Empowering Machine Learning Forecasting of Labquake Using Event‐Based Features and Clustering Characteristics

Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by roug...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 2
Main Authors Karimpouli, Sadegh, Kwiatek, Grzegorz, Ben‐Zion, Yehuda, Martínez‐Garzón, Patricia, Dresen, Georg, Bohnhoff, Marco
Format Journal Article
LanguageEnglish
Published 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (MAE > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes. Plain Language Summary It is widely discussed to use machine learning (ML) attempts to predict seismic events generated during rock deformation experiments in the laboratory. To improve these predictions, one needs to either refine the model or provide it with more detailed and informative physically understandable input data. In our study, we examine Acoustic Emission (AE) catalogs from laboratory experiments involving repetitive slips of the rough fault surfaces observed on three Westerly granite samples. By analyzing AE catalog data of past AE activity using a moving time window, we employ a random forest classifier, a type of ML tool, to forecast the likelihood of a significant earthquake happening in the future time period. What makes this approach different is that we introduce a new method to calculate features related to both location and timing of seismic activity. Our findings reveal that separating earthquake catalog into background and clustered seismicity is crucial for improving forecasting accuracy. Regarding an accuracy of 73.2% for the whole catalog, we achieved an enhanced accuracy of up to 82% for background events and 89% for clustered events. We discuss how the insights gained from this study can be scaled up for forecasting tectonic earthquakes in real time. Key Points We present an event‐based approach to extract spatiotemporal seismo‐mechanical features according to event time and location of labquakes Nearest‐neighbor analysis allows separating background and clustered events and defining new topological features of the clustered families Implementing individual classifier models for background and clustered populations significantly improves labquake forecasting
AbstractList Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event ( M AE  > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes. It is widely discussed to use machine learning (ML) attempts to predict seismic events generated during rock deformation experiments in the laboratory. To improve these predictions, one needs to either refine the model or provide it with more detailed and informative physically understandable input data. In our study, we examine Acoustic Emission (AE) catalogs from laboratory experiments involving repetitive slips of the rough fault surfaces observed on three Westerly granite samples. By analyzing AE catalog data of past AE activity using a moving time window, we employ a random forest classifier, a type of ML tool, to forecast the likelihood of a significant earthquake happening in the future time period. What makes this approach different is that we introduce a new method to calculate features related to both location and timing of seismic activity. Our findings reveal that separating earthquake catalog into background and clustered seismicity is crucial for improving forecasting accuracy. Regarding an accuracy of 73.2% for the whole catalog, we achieved an enhanced accuracy of up to 82% for background events and 89% for clustered events. We discuss how the insights gained from this study can be scaled up for forecasting tectonic earthquakes in real time. We present an event‐based approach to extract spatiotemporal seismo‐mechanical features according to event time and location of labquakes Nearest‐neighbor analysis allows separating background and clustered events and defining new topological features of the clustered families Implementing individual classifier models for background and clustered populations significantly improves labquake forecasting
Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (MAE > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes. Plain Language Summary It is widely discussed to use machine learning (ML) attempts to predict seismic events generated during rock deformation experiments in the laboratory. To improve these predictions, one needs to either refine the model or provide it with more detailed and informative physically understandable input data. In our study, we examine Acoustic Emission (AE) catalogs from laboratory experiments involving repetitive slips of the rough fault surfaces observed on three Westerly granite samples. By analyzing AE catalog data of past AE activity using a moving time window, we employ a random forest classifier, a type of ML tool, to forecast the likelihood of a significant earthquake happening in the future time period. What makes this approach different is that we introduce a new method to calculate features related to both location and timing of seismic activity. Our findings reveal that separating earthquake catalog into background and clustered seismicity is crucial for improving forecasting accuracy. Regarding an accuracy of 73.2% for the whole catalog, we achieved an enhanced accuracy of up to 82% for background events and 89% for clustered events. We discuss how the insights gained from this study can be scaled up for forecasting tectonic earthquakes in real time. Key Points We present an event‐based approach to extract spatiotemporal seismo‐mechanical features according to event time and location of labquakes Nearest‐neighbor analysis allows separating background and clustered events and defining new topological features of the clustered families Implementing individual classifier models for background and clustered populations significantly improves labquake forecasting
Author Ben‐Zion, Yehuda
Karimpouli, Sadegh
Kwiatek, Grzegorz
Bohnhoff, Marco
Dresen, Georg
Martínez‐Garzón, Patricia
Author_xml – sequence: 1
  givenname: Sadegh
  orcidid: 0000-0003-1781-9760
  surname: Karimpouli
  fullname: Karimpouli, Sadegh
  email: sadegh.karimpouli@gfz-potsdam.de
  organization: GFZ German Research Centre for Geosciences
– sequence: 2
  givenname: Grzegorz
  orcidid: 0000-0003-1076-615X
  surname: Kwiatek
  fullname: Kwiatek, Grzegorz
  organization: GFZ German Research Centre for Geosciences
– sequence: 3
  givenname: Yehuda
  orcidid: 0000-0002-9602-2014
  surname: Ben‐Zion
  fullname: Ben‐Zion, Yehuda
  organization: University of Southern California
– sequence: 4
  givenname: Patricia
  orcidid: 0000-0003-4649-0386
  surname: Martínez‐Garzón
  fullname: Martínez‐Garzón, Patricia
  organization: GFZ German Research Centre for Geosciences
– sequence: 5
  givenname: Georg
  orcidid: 0000-0002-3737-2858
  surname: Dresen
  fullname: Dresen, Georg
  organization: Universität Potsdam
– sequence: 6
  givenname: Marco
  orcidid: 0000-0001-7383-635X
  surname: Bohnhoff
  fullname: Bohnhoff, Marco
  organization: Free University Berlin
BookMark eNp9kEtOwzAURS1UJErpjAV4AQT8yc9DiPqhCkJCdBy9OM800DrFTlt1xhJYIyuhURl0xOjdd3V0BveS9GxjkZBrzm45E-pOMBHOpowxHrMz0hdKySASnPVO8gUZev9-YKQULGVJnzSj1brZoavtG30Cvagt0hzB2a4YNw41-LbLjaE5lJ8b-EA6910z2qJtf76-H8BjRccI7cahp2Armi03vj1KswU40N1z8Gh_Rc4NLD0O_-6AzMej12wa5M-Tx-w-DzTncRSYSscm0ahNYoQxSZVqpkCFUaolD1MDQqSgZKRKjqriUKoylsjCqFRhyEHLAbk5erVrvHdoirWrV-D2BWdFt1dxutcBZ0d8Vy9x_y9bzCYvXETyF_Xgb8o
Cites_doi 10.1785/0220180367
10.1038/s41561‐018‐0272‐8
10.1029/2018GL081251
10.1103/PHYSREVLETT.101.018501/FIGURES/5/MEDIUM
10.1023/A:1010933404324/METRICS
10.1111/J.2517‐6161.1977.TB01600.X
10.5880/GFZ.4.2.2023.003
10.1002/JGRB.50178
10.1146/ANNUREV.EARTH.26.1.643
10.1007/978-3-540-76917-0_2
10.1029/2011JB008763
10.1002/JGRB.50179
10.1038/s41598‐019‐45748‐1
10.1007/978-3-0348-8677-2_6
10.1029/2020JB021027
10.1029/2019GL086615
10.1029/2018GL079712
10.1002/2017GL074677
10.1785/0120230031
10.1038/s41586‐022‐04672‐7
10.1029/2021JB022195
10.1785/0120180080
10.1029/2021GL093187
10.1785/0120100043
10.1111/J.1365‐246X.1991.TB00830.X
10.1093/GJI/GGAE071
10.1002/GRL.50507
10.1007/S00024‐020‐02605‐X/FIGURES/8
10.1073/PNAS.2011362118
10.3390/FORECAST3010002
10.1016/J.CHAOS.2023.113419
10.1029/2002JB002121
10.1029/2022GL098233
10.1038/s41467‐023‐39377‐6
10.1017/9781316681473
10.1785/0119990114
10.1038/s43017‐020‐00108‐w
10.1038/s41598-023-41625-0
10.1002/2017GL076708
10.1029/2023JB028411
10.1109/CEC.2018.8477769
10.1785/BSSA0580051583
10.1023/A:1010920819831/METRICS
10.1007/S00024‐022‐03168‐9
10.1016/J.EPSL.2023.118383
10.1029/2021JB023254
10.1038/s41467‐021‐27553‐5
10.1016/J.EPSL.2022.117825
10.5194/NPG‐12‐1‐2005
10.1029/2008RG000260
10.1093/GJI/GGW300
10.1029/2020JB021588
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000160
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000160
JGR125
Genre researchArticle
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: DE‐SC0016520
– fundername: HORIZON EUROPE European Research Council
  funderid: 101058129; 101076119
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAYXX
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1165-fdc6f7cecf7f2ff7d8c09a9458c3148fa228a9359b1e9d1ab9b63e045b9441ac3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1165-fdc6f7cecf7f2ff7d8c09a9458c3148fa228a9359b1e9d1ab9b63e045b9441ac3
ORCID 0000-0002-9602-2014
0000-0003-1076-615X
0000-0001-7383-635X
0000-0002-3737-2858
0000-0003-1781-9760
0000-0003-4649-0386
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000160
PageCount 15
ParticipantIDs crossref_primary_10_1029_2024JH000160
wiley_primary_10_1029_2024JH000160_JGR125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_2_2_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_4_1
e_1_2_9_1_6_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
e_1_2_9_1_18_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_2_6_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_2_5_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_2_3_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_31_1
e_1_2_9_1_3_1
Patel N. (e_1_2_9_2_4_1) 2012; 60
e_1_2_9_1_5_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
e_1_2_9_1_19_1
e_1_2_9_1_17_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_1_7_1
  doi: 10.1785/0220180367
– ident: e_1_2_9_1_17_1
  doi: 10.1038/s41561‐018‐0272‐8
– ident: e_1_2_9_1_11_1
  doi: 10.1029/2018GL081251
– ident: e_1_2_9_1_49_1
  doi: 10.1103/PHYSREVLETT.101.018501/FIGURES/5/MEDIUM
– ident: e_1_2_9_1_9_1
  doi: 10.1023/A:1010933404324/METRICS
– ident: e_1_2_9_1_13_1
  doi: 10.1111/J.2517‐6161.1977.TB01600.X
– ident: e_1_2_9_1_23_1
  doi: 10.5880/GFZ.4.2.2023.003
– ident: e_1_2_9_1_47_1
  doi: 10.1002/JGRB.50178
– ident: e_1_2_9_1_29_1
  doi: 10.1146/ANNUREV.EARTH.26.1.643
– ident: e_1_2_9_2_3_1
  doi: 10.1007/978-3-540-76917-0_2
– ident: e_1_2_9_1_15_1
  doi: 10.1029/2011JB008763
– ident: e_1_2_9_1_46_1
  doi: 10.1002/JGRB.50179
– ident: e_1_2_9_1_31_1
  doi: 10.1038/s41598‐019‐45748‐1
– ident: e_1_2_9_1_39_1
  doi: 10.1007/978-3-0348-8677-2_6
– ident: e_1_2_9_2_5_1
  doi: 10.1029/2020JB021027
– ident: e_1_2_9_1_10_1
  doi: 10.1029/2019GL086615
– ident: e_1_2_9_1_27_1
  doi: 10.1029/2018GL079712
– ident: e_1_2_9_1_37_1
  doi: 10.1002/2017GL074677
– ident: e_1_2_9_1_38_1
  doi: 10.1785/0120230031
– ident: e_1_2_9_1_26_1
  doi: 10.1038/s41586‐022‐04672‐7
– ident: e_1_2_9_1_18_1
  doi: 10.1029/2021JB022195
– ident: e_1_2_9_1_35_1
  doi: 10.1785/0120180080
– ident: e_1_2_9_1_41_1
  doi: 10.1029/2021GL093187
– ident: e_1_2_9_1_30_1
  doi: 10.1785/0120100043
– ident: e_1_2_9_1_28_1
  doi: 10.1111/J.1365‐246X.1991.TB00830.X
– ident: e_1_2_9_1_21_1
  doi: 10.1093/GJI/GGAE071
– ident: e_1_2_9_1_16_1
  doi: 10.1002/GRL.50507
– ident: e_1_2_9_1_14_1
  doi: 10.1007/S00024‐020‐02605‐X/FIGURES/8
– ident: e_1_2_9_1_19_1
  doi: 10.1073/PNAS.2011362118
– ident: e_1_2_9_1_32_1
  doi: 10.3390/FORECAST3010002
– ident: e_1_2_9_2_6_1
  doi: 10.1016/J.CHAOS.2023.113419
– ident: e_1_2_9_1_6_1
  doi: 10.1029/2002JB002121
– ident: e_1_2_9_1_44_1
  doi: 10.1029/2022GL098233
– ident: e_1_2_9_1_8_1
  doi: 10.1038/s41467‐023‐39377‐6
– ident: e_1_2_9_1_40_1
  doi: 10.1017/9781316681473
– ident: e_1_2_9_1_45_1
  doi: 10.1785/0119990114
– ident: e_1_2_9_1_22_1
  doi: 10.1038/s43017‐020‐00108‐w
– ident: e_1_2_9_1_33_1
  doi: 10.1038/s41598-023-41625-0
– ident: e_1_2_9_1_36_1
  doi: 10.1002/2017GL076708
– ident: e_1_2_9_1_24_1
  doi: 10.1029/2023JB028411
– ident: e_1_2_9_1_34_1
  doi: 10.1109/CEC.2018.8477769
– ident: e_1_2_9_1_12_1
  doi: 10.1785/BSSA0580051583
– ident: e_1_2_9_2_2_1
  doi: 10.1023/A:1010920819831/METRICS
– ident: e_1_2_9_1_5_1
  doi: 10.1007/S00024‐022‐03168‐9
– ident: e_1_2_9_1_20_1
  doi: 10.1016/J.EPSL.2023.118383
– ident: e_1_2_9_1_2_1
  doi: 10.1029/2021JB023254
– ident: e_1_2_9_1_43_1
  doi: 10.1038/s41467‐021‐27553‐5
– volume: 60
  start-page: 975
  issue: 12
  year: 2012
  ident: e_1_2_9_2_4_1
  article-title: Study of various decision tree pruning methods with their empirical comparison in WEKA
  publication-title: Citeseer
– ident: e_1_2_9_1_25_1
  doi: 10.1016/J.EPSL.2022.117825
– ident: e_1_2_9_1_3_1
  doi: 10.5194/NPG‐12‐1‐2005
– ident: e_1_2_9_1_4_1
  doi: 10.1029/2008RG000260
– ident: e_1_2_9_1_48_1
  doi: 10.1093/GJI/GGW300
– ident: e_1_2_9_1_42_1
  doi: 10.1029/2020JB021588
SSID ssj0003320807
Score 2.257797
Snippet Following recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms catalog‐driven features
clustering analysis
earthquake
forecasting
labquake
machine learning
Title Empowering Machine Learning Forecasting of Labquake Using Event‐Based Features and Clustering Characteristics
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000160
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVgQCBDlUXmAgSEiiZ2HR6hSqooihKjULTq_GIC20GZF_AR-I78EnxOqdkFiyRCdPJxj33eX774j5ExmGeM64oEVSgZcgQ4gSXXgMgFp3FedK4G9w8O7tD_ig3Eybgpu2AtT60MsC254Mvx9jQcc5LwRG0CNTJe180HfYxaXsm9idy1q58f8flljYSwO647pGGlqLlKFDffdLXG5usBaVFpFqT7M9HbIdoMP6VW9obtkw0z2yLR4neE0Mxdm6NCzHw1thFGfKA7XVDBH-jKdWnoL8q2CZ0M9GYAWyGf8_vy6dtFKUwR8lUuwKUw07b5UqJKAVt112eZ9MuoVj91-0ExKCBTK5wRWq9Rmyiib2djaTOcqFCB4kivm8h0LcZwD9uDKyAgdgRQyZcahOSkcHALFDkhrMp2YQ0KF0ZGWlplEWi4yBhnkoFRorE5zm9g2Of_1VDmrBTFK_yM7FuWqR9vkwrvxT6NycPPgENbRP2yPyRa-rdlaJ6S1eK_MqcMFC9nxm9_xWbV7Dj-KHykptQQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGWBBIECUTw8wMEQkjhPHI1QtpbQVQq3ULfInA5AWaHZ-Ar-RX4LPCVW7ILGfPJx9uXeXd-8QOpeMxVRHNLBcyYAqoQORpDpwlYA07lVnisPs8GCYdse0N0km9Z5TmIWp9CEWDTeIDP-9hgCHhnStNgAima5sp72uBy2uZl-nKWEQmYQ-LJoscUzCamSaAE_NpaqwJr-7I66WD1hJS8sw1eeZzjbaqgEivq5udAetmWIXTduvM1hn5vIMHnj6o8G1MuoThu2aSnwAfxlPLe4L-VaKZ4M9GwC3gdD4_fl149KVxoD4SldhY1Fo3HopQSYBrFqrus17aNxpj1rdoF6VECjQzwmsVqllyijLLLGW6UyFXHCaZCp2BY8VhGQChnBlZLiOhOQyjY2Dc5I7PCRUvI8axbQwBwhzoyMtbWwSaSlnsWAiE0qFxuo0s4ltootfT-WzShEj93-yCc-XPdpEl96NfxrlvdtHB7EO_2F7hja6o0E_798N74_QJlhU1K1j1Ji_l-bEgYS5PPUP4Qd4mLZK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUQSIgGgQARThdQUKzYXe_lEkJCCEkUISKlW_kaCmATINvzCXwjX4LHu0RJg0Q_cjE-5s34zRtCzmSaskgHkQdcSS9SQnsiTrRnMwFp7KnOFMfe4f4g6Yyi7jge1wU37IWp9CHmBTe8Ge69xgs-1VCLDaBGps3ao27HYRabsq-5_z5Udo6G8xoLY6FfdUyHSFOzkcqvue92icvFBZai0iJKdWGmvUU2a3xIr6oN3SYrptghk9brFKeZ2TBD-479aGgtjPpEcbimEh9IX6YToD0h30rxbKgjA9AW8hm_P7-ubbTSFAFfaRNsKgpNmy8lqiSgVXNZtnmXjNqtx2bHqycleArlczzQKoFUGQUphACpzpTPBbc-UczmOyDCMBPYgysDw3UgJJcJMxbNSW7hkFBsj6wWk8LsE8qNDrQEZmIJEU-ZSEUmlPIN6CSDGBrk_NdT-bQSxMjdR3bI80WPNsiFc-OfRnn39sEirIN_2J6S9eFNO-_dDe4PyQYaVMStI7I6ey_NsYUIM3nizsEPpu-1fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empowering+Machine+Learning+Forecasting+of+Labquake+Using+Event%E2%80%90Based+Features+and+Clustering+Characteristics&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Karimpouli%2C+Sadegh&rft.au=Kwiatek%2C+Grzegorz&rft.au=Ben%E2%80%90Zion%2C+Yehuda&rft.au=Mart%C3%ADnez%E2%80%90Garz%C3%B3n%2C+Patricia&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000160&rft.externalDBID=10.1029%252F2024JH000160&rft.externalDocID=JGR125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon