Empowering Machine Learning Forecasting of Labquake Using Event‐Based Features and Clustering Characteristics
Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by roug...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (MAE > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes.
Plain Language Summary
It is widely discussed to use machine learning (ML) attempts to predict seismic events generated during rock deformation experiments in the laboratory. To improve these predictions, one needs to either refine the model or provide it with more detailed and informative physically understandable input data. In our study, we examine Acoustic Emission (AE) catalogs from laboratory experiments involving repetitive slips of the rough fault surfaces observed on three Westerly granite samples. By analyzing AE catalog data of past AE activity using a moving time window, we employ a random forest classifier, a type of ML tool, to forecast the likelihood of a significant earthquake happening in the future time period. What makes this approach different is that we introduce a new method to calculate features related to both location and timing of seismic activity. Our findings reveal that separating earthquake catalog into background and clustered seismicity is crucial for improving forecasting accuracy. Regarding an accuracy of 73.2% for the whole catalog, we achieved an enhanced accuracy of up to 82% for background events and 89% for clustered events. We discuss how the insights gained from this study can be scaled up for forecasting tectonic earthquakes in real time.
Key Points
We present an event‐based approach to extract spatiotemporal seismo‐mechanical features according to event time and location of labquakes
Nearest‐neighbor analysis allows separating background and clustered events and defining new topological features of the clustered families
Implementing individual classifier models for background and clustered populations significantly improves labquake forecasting |
---|---|
AbstractList | Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (
M
AE
> 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes.
It is widely discussed to use machine learning (ML) attempts to predict seismic events generated during rock deformation experiments in the laboratory. To improve these predictions, one needs to either refine the model or provide it with more detailed and informative physically understandable input data. In our study, we examine Acoustic Emission (AE) catalogs from laboratory experiments involving repetitive slips of the rough fault surfaces observed on three Westerly granite samples. By analyzing AE catalog data of past AE activity using a moving time window, we employ a random forest classifier, a type of ML tool, to forecast the likelihood of a significant earthquake happening in the future time period. What makes this approach different is that we introduce a new method to calculate features related to both location and timing of seismic activity. Our findings reveal that separating earthquake catalog into background and clustered seismicity is crucial for improving forecasting accuracy. Regarding an accuracy of 73.2% for the whole catalog, we achieved an enhanced accuracy of up to 82% for background events and 89% for clustered events. We discuss how the insights gained from this study can be scaled up for forecasting tectonic earthquakes in real time.
We present an event‐based approach to extract spatiotemporal seismo‐mechanical features according to event time and location of labquakes
Nearest‐neighbor analysis allows separating background and clustered events and defining new topological features of the clustered families
Implementing individual classifier models for background and clustered populations significantly improves labquake forecasting Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (MAE > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes. Plain Language Summary It is widely discussed to use machine learning (ML) attempts to predict seismic events generated during rock deformation experiments in the laboratory. To improve these predictions, one needs to either refine the model or provide it with more detailed and informative physically understandable input data. In our study, we examine Acoustic Emission (AE) catalogs from laboratory experiments involving repetitive slips of the rough fault surfaces observed on three Westerly granite samples. By analyzing AE catalog data of past AE activity using a moving time window, we employ a random forest classifier, a type of ML tool, to forecast the likelihood of a significant earthquake happening in the future time period. What makes this approach different is that we introduce a new method to calculate features related to both location and timing of seismic activity. Our findings reveal that separating earthquake catalog into background and clustered seismicity is crucial for improving forecasting accuracy. Regarding an accuracy of 73.2% for the whole catalog, we achieved an enhanced accuracy of up to 82% for background events and 89% for clustered events. We discuss how the insights gained from this study can be scaled up for forecasting tectonic earthquakes in real time. Key Points We present an event‐based approach to extract spatiotemporal seismo‐mechanical features according to event time and location of labquakes Nearest‐neighbor analysis allows separating background and clustered events and defining new topological features of the clustered families Implementing individual classifier models for background and clustered populations significantly improves labquake forecasting |
Author | Ben‐Zion, Yehuda Karimpouli, Sadegh Kwiatek, Grzegorz Bohnhoff, Marco Dresen, Georg Martínez‐Garzón, Patricia |
Author_xml | – sequence: 1 givenname: Sadegh orcidid: 0000-0003-1781-9760 surname: Karimpouli fullname: Karimpouli, Sadegh email: sadegh.karimpouli@gfz-potsdam.de organization: GFZ German Research Centre for Geosciences – sequence: 2 givenname: Grzegorz orcidid: 0000-0003-1076-615X surname: Kwiatek fullname: Kwiatek, Grzegorz organization: GFZ German Research Centre for Geosciences – sequence: 3 givenname: Yehuda orcidid: 0000-0002-9602-2014 surname: Ben‐Zion fullname: Ben‐Zion, Yehuda organization: University of Southern California – sequence: 4 givenname: Patricia orcidid: 0000-0003-4649-0386 surname: Martínez‐Garzón fullname: Martínez‐Garzón, Patricia organization: GFZ German Research Centre for Geosciences – sequence: 5 givenname: Georg orcidid: 0000-0002-3737-2858 surname: Dresen fullname: Dresen, Georg organization: Universität Potsdam – sequence: 6 givenname: Marco orcidid: 0000-0001-7383-635X surname: Bohnhoff fullname: Bohnhoff, Marco organization: Free University Berlin |
BookMark | eNp9kEtOwzAURS1UJErpjAV4AQT8yc9DiPqhCkJCdBy9OM800DrFTlt1xhJYIyuhURl0xOjdd3V0BveS9GxjkZBrzm45E-pOMBHOpowxHrMz0hdKySASnPVO8gUZev9-YKQULGVJnzSj1brZoavtG30Cvagt0hzB2a4YNw41-LbLjaE5lJ8b-EA6910z2qJtf76-H8BjRccI7cahp2Armi03vj1KswU40N1z8Gh_Rc4NLD0O_-6AzMej12wa5M-Tx-w-DzTncRSYSscm0ahNYoQxSZVqpkCFUaolD1MDQqSgZKRKjqriUKoylsjCqFRhyEHLAbk5erVrvHdoirWrV-D2BWdFt1dxutcBZ0d8Vy9x_y9bzCYvXETyF_Xgb8o |
Cites_doi | 10.1785/0220180367 10.1038/s41561‐018‐0272‐8 10.1029/2018GL081251 10.1103/PHYSREVLETT.101.018501/FIGURES/5/MEDIUM 10.1023/A:1010933404324/METRICS 10.1111/J.2517‐6161.1977.TB01600.X 10.5880/GFZ.4.2.2023.003 10.1002/JGRB.50178 10.1146/ANNUREV.EARTH.26.1.643 10.1007/978-3-540-76917-0_2 10.1029/2011JB008763 10.1002/JGRB.50179 10.1038/s41598‐019‐45748‐1 10.1007/978-3-0348-8677-2_6 10.1029/2020JB021027 10.1029/2019GL086615 10.1029/2018GL079712 10.1002/2017GL074677 10.1785/0120230031 10.1038/s41586‐022‐04672‐7 10.1029/2021JB022195 10.1785/0120180080 10.1029/2021GL093187 10.1785/0120100043 10.1111/J.1365‐246X.1991.TB00830.X 10.1093/GJI/GGAE071 10.1002/GRL.50507 10.1007/S00024‐020‐02605‐X/FIGURES/8 10.1073/PNAS.2011362118 10.3390/FORECAST3010002 10.1016/J.CHAOS.2023.113419 10.1029/2002JB002121 10.1029/2022GL098233 10.1038/s41467‐023‐39377‐6 10.1017/9781316681473 10.1785/0119990114 10.1038/s43017‐020‐00108‐w 10.1038/s41598-023-41625-0 10.1002/2017GL076708 10.1029/2023JB028411 10.1109/CEC.2018.8477769 10.1785/BSSA0580051583 10.1023/A:1010920819831/METRICS 10.1007/S00024‐022‐03168‐9 10.1016/J.EPSL.2023.118383 10.1029/2021JB023254 10.1038/s41467‐021‐27553‐5 10.1016/J.EPSL.2022.117825 10.5194/NPG‐12‐1‐2005 10.1029/2008RG000260 10.1093/GJI/GGW300 10.1029/2020JB021588 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION |
DOI | 10.1029/2024JH000160 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JH000160 JGR125 |
Genre | researchArticle |
GrantInformation_xml | – fundername: U.S. Department of Energy funderid: DE‐SC0016520 – fundername: HORIZON EUROPE European Research Council funderid: 101058129; 101076119 |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAYXX CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c1165-fdc6f7cecf7f2ff7d8c09a9458c3148fa228a9359b1e9d1ab9b63e045b9441ac3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Tue Jul 01 03:43:13 EDT 2025 Wed Jan 22 17:18:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1165-fdc6f7cecf7f2ff7d8c09a9458c3148fa228a9359b1e9d1ab9b63e045b9441ac3 |
ORCID | 0000-0002-9602-2014 0000-0003-1076-615X 0000-0001-7383-635X 0000-0002-3737-2858 0000-0003-1781-9760 0000-0003-4649-0386 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000160 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1029_2024JH000160 wiley_primary_10_1029_2024JH000160_JGR125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
References | e_1_2_9_1_15_1 e_1_2_9_1_36_1 e_1_2_9_2_2_1 e_1_2_9_1_13_1 e_1_2_9_1_34_1 e_1_2_9_1_11_1 e_1_2_9_1_32_1 e_1_2_9_1_30_1 e_1_2_9_1_2_1 e_1_2_9_1_4_1 e_1_2_9_1_6_1 e_1_2_9_1_29_1 e_1_2_9_1_27_1 e_1_2_9_1_25_1 e_1_2_9_1_48_1 e_1_2_9_1_23_1 e_1_2_9_1_46_1 e_1_2_9_1_21_1 e_1_2_9_1_44_1 e_1_2_9_1_42_1 e_1_2_9_1_40_1 e_1_2_9_1_8_1 e_1_2_9_1_18_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_2_6_1 e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_2_5_1 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_2_3_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_1_31_1 e_1_2_9_1_3_1 Patel N. (e_1_2_9_2_4_1) 2012; 60 e_1_2_9_1_5_1 e_1_2_9_1_28_1 e_1_2_9_1_49_1 e_1_2_9_1_26_1 e_1_2_9_1_47_1 e_1_2_9_1_24_1 e_1_2_9_1_45_1 e_1_2_9_1_22_1 e_1_2_9_1_43_1 e_1_2_9_1_20_1 e_1_2_9_1_41_1 e_1_2_9_1_7_1 e_1_2_9_1_9_1 e_1_2_9_1_19_1 e_1_2_9_1_17_1 e_1_2_9_1_38_1 |
References_xml | – ident: e_1_2_9_1_7_1 doi: 10.1785/0220180367 – ident: e_1_2_9_1_17_1 doi: 10.1038/s41561‐018‐0272‐8 – ident: e_1_2_9_1_11_1 doi: 10.1029/2018GL081251 – ident: e_1_2_9_1_49_1 doi: 10.1103/PHYSREVLETT.101.018501/FIGURES/5/MEDIUM – ident: e_1_2_9_1_9_1 doi: 10.1023/A:1010933404324/METRICS – ident: e_1_2_9_1_13_1 doi: 10.1111/J.2517‐6161.1977.TB01600.X – ident: e_1_2_9_1_23_1 doi: 10.5880/GFZ.4.2.2023.003 – ident: e_1_2_9_1_47_1 doi: 10.1002/JGRB.50178 – ident: e_1_2_9_1_29_1 doi: 10.1146/ANNUREV.EARTH.26.1.643 – ident: e_1_2_9_2_3_1 doi: 10.1007/978-3-540-76917-0_2 – ident: e_1_2_9_1_15_1 doi: 10.1029/2011JB008763 – ident: e_1_2_9_1_46_1 doi: 10.1002/JGRB.50179 – ident: e_1_2_9_1_31_1 doi: 10.1038/s41598‐019‐45748‐1 – ident: e_1_2_9_1_39_1 doi: 10.1007/978-3-0348-8677-2_6 – ident: e_1_2_9_2_5_1 doi: 10.1029/2020JB021027 – ident: e_1_2_9_1_10_1 doi: 10.1029/2019GL086615 – ident: e_1_2_9_1_27_1 doi: 10.1029/2018GL079712 – ident: e_1_2_9_1_37_1 doi: 10.1002/2017GL074677 – ident: e_1_2_9_1_38_1 doi: 10.1785/0120230031 – ident: e_1_2_9_1_26_1 doi: 10.1038/s41586‐022‐04672‐7 – ident: e_1_2_9_1_18_1 doi: 10.1029/2021JB022195 – ident: e_1_2_9_1_35_1 doi: 10.1785/0120180080 – ident: e_1_2_9_1_41_1 doi: 10.1029/2021GL093187 – ident: e_1_2_9_1_30_1 doi: 10.1785/0120100043 – ident: e_1_2_9_1_28_1 doi: 10.1111/J.1365‐246X.1991.TB00830.X – ident: e_1_2_9_1_21_1 doi: 10.1093/GJI/GGAE071 – ident: e_1_2_9_1_16_1 doi: 10.1002/GRL.50507 – ident: e_1_2_9_1_14_1 doi: 10.1007/S00024‐020‐02605‐X/FIGURES/8 – ident: e_1_2_9_1_19_1 doi: 10.1073/PNAS.2011362118 – ident: e_1_2_9_1_32_1 doi: 10.3390/FORECAST3010002 – ident: e_1_2_9_2_6_1 doi: 10.1016/J.CHAOS.2023.113419 – ident: e_1_2_9_1_6_1 doi: 10.1029/2002JB002121 – ident: e_1_2_9_1_44_1 doi: 10.1029/2022GL098233 – ident: e_1_2_9_1_8_1 doi: 10.1038/s41467‐023‐39377‐6 – ident: e_1_2_9_1_40_1 doi: 10.1017/9781316681473 – ident: e_1_2_9_1_45_1 doi: 10.1785/0119990114 – ident: e_1_2_9_1_22_1 doi: 10.1038/s43017‐020‐00108‐w – ident: e_1_2_9_1_33_1 doi: 10.1038/s41598-023-41625-0 – ident: e_1_2_9_1_36_1 doi: 10.1002/2017GL076708 – ident: e_1_2_9_1_24_1 doi: 10.1029/2023JB028411 – ident: e_1_2_9_1_34_1 doi: 10.1109/CEC.2018.8477769 – ident: e_1_2_9_1_12_1 doi: 10.1785/BSSA0580051583 – ident: e_1_2_9_2_2_1 doi: 10.1023/A:1010920819831/METRICS – ident: e_1_2_9_1_5_1 doi: 10.1007/S00024‐022‐03168‐9 – ident: e_1_2_9_1_20_1 doi: 10.1016/J.EPSL.2023.118383 – ident: e_1_2_9_1_2_1 doi: 10.1029/2021JB023254 – ident: e_1_2_9_1_43_1 doi: 10.1038/s41467‐021‐27553‐5 – volume: 60 start-page: 975 issue: 12 year: 2012 ident: e_1_2_9_2_4_1 article-title: Study of various decision tree pruning methods with their empirical comparison in WEKA publication-title: Citeseer – ident: e_1_2_9_1_25_1 doi: 10.1016/J.EPSL.2022.117825 – ident: e_1_2_9_1_3_1 doi: 10.5194/NPG‐12‐1‐2005 – ident: e_1_2_9_1_4_1 doi: 10.1029/2008RG000260 – ident: e_1_2_9_1_48_1 doi: 10.1093/GJI/GGW300 – ident: e_1_2_9_1_42_1 doi: 10.1029/2020JB021588 |
SSID | ssj0003320807 |
Score | 2.257797 |
Snippet | Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
SubjectTerms | catalog‐driven features clustering analysis earthquake forecasting labquake machine learning |
Title | Empowering Machine Learning Forecasting of Labquake Using Event‐Based Features and Clustering Characteristics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000160 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVgQCBDlUXmAgSEiiZ2HR6hSqooihKjULTq_GIC20GZF_AR-I78EnxOqdkFiyRCdPJxj33eX774j5ExmGeM64oEVSgZcgQ4gSXXgMgFp3FedK4G9w8O7tD_ig3Eybgpu2AtT60MsC254Mvx9jQcc5LwRG0CNTJe180HfYxaXsm9idy1q58f8flljYSwO647pGGlqLlKFDffdLXG5usBaVFpFqT7M9HbIdoMP6VW9obtkw0z2yLR4neE0Mxdm6NCzHw1thFGfKA7XVDBH-jKdWnoL8q2CZ0M9GYAWyGf8_vy6dtFKUwR8lUuwKUw07b5UqJKAVt112eZ9MuoVj91-0ExKCBTK5wRWq9Rmyiib2djaTOcqFCB4kivm8h0LcZwD9uDKyAgdgRQyZcahOSkcHALFDkhrMp2YQ0KF0ZGWlplEWi4yBhnkoFRorE5zm9g2Of_1VDmrBTFK_yM7FuWqR9vkwrvxT6NycPPgENbRP2yPyRa-rdlaJ6S1eK_MqcMFC9nxm9_xWbV7Dj-KHykptQQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGWBBIECUTw8wMEQkjhPHI1QtpbQVQq3ULfInA5AWaHZ-Ar-RX4LPCVW7ILGfPJx9uXeXd-8QOpeMxVRHNLBcyYAqoQORpDpwlYA07lVnisPs8GCYdse0N0km9Z5TmIWp9CEWDTeIDP-9hgCHhnStNgAima5sp72uBy2uZl-nKWEQmYQ-LJoscUzCamSaAE_NpaqwJr-7I66WD1hJS8sw1eeZzjbaqgEivq5udAetmWIXTduvM1hn5vIMHnj6o8G1MuoThu2aSnwAfxlPLe4L-VaKZ4M9GwC3gdD4_fl149KVxoD4SldhY1Fo3HopQSYBrFqrus17aNxpj1rdoF6VECjQzwmsVqllyijLLLGW6UyFXHCaZCp2BY8VhGQChnBlZLiOhOQyjY2Dc5I7PCRUvI8axbQwBwhzoyMtbWwSaSlnsWAiE0qFxuo0s4ltootfT-WzShEj93-yCc-XPdpEl96NfxrlvdtHB7EO_2F7hja6o0E_798N74_QJlhU1K1j1Ji_l-bEgYS5PPUP4Qd4mLZK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUQSIgGgQARThdQUKzYXe_lEkJCCEkUISKlW_kaCmATINvzCXwjX4LHu0RJg0Q_cjE-5s34zRtCzmSaskgHkQdcSS9SQnsiTrRnMwFp7KnOFMfe4f4g6Yyi7jge1wU37IWp9CHmBTe8Ge69xgs-1VCLDaBGps3ao27HYRabsq-5_z5Udo6G8xoLY6FfdUyHSFOzkcqvue92icvFBZai0iJKdWGmvUU2a3xIr6oN3SYrptghk9brFKeZ2TBD-479aGgtjPpEcbimEh9IX6YToD0h30rxbKgjA9AW8hm_P7-ubbTSFAFfaRNsKgpNmy8lqiSgVXNZtnmXjNqtx2bHqycleArlczzQKoFUGQUphACpzpTPBbc-UczmOyDCMBPYgysDw3UgJJcJMxbNSW7hkFBsj6wWk8LsE8qNDrQEZmIJEU-ZSEUmlPIN6CSDGBrk_NdT-bQSxMjdR3bI80WPNsiFc-OfRnn39sEirIN_2J6S9eFNO-_dDe4PyQYaVMStI7I6ey_NsYUIM3nizsEPpu-1fA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empowering+Machine+Learning+Forecasting+of+Labquake+Using+Event%E2%80%90Based+Features+and+Clustering+Characteristics&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Karimpouli%2C+Sadegh&rft.au=Kwiatek%2C+Grzegorz&rft.au=Ben%E2%80%90Zion%2C+Yehuda&rft.au=Mart%C3%ADnez%E2%80%90Garz%C3%B3n%2C+Patricia&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000160&rft.externalDBID=10.1029%252F2024JH000160&rft.externalDocID=JGR125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |