The tenth international conference on learning representations, ICLR 2022, virtual event, April 25–29, 2022 year: 2022 ident: e_1_2_10_37_1 – ident: e_1_2_10_39_1 doi: 10.1016/j.cageo.2019.01.012 – ident: e_1_2_10_23_1 doi: 10.1109/TCI.2023.3248949 – volume-title: Advances in neural information processing systems year: 2019 ident: e_1_2_10_45_1 – year: 2023 ident: e_1_2_10_4_1 article-title: Conditional score‐based diffusion models for Bayesian inference in infinite dimensions publication-title: arXiv Preprint – ident: e_1_2_10_18_1 – ident: e_1_2_10_19_1 doi: 10.1002/2013JG002535 – ident: e_1_2_10_43_1 doi: 10.1109/TPAMI.2022.3204461 – volume: 22 start-page: 1 issue: 57 year: 2021 ident: e_1_2_10_40_1 article-title: Normalizing flows for probabilistic modeling and inference publication-title: Journal of Machine Learning Research – ident: e_1_2_10_51_1 doi: 10.1109/CVPR52688.2022.01581 – year: 2021 ident: e_1_2_10_24_1 article-title: Diffusemorph: Unsupervised deformable image registration along continuous trajectory using diffusion models publication-title: CoRR – ident: e_1_2_10_49_1 doi: 10.1016/j.envsoft.2015.08.013 – volume: 23 start-page: 1 issue: 47 year: 2022 ident: e_1_2_10_21_1 article-title: Cascaded diffusion models for high fidelity image generation publication-title: Journal of Machine Learning Research – ident: e_1_2_10_15_1 doi: 10.1029/2018MS001603 – ident: e_1_2_10_35_1 doi: 10.5194/bg‐9‐3857‐2012 – ident: e_1_2_10_57_1 doi: 10.1002/wrcr.20467 – ident: e_1_2_10_13_1 doi: 10.1029/2020MS002454 – ident: e_1_2_10_36_1 doi: 10.3390/e22080802 – ident: e_1_2_10_42_1 doi: 10.1002/2017MS000962 – ident: e_1_2_10_11_1 doi: 10.1007/978-3-030-58580-8_22 – ident: e_1_2_10_8_1 doi: 10.1016/j.jcp.2024.113207 – ident: e_1_2_10_2_1 – volume-title: International conference on learning representations year: 2021 ident: e_1_2_10_46_1 – ident: e_1_2_10_26_1 doi: 10.1016/j.neucom.2022.01.029 – ident: e_1_2_10_53_1 doi: 10.1016/j.jhydrol.2016.11.051 – ident: e_1_2_10_10_1 doi: 10.1109/CVPRW56347.2022.00462 – ident: e_1_2_10_16_1 doi: 10.48550/arXiv.2206.09012 – volume-title: Proceedings of ICLR AI for earth and space sciences workshop year: 2022 ident: e_1_2_10_30_1 – start-page: 4563 volume-title: 2021 IEEE/CVF international conference on computer vision, ICCV 2021, Montreal, QC, Canada, October 10–17, 2021 year: 2021 ident: e_1_2_10_34_1 – ident: e_1_2_10_25_1 doi: 10.1029/2019MS001821 – ident: e_1_2_10_48_1 doi: 10.1162/NECO_a_00142 – start-page: 8780 volume-title: Advances in neural information processing systems year: 2021 ident: e_1_2_10_12_1 – start-page: 2256 volume-title: Deep unsupervised learning using nonequilibrium thermodynamics year: 2015 ident: e_1_2_10_44_1 – ident: e_1_2_10_14_1 doi: 10.1086/670067 – ident: e_1_2_10_32_1 doi: 10.5194/bg‐14‐4295‐2017 – ident: e_1_2_10_52_1 doi: 10.1175/1087‐3562(2000)004〈0003:PASAOT〉2.0.CO;2 – ident: e_1_2_10_58_1 doi: 10.1029/2011GB004185 – volume-title: International conference on learning representations year: 2022 ident: e_1_2_10_9_1 – ident: e_1_2_10_6_1 doi: 10.1175/1520‐0477(2001)082〈2415:FANTTS〉2.3.CO;2 – year: 2024 ident: e_1_2_10_41_1 article-title: Score‐based generative priors guided model‐driven network for MRI reconstruction publication-title: ArXiv – ident: e_1_2_10_38_1 doi: 10.1002/2017WR021622 |
SSID | ssj0003320807 |
Score | 2.2670977 |
Snippet | Calibrating land surface models and accurately quantifying their uncertainty are crucial for improving the reliability of simulations of complex environmental... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
Title | A Diffusion‐Based Uncertainty Quantification Method to Advance E3SM Land Model Calibration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000234 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL15EUbE-Sg568LC4m2Szm2PV1lKs-Cr0ICx5bECQrej24EX8Cf5Gf4mZZC31InjJIYQcZkjmm9c3CB1m0kjLEhYxmemIORsYCec1REzrjCrJc659tcUVH4zZcJJOmoAb9MIEfoh5wA1ehv-v4YFL9dqQDQBHpvPa2XDgCVvYMlqB7lrgzifseh5joZTEoWOaQJmas1RxU_vurjhZvOCXVVpEqd7M9NfRWoMPcTcodAMtldUmeuji80drZxDZ-vr4PHWWx-CxU5dP59dv-GYmQ9GPlzMe-bHQuJ7ibkjx4x69G-FLWRkMw8-eMLRkqaD8LTTu9-7PBlEzFiHSScI5EEymVgmWxZoxy1VuFBFc5injpHTuD7ciJ9rYRDBVZkAfb4hJYiudiKRyCGQbtappVe4gbKgEQsKUSmEdklK5cmDbGCsUBRwSt9HRj1iK58B-UfisNRHFovja6NjL7M9DxfDiNqF89x9n99Aq7Iaarn3Uql9m5YEDAbXqeE13vAvt1tF77xuLBalu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDK0wMMDBGJ7TrxWKAllLbi0UodkCI7jiUklCKUDmz8BH4jvwSfHaqyILGfPNzpfN-9vkPoJJZaGhaxgMk4D5iNgYGwWUPA8jymSvKE527aYsjTMetNWpP6zinswnh-iHnBDTzD_dfg4FCQrtkGgCTTpu2slzrGFraMVhgnMXgmYXfzIgulJPQr0wTm1GyoCuvhd_vE-eIDv8LSIkx1caa7gdZrgIjb3qKbaKkot9BTG189GzOD0tbXx-eFDT0aj629XD-_esf3M-mnfpyi8cDdhcbVFLd9jx936OMA92WpMVw_e8Gwk6W89bfRuNsZXaZBfRchyKOIc2CYbBklWBzmjBmuEq2I4DJpWRUUNv_hRiQk1yYSTBUx8MdroqPQSJv7SGUhyA5qlNOy2EVYUwmMhC0qhbFQSiXKom2tjVAUgEjYRKc_aslePf1F5trWRGSL6muiM6ezP4Wy3vVDRPneP2SP0Wo6GvSz_s3wdh-tgYQf8DpAjeptVhxaRFCpI2f1b9AVqrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbyIomJ95qAHD4u7STa7OVbbWmtb6qPQg7DksQFBtkV2D978Cf5Gf4l5rKVeBO9DDjNM5pvXNwCcJVxxTSISEJ7IgJgYGDCTNQREygQLTlMq3bTFiPYmpD-Np3XBze7CeH6IRcHNeob7r62Dz5WuyQYsR6bJ2km_5whbyCpYc_0-y-xMxosaC8Yo9BvTyI6pmUgV1rPv5onL5Qd-RaVllOrCTHcLbNb4ELa8QbfBSl7sgOcWbL9oXdnK1tfH55WJPApOjLlcO798h_cV90M_Ts9w6M5Cw3IGW77FDzv4cQgHvFDQHj97hXYlS3jj74JJt_N03QvqswiBjCJKLcFkrAUjSSgJ0VSkSiBGeRoTinKT_lDNUiSVjhgReWLp4xVSUai5SX24MAhkDzSKWZHvA6gwt4SEMeZMGyQlUmHAtlKaCWxxSNgE5z9qyeae_SJzXWvEsmX1NcGF09mfQln_5iHC9OAfsqdgfdzuZoPb0d0h2LACfrzrCDTKtyo_NnigFCfO6N8TH6nm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Diffusion%E2%80%90Based+Uncertainty+Quantification+Method+to+Advance+E3SM+Land+Model+Calibration&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Lu%2C+Dan&rft.au=Liu%2C+Yanfang&rft.au=Zhang%2C+Zezhong&rft.au=Bao%2C+Feng&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024JH000234 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |