Computationally Efficient Emulation of Spheroidal Elastic Deformation Sources Using Machine Learning Models: A Gaussian‐Process‐Based Approach

Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate as they do not correctly satisfy boundary conditions for many geometries, while numerical mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 3
Main Authors Anderson, Kyle R., Gu, Mengyang
Format Journal Article
LanguageEnglish
Published 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate as they do not correctly satisfy boundary conditions for many geometries, while numerical models are slow and may require specialized expertise and software. To overcome these limitations, we trained supervised machine learning emulators (model surrogates) based on parallel partial Gaussian processes which predict the output of a finite element numerical model with high fidelity but >1,000× greater computational efficiency. The emulators are based on generalized nondimensional forms of governing equations for finite non‐dipping spheroidal cavities in elastic halfspaces. Either cavity volume change or uniform pressure change boundary conditions can be specified, and the models predict both surface displacements and cavity (pore) compressibility. Because of their computational efficiency, using the emulators as numerical model surrogates can greatly accelerate data inversion algorithms such as those employing Bayesian Markov chain Monte Carlo sampling. The emulators also permit a comprehensive evaluation of how displacements and cavity compressibility vary with geometry and material properties, revealing the limitations of analytical models. Our open‐source emulator code can be utilized without finite element software, is suitable for a wide range of cavity geometries and depths, includes an estimate of uncertainties associated with emulation, and can be used to train new emulators for different source geometries. Plain Language Summary Mathematical models are widely used to calculate how an elastic material deforms due to pressure changes in a buried spheroidal cavity. These models have wide application to fields such as volcanology, where they can be used to understand the way the surface of the Earth deforms due to changes in buried magma reservoirs. Some models use relatively straightforward mathematical relations; these can generally make predictions quickly but can become highly inaccurate for some cavity geometries. Other models require sophisticated numerical techniques implemented in computers, but these are generally slow to run and may require specialized expertise or software. Here we use machine learning techniques to train a surrogate model (emulator) based on thousands of numerical computer simulations that can overcome these limitations. The emulator makes predictions that are both fast and accurate and can be applied to a wide range of problems. Key Points A machine learning algorithm based on Gaussian processes can be used to accurately predict (emulate) elastic deformation model output We emulate compressibility and surface displacements for pressure and volume changes in vertical spheroidal elastic cavities The emulators closely reproduce finite element model output but are orders of magnitude faster to run
AbstractList Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate as they do not correctly satisfy boundary conditions for many geometries, while numerical models are slow and may require specialized expertise and software. To overcome these limitations, we trained supervised machine learning emulators (model surrogates) based on parallel partial Gaussian processes which predict the output of a finite element numerical model with high fidelity but >1,000× greater computational efficiency. The emulators are based on generalized nondimensional forms of governing equations for finite non‐dipping spheroidal cavities in elastic halfspaces. Either cavity volume change or uniform pressure change boundary conditions can be specified, and the models predict both surface displacements and cavity (pore) compressibility. Because of their computational efficiency, using the emulators as numerical model surrogates can greatly accelerate data inversion algorithms such as those employing Bayesian Markov chain Monte Carlo sampling. The emulators also permit a comprehensive evaluation of how displacements and cavity compressibility vary with geometry and material properties, revealing the limitations of analytical models. Our open‐source emulator code can be utilized without finite element software, is suitable for a wide range of cavity geometries and depths, includes an estimate of uncertainties associated with emulation, and can be used to train new emulators for different source geometries. Mathematical models are widely used to calculate how an elastic material deforms due to pressure changes in a buried spheroidal cavity. These models have wide application to fields such as volcanology, where they can be used to understand the way the surface of the Earth deforms due to changes in buried magma reservoirs. Some models use relatively straightforward mathematical relations; these can generally make predictions quickly but can become highly inaccurate for some cavity geometries. Other models require sophisticated numerical techniques implemented in computers, but these are generally slow to run and may require specialized expertise or software. Here we use machine learning techniques to train a surrogate model (emulator) based on thousands of numerical computer simulations that can overcome these limitations. The emulator makes predictions that are both fast and accurate and can be applied to a wide range of problems. A machine learning algorithm based on Gaussian processes can be used to accurately predict (emulate) elastic deformation model output We emulate compressibility and surface displacements for pressure and volume changes in vertical spheroidal elastic cavities The emulators closely reproduce finite element model output but are orders of magnitude faster to run
Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate as they do not correctly satisfy boundary conditions for many geometries, while numerical models are slow and may require specialized expertise and software. To overcome these limitations, we trained supervised machine learning emulators (model surrogates) based on parallel partial Gaussian processes which predict the output of a finite element numerical model with high fidelity but >1,000× greater computational efficiency. The emulators are based on generalized nondimensional forms of governing equations for finite non‐dipping spheroidal cavities in elastic halfspaces. Either cavity volume change or uniform pressure change boundary conditions can be specified, and the models predict both surface displacements and cavity (pore) compressibility. Because of their computational efficiency, using the emulators as numerical model surrogates can greatly accelerate data inversion algorithms such as those employing Bayesian Markov chain Monte Carlo sampling. The emulators also permit a comprehensive evaluation of how displacements and cavity compressibility vary with geometry and material properties, revealing the limitations of analytical models. Our open‐source emulator code can be utilized without finite element software, is suitable for a wide range of cavity geometries and depths, includes an estimate of uncertainties associated with emulation, and can be used to train new emulators for different source geometries. Plain Language Summary Mathematical models are widely used to calculate how an elastic material deforms due to pressure changes in a buried spheroidal cavity. These models have wide application to fields such as volcanology, where they can be used to understand the way the surface of the Earth deforms due to changes in buried magma reservoirs. Some models use relatively straightforward mathematical relations; these can generally make predictions quickly but can become highly inaccurate for some cavity geometries. Other models require sophisticated numerical techniques implemented in computers, but these are generally slow to run and may require specialized expertise or software. Here we use machine learning techniques to train a surrogate model (emulator) based on thousands of numerical computer simulations that can overcome these limitations. The emulator makes predictions that are both fast and accurate and can be applied to a wide range of problems. Key Points A machine learning algorithm based on Gaussian processes can be used to accurately predict (emulate) elastic deformation model output We emulate compressibility and surface displacements for pressure and volume changes in vertical spheroidal elastic cavities The emulators closely reproduce finite element model output but are orders of magnitude faster to run
Author Gu, Mengyang
Anderson, Kyle R.
Author_xml – sequence: 1
  givenname: Kyle R.
  orcidid: 0000-0001-8041-3996
  surname: Anderson
  fullname: Anderson, Kyle R.
  email: kranderson@usgs.gov
  organization: U.S. Geological Survey Volcano Science Center
– sequence: 2
  givenname: Mengyang
  surname: Gu
  fullname: Gu, Mengyang
  organization: University of California
BookMark eNp9kE1OwzAUhC1UJErpjgP4AAT80zQJu1JCS1UEonQdOc4zNUriyE6EuuMIiCNyEkzLoitWbzTzzVvMKerVpgaEzim5pIQlV4yw0WJOCKFjeoT6LEl4EDJKegf6BA2de_MM54zEJOqjr6mpmq4VrTa1KMstTpXSUkPd4rTqyp2PjcKrZgPW6EKUOC2Fa7XEt6CMrfbEynRWgsNrp-tX_CDkRteAlyBsvTNMAaW7xhM8E51zWtTfH59P1viK8-pGOCjwpGms8c0zdKxE6WD4dwdofZe-TOfB8nF2P50sA0npOAwYG-UiponioRxFkOciKYSUeRQnPs-9EzMii1gB4WzMY6BCCllIgEj6vQo-QBf7v9Ia5yyorLG6EnabUZL9TpodTupxssffdQnbf9lsMXumPOQ_pv1-Hw
Cites_doi 10.3133/tm13B1
10.1029/91JB02839
10.1080/01621459.2014.934453
10.1016/j.jspi.2009.08.006
10.1137/15m1046812
10.1016/j.epsl.2021.117055
10.1144/SP380.4
10.1214/17‐AOS1648
10.1198/TECH.2009.0015
10.1029/JB093iB05p04249
10.1002/2017GL072716
10.1093/gji/ggac351
10.1214/18‐BA1133
10.1029/JB092iB12p12931
10.5066/P9KAX1QP
10.1029/JB091iB07p07429
10.1093/gji/ggx119
10.1029/2011JB008811
10.1126/science.aaz1822
10.1198/TECH.2009.08018
10.1214/16‐AOAS934
10.1016/j.jvolgeores.2020.107153
10.1111/rssc.12141
10.1198/004017007000000092
10.1029/2018JB016407
10.1201/9780367815493
10.1198/016214507000000888
10.1214/ss/1177012413
10.1093/gji/ggt490
10.1029/JB080i029p04094
10.1007/s00445‐023‐01687‐4
10.5281/zenodo.3370575
10.1007/978-1-4757-3799-8
10.1016/s0021‐9991(03)00092‐5
10.1046/j.1365‐246X.2001.00452.x
10.1016/j.ijsolstr.2010.11.001
10.5066/P1NEG8BH
10.1137/120899285
10.1029/2006JB004860
10.1093/gji/ggy447
10.1515/9781400833856
10.2514/1.J051354
10.1038/s41467‐022‐34922‐1
10.1007/BF01589116
10.1002/2014JB011731
10.1016/0041‐5553(67)90144‐9
10.1029/2008JB005946
10.1038/289783a0
10.1016/j.csda.2012.04.020
10.1115/1.3169108
10.1016/j.cageo.2012.09.025
10.1111/j.1365‐246X.2007.03677.x
ContentType Journal Article
Copyright Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000161
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Journals (Open Access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000161
JGR135
Genre researchArticle
GrantInformation_xml – fundername: National Science Foundation
  funderid: 053423
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
WIN
AAYXX
CITATION
ID FETCH-LOGICAL-c1165-224ba819f35c47ebba9daccb789116b7eb820cd8fe032638e1acacdcee7c029d3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Wed Aug 20 07:26:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1165-224ba819f35c47ebba9daccb789116b7eb820cd8fe032638e1acacdcee7c029d3
ORCID 0000-0001-8041-3996
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000161
PageCount 20
ParticipantIDs crossref_primary_10_1029_2024JH000161
wiley_primary_10_1029_2024JH000161_JGR135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References 2017; 5
2001; 146
1989; 45
2017; 44
2021; 569
2019; 366
2019; 124
2010; 140
2008; 103
1992; 97
2012; 56
2009; 114
2018; 46
2017; 209
2023; 24
2009; 51
2014; 2
2013; 52
2024b
1985; 52
2024a
2003; 1
1975; 80
1986; 91
1989; 4
1981; 289
2010
1987; 92
1958; 36
2015; 120
2016; 10
2006
2003
2014; 196
2013; 380
1988; 93
2012; 50
1967; 7
2007; 112
2023; 85
2014; 109
2021; 410
2020
2023; 232
2016; 65
2019
2022; 13
2018
2016
2011; 48
2019; 216
2013
2012; 117
2005; 18
2012; 118
2003; 187
2018; 14
2008; 172
2007; 49
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_62_1
Snelson E. (e_1_2_12_54_1) 2005; 18
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
Lee J. (e_1_2_12_35_1) 2018
e_1_2_12_14_1
e_1_2_12_8_1
Mogi K. (e_1_2_12_40_1) 1958
e_1_2_12_10_1
Zhang H. (e_1_2_12_60_1) 2016
e_1_2_12_50_1
e_1_2_12_3_1
Neal R. M. (e_1_2_12_41_1) 2012
e_1_2_12_5_1
Kovachki N. (e_1_2_12_34_1) 2023; 24
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
Ghanem R. G. (e_1_2_12_22_1) 2003
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_61_1
e_1_2_12_27_1
e_1_2_12_29_1
Rasmussen C. E. (e_1_2_12_46_1) 2006
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
Cervelli P. F. (e_1_2_12_12_1) 2013
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 1
  year: 2003
– year: 2024b
– volume: 5
  start-page: 403
  issue: 1
  year: 2017
  end-page: 435
  article-title: Comparison of surrogate‐based uncertainty quantification methods for computationally expensive simulators
  publication-title: SIAM/ASA Journal on Uncertainty Quantification
– volume: 112
  issue: B6
  year: 2007
  article-title: Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions
  publication-title: Journal of Geophysical Research
– volume: 114
  issue: B2
  year: 2009
  article-title: Shape and volume change of pressurized ellipsoidal cavities from deformation and seismic data
  publication-title: Journal of Geophysical Research
– volume: 2
  start-page: 126
  issue: 1
  year: 2014
  end-page: 152
  article-title: Automating emulator construction for geophysical Hazard maps
  publication-title: SIAM/ASA Journal on Uncertainty Quantification
– volume: 172
  start-page: 873
  issue: 2
  year: 2008
  end-page: 884
  article-title: Numerical inversion of deformation caused by pressure sources: Application to Mount Etna (Italy)
  publication-title: Geophysical Journal International
– volume: 80
  start-page: 4094
  issue: 29
  year: 1975
  end-page: 4102
  article-title: Finite element modeling of surface deformation associated with volcanism
  publication-title: Journal of Geophysical Research
– volume: 65
  start-page: 483
  issue: 4
  year: 2016
  end-page: 505
  article-title: Multivariate emulation of computer simulators: Model selection and Diagnostics with application to a Humanitarian Relief model
  publication-title: Journal of the Royal Statistical Society ‐ Series C: Applied Statistics
– volume: 93
  start-page: 4249
  issue: B5
  year: 1988
  end-page: 4257
  article-title: Deformation from inflation of a dipping finite prolate spheroid in an elastic half‐space as a model for volcanic stressing
  publication-title: Journal of Geophysical Research
– volume: 7
  start-page: 86
  issue: 4
  year: 1967
  end-page: 112
  article-title: On the distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Computational Mathematics and Mathematical Physics
– volume: 232
  start-page: 643
  issue: 1
  year: 2023
  end-page: 655
  article-title: Surface deformations and gravity changes caused by pressurized finite ellipsoidal cavities
  publication-title: Geophysical Journal International
– volume: 18
  year: 2005
  article-title: Sparse Gaussian processes using pseudo‐inputs
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
– volume: 366
  issue: 6470
  year: 2019
  article-title: Magma reservoir failure and the onset of caldera collapse at Kı̄lauea Volcano in 2018
  publication-title: Science
– volume: 85
  start-page: 74
  issue: 12
  year: 2023
  article-title: Understanding the drivers of volcano deformation through geodetic model verification and validation
  publication-title: Bulletin of Volcanology
– volume: 109
  start-page: 1398
  issue: 508
  year: 2014
  end-page: 1411
  article-title: Bayesian emulation and Calibration of a dynamic Epidemic model for A/H1N1 Influenza
  publication-title: Journal of the American Statistical Association
– volume: 14
  issue: 3
  year: 2018
  article-title: Jointly robust prior for Gaussian stochastic process in emulation, variable selection and Calibration
  publication-title: Bayesian Analysis
– volume: 52
  start-page: 325
  year: 2013
  end-page: 333
  article-title: Solid modeling techniques to build 3D finite element models of volcanic systems: An example from the Rabaul Caldera system, Papua New Guinea
  publication-title: Computers & Geosciences
– volume: 120
  start-page: 1473
  issue: 3
  year: 2015
  end-page: 1486
  article-title: Estimating volcanic deformation source parameters with a finite element inversion: The 2001–2002 unrest at Cotopaxi volcano, Ecuador
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 146
  start-page: 181
  issue: 1
  year: 2001
  end-page: 190
  article-title: Deformation due to a pressurized horizontal circular crack in an elastic half‐space, with applications to volcano geodesy
  publication-title: Geophysical Journal International
– volume: 56
  start-page: 4215
  issue: 12
  year: 2012
  end-page: 4228
  article-title: The effect of the nugget on Gaussian process emulators of computer models
  publication-title: Computational Statistics & Data Analysis
– year: 2003
  article-title: Stochastic finite elements: A spectral approach
  publication-title: Courier Corporation
– volume: 92
  start-page: 12931
  issue: B12
  year: 1987
  end-page: 12940
  article-title: Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox
  publication-title: Journal of Geophysical Research
– volume: 49
  start-page: 138
  issue: 2
  year: 2007
  end-page: 154
  article-title: A framework for validation of computer models
  publication-title: Technometrics
– volume: 196
  start-page: 1441
  issue: 3
  year: 2014
  end-page: 1454
  article-title: Efficient inversion of three‐dimensional finite element models of volcano deformation
  publication-title: Geophysical Journal International
– start-page: 13
  year: 2013
  end-page: B1
– volume: 52
  start-page: 606
  issue: 3
  year: 1985
  end-page: 608
  article-title: Compressibility of an Isolated spheroidal cavity in an isotropic elastic medium
  publication-title: Journal of Applied Mechanics
– year: 2019
– volume: 24
  start-page: 1
  issue: 89
  year: 2023
  end-page: 97
  article-title: Neural operator: Learning maps between function spaces with applications to PDEs
  publication-title: Journal of Machine Learning Research
– volume: 117
  issue: B2
  year: 2012
  article-title: Nonlinear estimation of geometric parameters in FEMs of volcano deformation: Integrating tomography models and geodetic data for Okmok volcano, Alaska
  publication-title: Journal of Geophysical Research
– volume: 46
  issue: 6A
  year: 2018
  article-title: Robust Gaussian stochastic process emulation
  publication-title: Annals of Statistics
– volume: 380
  start-page: 85
  issue: 1
  year: 2013
  end-page: 106
  article-title: Volcano deformation and eruption forecasting
  publication-title: Geological Society, London, Special Publications
– volume: 13
  issue: 1
  year: 2022
  article-title: Physics‐informed deep learning approach for modeling crustal deformation
  publication-title: Nature Communications
– volume: 48
  start-page: 680
  issue: 5
  year: 2011
  end-page: 686
  article-title: Compressibility and shear compliance of spheroidal pores: Exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases
  publication-title: International Journal of Solids and Structures
– volume: 187
  start-page: 137
  issue: 1
  year: 2003
  end-page: 167
  article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos
  publication-title: Journal of Computational Physics
– volume: 410
  year: 2021
  article-title: Beyond elasticity: Are Coulomb properties of the Earth’s crust important for volcano geodesy?
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 51
  start-page: 402
  issue: 4
  year: 2009
  end-page: 413
  article-title: Using statistical and computer models to quantify volcanic Hazards
  publication-title: Technometrics
– volume: 289
  start-page: 783
  issue: 5800
  year: 1981
  end-page: 785
  article-title: Volcanism and the dynamics of open magma chambers
  publication-title: Nature
– volume: 10
  issue: 3
  year: 2016
  article-title: Parallel partial Gaussian process emulation for computer models with massive output
  publication-title: Annals of Applied Statistics
– volume: 51
  start-page: 130
  issue: 2
  year: 2009
  end-page: 145
  article-title: Adaptive design and analysis of Supercomputer experiments
  publication-title: Technometrics
– volume: 44
  start-page: 2662
  issue: 6
  year: 2017
  end-page: 2669
  article-title: Enabling large‐scale viscoelastic calculations via neural network acceleration
  publication-title: Geophysical Research Letters
– year: 2016
– volume: 97
  start-page: 1807
  issue: B2
  year: 1992
  end-page: 1820
  article-title: Dynamics of magma storage in the summit reservoir of Kilauea Volcano, Hawaii
  publication-title: Journal of Geophysical Research
– year: 2024a
– volume: 4
  year: 1989
  article-title: Design and analysis of computer experiments
  publication-title: Statistical Science
– year: 2010
– volume: 140
  start-page: 640
  issue: 3
  year: 2010
  end-page: 651
  article-title: Bayesian emulation of complex multi‐output and dynamic computer models
  publication-title: Journal of Statistical Planning and Inference
– volume: 118
  year: 2012
– volume: 36
  start-page: 99
  year: 1958
  end-page: 134
– volume: 569
  year: 2021
  article-title: The 2011‐2019 Long Valley Caldera inflation: New insights from separation of superimposed geodetic signals and 3D modeling
  publication-title: Earth and Planetary Science Letters
– year: 2006
– year: 2020
– volume: 216
  start-page: 1100
  issue: 2
  year: 2019
  end-page: 1115
  article-title: Analytical solution for the stress field in elastic half‐space with a spherical pressurized cavity or inclusion containing eigenstrain
  publication-title: Geophysical Journal International
– volume: 91
  start-page: 7429
  issue: B7
  year: 1986
  end-page: 7438
  article-title: Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half‐space, with reference to Kilauea volcano, Hawaii
  publication-title: Journal of Geophysical Research
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  end-page: 528
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Mathematical Programming
– volume: 124
  start-page: 1443
  issue: 2
  year: 2019
  end-page: 1458
  article-title: Damage and strain Localization Around a pressurized shallow‐level magma reservoir
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 50
  start-page: 1885
  issue: 9
  year: 2012
  end-page: 1896
  article-title: Hierarchical Kriging model for variable‐fidelity surrogate modeling
  publication-title: AIAA Journal
– volume: 103
  start-page: 570
  issue: 482
  year: 2008
  end-page: 583
  article-title: Computer model Calibration using high‐dimensional output
  publication-title: Journal of the American Statistical Association
– year: 2013
– volume: 209
  start-page: 1746
  issue: 3
  year: 2017
  end-page: 1760
  article-title: Imaging the complex geometry of a magma reservoir using FEM‐based linear inverse modeling of InSAR data: Application to Rabaul caldera, Papua New Guinea
  publication-title: Geophysical Journal International
– ident: e_1_2_12_7_1
  doi: 10.3133/tm13B1
– volume-title: Deep neural networks as Gaussian processes
  year: 2018
  ident: e_1_2_12_35_1
– ident: e_1_2_12_33_1
  doi: 10.1029/91JB02839
– ident: e_1_2_12_20_1
  doi: 10.1080/01621459.2014.934453
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_2_12_46_1
– volume: 18
  year: 2005
  ident: e_1_2_12_54_1
  article-title: Sparse Gaussian processes using pseudo‐inputs
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_12_14_1
  doi: 10.1016/j.jspi.2009.08.006
– ident: e_1_2_12_45_1
  doi: 10.1137/15m1046812
– ident: e_1_2_12_53_1
  doi: 10.1016/j.epsl.2021.117055
– ident: e_1_2_12_52_1
  doi: 10.1144/SP380.4
– ident: e_1_2_12_29_1
  doi: 10.1214/17‐AOS1648
– volume-title: A General Approach for Solving Inverse Problems in geophysical systems by applying finite element method and metamodel techniques (Unpublished doctoral dissertation)
  year: 2016
  ident: e_1_2_12_60_1
– ident: e_1_2_12_25_1
  doi: 10.1198/TECH.2009.0015
– ident: e_1_2_12_59_1
  doi: 10.1029/JB093iB05p04249
– ident: e_1_2_12_18_1
  doi: 10.1002/2017GL072716
– volume-title: Bayesian learning for neural networks
  year: 2012
  ident: e_1_2_12_41_1
– ident: e_1_2_12_42_1
  doi: 10.1093/gji/ggac351
– ident: e_1_2_12_26_1
  doi: 10.1214/18‐BA1133
– volume: 24
  start-page: 1
  issue: 89
  year: 2023
  ident: e_1_2_12_34_1
  article-title: Neural operator: Learning maps between function spaces with applications to PDEs
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_39_1
  doi: 10.1029/JB092iB12p12931
– start-page: 99
  volume-title: Relations betweeen the eruptions of various volcanoes and the deformation of the ground
  year: 1958
  ident: e_1_2_12_40_1
– ident: e_1_2_12_4_1
  doi: 10.5066/P9KAX1QP
– ident: e_1_2_12_17_1
  doi: 10.1029/JB091iB07p07429
– ident: e_1_2_12_47_1
  doi: 10.1093/gji/ggx119
– ident: e_1_2_12_38_1
  doi: 10.1029/2011JB008811
– ident: e_1_2_12_5_1
  doi: 10.1126/science.aaz1822
– ident: e_1_2_12_8_1
  doi: 10.1198/TECH.2009.08018
– ident: e_1_2_12_28_1
  doi: 10.1214/16‐AOAS934
– ident: e_1_2_12_10_1
  doi: 10.1016/j.jvolgeores.2020.107153
– ident: e_1_2_12_44_1
  doi: 10.1111/rssc.12141
– ident: e_1_2_12_9_1
  doi: 10.1198/004017007000000092
– ident: e_1_2_12_23_1
  doi: 10.1029/2018JB016407
– ident: e_1_2_12_24_1
  doi: 10.1201/9780367815493
– ident: e_1_2_12_32_1
  doi: 10.1198/016214507000000888
– ident: e_1_2_12_49_1
  doi: 10.1214/ss/1177012413
– ident: e_1_2_12_13_1
  doi: 10.1093/gji/ggt490
– ident: e_1_2_12_19_1
  doi: 10.1029/JB080i029p04094
– ident: e_1_2_12_15_1
  doi: 10.1007/s00445‐023‐01687‐4
– ident: e_1_2_12_27_1
  doi: 10.5281/zenodo.3370575
– ident: e_1_2_12_50_1
  doi: 10.1007/978-1-4757-3799-8
– ident: e_1_2_12_58_1
  doi: 10.1016/s0021‐9991(03)00092‐5
– ident: e_1_2_12_21_1
  doi: 10.1046/j.1365‐246X.2001.00452.x
– ident: e_1_2_12_16_1
  doi: 10.1016/j.ijsolstr.2010.11.001
– ident: e_1_2_12_3_1
  doi: 10.5066/P1NEG8BH
– volume-title: AGU Fall Meeting Abstracts
  year: 2013
  ident: e_1_2_12_12_1
– ident: e_1_2_12_56_1
  doi: 10.1137/120899285
– ident: e_1_2_12_37_1
  doi: 10.1029/2006JB004860
– ident: e_1_2_12_61_1
  doi: 10.1093/gji/ggy447
– ident: e_1_2_12_51_1
  doi: 10.1515/9781400833856
– ident: e_1_2_12_30_1
  doi: 10.2514/1.J051354
– ident: e_1_2_12_43_1
  doi: 10.1038/s41467‐022‐34922‐1
– ident: e_1_2_12_36_1
  doi: 10.1007/BF01589116
– ident: e_1_2_12_31_1
  doi: 10.1002/2014JB011731
– ident: e_1_2_12_55_1
  doi: 10.1016/0041‐5553(67)90144‐9
– ident: e_1_2_12_2_1
  doi: 10.1029/2008JB005946
– ident: e_1_2_12_11_1
  doi: 10.1038/289783a0
– year: 2003
  ident: e_1_2_12_22_1
  article-title: Stochastic finite elements: A spectral approach
  publication-title: Courier Corporation
– ident: e_1_2_12_6_1
  doi: 10.1016/j.csda.2012.04.020
– ident: e_1_2_12_62_1
  doi: 10.1115/1.3169108
– ident: e_1_2_12_48_1
  doi: 10.1016/j.cageo.2012.09.025
– ident: e_1_2_12_57_1
  doi: 10.1111/j.1365‐246X.2007.03677.x
SSID ssj0003320807
Score 2.267108
Snippet Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general,...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms crustal deformation
emulator
geodesy
spheroidal cavity
surrogate model
volcano deformation
Title Computationally Efficient Emulation of Spheroidal Elastic Deformation Sources Using Machine Learning Models: A Gaussian‐Process‐Based Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000161
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIomJ9lD3owUMw2d00ibeqqaVQEWuht7BPELQV0x68iD9B_In-EmcflnoRvISwLHOYze737WTmG4SOMwB1ZYiK2iIl9jejiXJj7zywIDoRggtX4T24afdGrD9OxyHgZmthvD7EIuBmd4Y7r-0G56IOYgNWIxNu7azf85xlFa3Z6lqb0kfY7SLGQimJfcU0sWlqgFRxyH0HE2fLBn6h0jJLdTDT3UQbgR_ijl_QLbSiJ9vo0_deCHG7x1dcOuEHwAtcPoX-W3hq8NBqBEwfFBgogRWDCXylF-WJeOgC9TV2aQJ44NIoNQ4KqzBgm-LU57iDr_m8tsWVX-8foZAA3i4A7xTuBA3yHTTqlveXvSg0U4ikVdiJAKoFB_g3NJUs07AKheJSiiyH464tYAS4gFS50TEwOprrhEsuFWBoJsFbiu6ixmQ60XsIM6VYTkxhYiNh_ye5SCiTCeFE5IUWaROd_DizevaaGZX7102KatnpTXTqPP3npKp_fZfQdP8fcw_Quh31mWCHqDF7mesjoA4z0XLfR8tdvOE5eCu_Af1qwZA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVKOcAFgQBRVh_ogUNE4yRNgsSh0CVdhWgr9RbiTUKCFtFWqDc-AfEj_BNfwthxq3JB4tBbZNmONV7eeDzzBqFzH0CdS8KtIvWIemaUViDVnQcmRNiUJlRHeLc7xajvNgbeIIO-5rEwKT_EwuCmdoY-r9UGVwZpwzagSDLh2u42olRpMV6VTTF7gzvb-LpehgnOE1Kt9G4jy6QVsJjimrEAtGgCQCgdj7m-gPGEPGGM-gFs_CKFEkBFxgMpCqDbOIGwE5YwDmjiM_gzd6DfNbTuFomvUiYQ925h1HEcUkhDtInyiwNoLBhne2h4uTzgXzC4rBZrXKtuoy2jkOJSuoJ2UEYMd9FnmuzBGAqfZriimSYAoHDl2ST8wiOJu4qUYPTIoYMKqOHQBS6LRTwk7uqXgTHWfgm4rf02BTaUrlCgsvCMr3AJ15LpWEVzfr9_mMgF-LoBgOW4ZEjP91B_JWLeR9nhaCgOEHY5dwMiQ1mQDA4cO6C24zKbJIQGoaBeDuXnwoxfUpKOWD-ukzBeFnoOXWhJ_1kpbtTubcc7_EfdM7QR9dqtuFXvNI_QpqqRuqEdo-zkdSpOQG-Z0FO9VjB6WPXi_AEKQv60
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA61gngRRcX6zMEePCzuZnfbXcFDte_aUqyF3tbNCwRti9sivfkTxB_ij_KXOMmmpV4ED70tIcmGyeObZGa-Qei8CKDOJeFWgfpEmRmlFUh154EJEQ6lMdUR3u1Ood73mgN_kEFf81iYlB9i8eCmdoY-r9UGH3NpyAYURybc2r1mPdVZjFNlS8ze4MqWXDfKML95QqqVh9u6ZbIKWExRzViAWTQGHJSuz7yigOGEPGaMFgPY9wUKJQCKjAdS2KDauIFwYhYzDmBSZPBn7kK_a2hd2ReVCxnxuos3HdcldhqhTZRbHCCjbXztoeHl8oB_oeCyVqxhrbqNtow-ikvpAtpBGTHcRZ9prgfzTvg8wxVNNAH4hCsvJt8XHkncU5wEoycOHVRAC4cucFkswiFxTxsGEqzdEnBbu20KbBhdoUAl4UmucAnX4mmigjm_3z9M4AJ83QC-clwynOd7qL8SMe-j7HA0FAcIe5x7AZGhtCWD88YJqON6zCExoUEoqJ9D-bkwo3HK0RFp2zoJo2Wh59CFlvSflaJm7d5x_cN_1D1DG91yNbprdFpHaFNVSJ3QjlF28joVJ6C1TOipXioYPa56bf4Adov95g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Emulation+of+Spheroidal+Elastic+Deformation+Sources+Using+Machine+Learning+Models%3A+A+Gaussian%E2%80%90Process%E2%80%90Based+Approach&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Anderson%2C+Kyle+R.&rft.au=Gu%2C+Mengyang&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000161&rft.externalDBID=10.1029%252F2024JH000161&rft.externalDocID=JGR135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon