Classification of Ground‐Based Auroral Images by Learning Deep Tensor Feature Representation on Riemannian Manifold

Automatically classifying a huge amount of ground‐based auroral images is essential to facilitate aurora morphology statistical research and aid in comprehending the magnetospheric dynamics. However, facing the challenge of insufficient labeled images, deep learning methods perform suboptimally on s...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 2
Main Authors Hu, Yangfan, Zhou, Zeming, Yang, Pinglv, Zhao, Xiaofeng, Zhang, Peng
Format Journal Article
LanguageEnglish
Published 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatically classifying a huge amount of ground‐based auroral images is essential to facilitate aurora morphology statistical research and aid in comprehending the magnetospheric dynamics. However, facing the challenge of insufficient labeled images, deep learning methods perform suboptimally on small auroral image data sets, and traditional machine learning methods based on handcrafted features heavily rely on expert knowledge. In this paper, we propose a novel method that leverages the merits of both traditional machine learning and deep learning methods by extracting deep second‐order tensor features to train a support vector machine (SVM). To improve compactness and discriminative ability of the features, we comply the intrinsic data geometry on Riemannian manifold to employ dimensionality reduction and map the dimensionality‐reduced features from Riemannian space to Euclidean space for the SVM classifier. Experimental results on small aurora data sets conclusively demonstrate the effectiveness of our method, exhibiting competitive performance with recent aurora classification methods. Plain Language Summary Auroral images constitute the primary optical observation of aurora. However, the annotation for auroral images is time‐consuming and tedious, provoking the need for leveraging a small number of annotated samples to improve auroral image classification accuracy. Auroral image classification has been accomplished by traditional machine learning or deep learning methods. Combining the merits of both, we propose a novel method harnessing the robust feature extraction ability of a pretrained convolutional neural network (CNN) and the superior classification performance of a support vector machine (SVM) for small auroral image data sets. Our method represents deep second‐order tensor features of auroral images by capturing correlations between channels in CNN‐based features. Since deep second‐order tensor features reside on Riemannian manifold, we measure the feature similarity by geodesic distance and adopt dimensionality reduction to refine those features by imposing a constraint that contracts the data points' intra class and separates the data points inter classes. Moreover, dimensionality‐reduced features still locate in Riemannian space, in the manner of more compactness and higher discriminative ability; we map the features from Riemannian space to Euclidean space for SVM applicability. Experimental results on small data sets conclusively demonstrate the effectiveness of our method, which consistently outperforms recent auroral image classification approaches. Key Points We leverage the merits of traditional machine learning and deep learning to improve the classification accuracy of auroral images We apply Riemannian manifold learning to improve the discriminative ability of feature and preserve its non‐Euclidean geometry structure Experiments demonstrate the proposed method is superior to recent classification results on small ground‐based auroral image data sets
AbstractList Automatically classifying a huge amount of ground‐based auroral images is essential to facilitate aurora morphology statistical research and aid in comprehending the magnetospheric dynamics. However, facing the challenge of insufficient labeled images, deep learning methods perform suboptimally on small auroral image data sets, and traditional machine learning methods based on handcrafted features heavily rely on expert knowledge. In this paper, we propose a novel method that leverages the merits of both traditional machine learning and deep learning methods by extracting deep second‐order tensor features to train a support vector machine (SVM). To improve compactness and discriminative ability of the features, we comply the intrinsic data geometry on Riemannian manifold to employ dimensionality reduction and map the dimensionality‐reduced features from Riemannian space to Euclidean space for the SVM classifier. Experimental results on small aurora data sets conclusively demonstrate the effectiveness of our method, exhibiting competitive performance with recent aurora classification methods. Plain Language Summary Auroral images constitute the primary optical observation of aurora. However, the annotation for auroral images is time‐consuming and tedious, provoking the need for leveraging a small number of annotated samples to improve auroral image classification accuracy. Auroral image classification has been accomplished by traditional machine learning or deep learning methods. Combining the merits of both, we propose a novel method harnessing the robust feature extraction ability of a pretrained convolutional neural network (CNN) and the superior classification performance of a support vector machine (SVM) for small auroral image data sets. Our method represents deep second‐order tensor features of auroral images by capturing correlations between channels in CNN‐based features. Since deep second‐order tensor features reside on Riemannian manifold, we measure the feature similarity by geodesic distance and adopt dimensionality reduction to refine those features by imposing a constraint that contracts the data points' intra class and separates the data points inter classes. Moreover, dimensionality‐reduced features still locate in Riemannian space, in the manner of more compactness and higher discriminative ability; we map the features from Riemannian space to Euclidean space for SVM applicability. Experimental results on small data sets conclusively demonstrate the effectiveness of our method, which consistently outperforms recent auroral image classification approaches. Key Points We leverage the merits of traditional machine learning and deep learning to improve the classification accuracy of auroral images We apply Riemannian manifold learning to improve the discriminative ability of feature and preserve its non‐Euclidean geometry structure Experiments demonstrate the proposed method is superior to recent classification results on small ground‐based auroral image data sets
Automatically classifying a huge amount of ground‐based auroral images is essential to facilitate aurora morphology statistical research and aid in comprehending the magnetospheric dynamics. However, facing the challenge of insufficient labeled images, deep learning methods perform suboptimally on small auroral image data sets, and traditional machine learning methods based on handcrafted features heavily rely on expert knowledge. In this paper, we propose a novel method that leverages the merits of both traditional machine learning and deep learning methods by extracting deep second‐order tensor features to train a support vector machine (SVM). To improve compactness and discriminative ability of the features, we comply the intrinsic data geometry on Riemannian manifold to employ dimensionality reduction and map the dimensionality‐reduced features from Riemannian space to Euclidean space for the SVM classifier. Experimental results on small aurora data sets conclusively demonstrate the effectiveness of our method, exhibiting competitive performance with recent aurora classification methods. Auroral images constitute the primary optical observation of aurora. However, the annotation for auroral images is time‐consuming and tedious, provoking the need for leveraging a small number of annotated samples to improve auroral image classification accuracy. Auroral image classification has been accomplished by traditional machine learning or deep learning methods. Combining the merits of both, we propose a novel method harnessing the robust feature extraction ability of a pretrained convolutional neural network (CNN) and the superior classification performance of a support vector machine (SVM) for small auroral image data sets. Our method represents deep second‐order tensor features of auroral images by capturing correlations between channels in CNN‐based features. Since deep second‐order tensor features reside on Riemannian manifold, we measure the feature similarity by geodesic distance and adopt dimensionality reduction to refine those features by imposing a constraint that contracts the data points' intra class and separates the data points inter classes. Moreover, dimensionality‐reduced features still locate in Riemannian space, in the manner of more compactness and higher discriminative ability; we map the features from Riemannian space to Euclidean space for SVM applicability. Experimental results on small data sets conclusively demonstrate the effectiveness of our method, which consistently outperforms recent auroral image classification approaches. We leverage the merits of traditional machine learning and deep learning to improve the classification accuracy of auroral images We apply Riemannian manifold learning to improve the discriminative ability of feature and preserve its non‐Euclidean geometry structure Experiments demonstrate the proposed method is superior to recent classification results on small ground‐based auroral image data sets
Author Zhang, Peng
Yang, Pinglv
Hu, Yangfan
Zhou, Zeming
Zhao, Xiaofeng
Author_xml – sequence: 1
  givenname: Yangfan
  orcidid: 0000-0003-0358-1587
  surname: Hu
  fullname: Hu, Yangfan
  organization: National University of Defense Technology
– sequence: 2
  givenname: Zeming
  orcidid: 0000-0002-9264-0608
  surname: Zhou
  fullname: Zhou, Zeming
  email: zhou_zeming@nudt.edu.cn
  organization: National University of Defense Technology
– sequence: 3
  givenname: Pinglv
  surname: Yang
  fullname: Yang, Pinglv
  organization: National University of Defense Technology
– sequence: 4
  givenname: Xiaofeng
  surname: Zhao
  fullname: Zhao, Xiaofeng
  organization: National University of Defense Technology
– sequence: 5
  givenname: Peng
  orcidid: 0000-0002-3527-7259
  surname: Zhang
  fullname: Zhang, Peng
  organization: Army Engineering University of PLA
BookMark eNp9kDtOAzEURS0UJEJIxwK8AAb87PkwZQjkpyCkKNQj2_McGU3syM4ITccSWCMrISgpUlHdWxyd4lyTnvMOCbkFdg-Mlw-ccbGYMcaAlRekz8tSJBkH1jv7V2QY48eBEYKzR1b0STtuZIzWWC331jvqDZ0G37r65-v7SUas6agNPsiGzrdyg5Gqji5RBmfdhj4j7ugaXfSBTlDu24B0hbuAEd3-5HN0ZXErnbPS0VfprPFNfUMujWwiDk87IO-Tl_V4lizfpvPxaJlogBySEjPBizLFXOWK55ByBUKromaaa40CJWANyphCYAosLSETIDOocwUpCi4G5O7o1cHHGNBUu2C3MnQVsOqvWnVe7YCzI_5pG-z-ZavFdAUcxC9RjXC5
Cites_doi 10.1029/2022EA002513
10.1109/CVPR.2016.90
10.5194/amt‐11‐5351‐2018
10.1016/j.eswa.2008.09.066
10.1016/j.jastp.2005.03.027
10.1007/s10489‐021‐02925‐y
10.1016/j.inffus.2020.01.005
10.1007/s11214‐020‐00715‐5
10.5194/angeo‐22‐1103‐2004
10.3390/rs10020233
10.1109/LGRS.2020.3012620
10.1126/science.290.5500.2319
10.1029/2023EA002843
10.1029/2010JA015528
10.1109/ICCV48922.2021.00041
10.1029/2020GL087338
10.1007/s11263-005-3222-z
10.1126/science.290.5500.2323
10.1016/j.ins.2019.12.041
10.1109/JSTARS.2014.2321433
10.1029/2020JA027808
10.1109/TGRS.2021.3123651
10.1007/s11214‐019‐0629‐3
10.1515/9781400830244
10.1029/2018JA025274
10.1016/j.neucom.2021.03.003
10.1162/089976603321780317
10.1029/2018JA026119
10.1016/j.patcog.2023.109563
10.1016/j.patrec.2020.07.042
10.1109/TPAMI.2017.2655048
10.5194/amt‐14‐737‐2021
10.1109/TMI.2004.831793
10.1109/TGRS.2022.3205178
10.1109/TGRS.2021.3128764
10.1029/2022GL099131
10.1029/2021JA029683
10.1029/2018GL077787
10.1029/2019JA027590
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2023JH000109
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2023JH000109
JGR121
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61473310; 41174164; 41775027; 42305159
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20231490
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAYXX
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1161-9e532794e6b6b26142b13cb7d0c2cce3ea1ed1bff73e410491531a51d6b14e323
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1161-9e532794e6b6b26142b13cb7d0c2cce3ea1ed1bff73e410491531a51d6b14e323
ORCID 0000-0002-9264-0608
0000-0002-3527-7259
0000-0003-0358-1587
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JH000109
PageCount 13
ParticipantIDs crossref_primary_10_1029_2023JH000109
wiley_primary_10_1029_2023JH000109_JGR121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References 2023; 10
2004; 22
2017; 7
2012
2021; 445
2023; 140
2018; 123
2021; 127
2004; 23
2008; 36
2008
2020; 59
2003; 15
2002; 3
2019; 124
2006
2018; 40
2004
2021; 141
2020; 125
2018; 45
2022; 49
2000; 290
2021; 14
2022; 60
2006; 68
2021
2021; 18
2010; 115
1998; 108
2014; 15
2020; 47
2020; 216
2016
2022; 52
2014
2018; 11
2018; 10
2020; 516
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Sra S. (e_1_2_8_30_1) 2012
Simmons D. A. R. (e_1_2_8_28_1) 1998; 108
e_1_2_8_8_1
Wang Z. (e_1_2_8_42_1) 2004
e_1_2_8_20_1
Simonyan K. (e_1_2_8_29_1) 2014
e_1_2_8_43_1
e_1_2_8_21_1
Syrjsuo M. T. (e_1_2_8_34_1) 2002; 3
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Syrjaesuo M. T. (e_1_2_8_33_1) 2004
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Boumal N. (e_1_2_8_5_1) 2014; 15
Szegedy C. (e_1_2_8_35_1) 2016
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
Dosovitskiy D. (e_1_2_8_9_1) 2021
References_xml – volume: 36
  start-page: 7535
  issue: 4
  year: 2008
  end-page: 7543
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 5351
  issue: 9
  year: 2018
  end-page: 5361
  article-title: Cloud classification of ground‐based infrared images combining manifold and texture features
  publication-title: Atmospheric Measurement Techniques
– volume: 22
  start-page: 1103
  issue: 4
  year: 2004
  end-page: 1113
  article-title: Diurnal auroral occurrence statistics obtained via machine vision
  publication-title: Annales Geophysicae
– volume: 115
  issue: A10
  year: 2010
  article-title: Substorm onset by new plasma intrusion: THEMIS spacecraft observations
  publication-title: Journal of Geophysical Research
– volume: 45
  start-page: 8665
  issue: 16
  year: 2018
  end-page: 8672
  article-title: CloudNet: Ground‐based cloud classification with deep convolutional neural network
  publication-title: Geophysical Research Letters
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  article-title: SSMD: Dimensionality reduction and classification of hyperspectral images based on spatial–spectral manifold distance metric learning
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 10
  issue: 2
  year: 2018
  article-title: Aurora image classification based on multi‐feature latent dirichlet allocation
  publication-title: Remote Sensing
– volume: 68
  start-page: 1472
  issue: 13
  year: 2006
  end-page: 1487
  article-title: The THEMIS all‐sky imaging array—System design and initial results from the prototype imager
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– year: 2021
– volume: 14
  start-page: 737
  issue: 1
  year: 2021
  end-page: 747
  article-title: Improving cloud type classification of ground‐based images using region covariance descriptors
  publication-title: Atmospheric Measurement Techniques
– volume: 47
  issue: 5
  year: 2020
  article-title: Ground‐based cloud classification using task‐based graph convolutional network
  publication-title: Geophysical Research Letters
– volume: 141
  start-page: 61
  year: 2021
  end-page: 67
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recognition Letters
– year: 2016
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  end-page: 1396
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Computation
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  article-title: Dimensionality reduction and classification of hyperspectral image via multistructure unified discriminative embedding
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 59
  start-page: 44
  year: 2020
  end-page: 58
  article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data
  publication-title: Information Fusion
– year: 2014
– year: 2012
– volume: 445
  start-page: 50
  issue: 20
  year: 2021
  end-page: 60
  article-title: Second‐order encoding networks for semantic segmentation
  publication-title: Neurocomputing
– volume: 40
  start-page: 48
  issue: 1
  year: 2018
  end-page: 62
  article-title: Dimensionality reduction on SPD manifolds: The emergence of geometry‐aware methods
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 108
  start-page: 247
  year: 1998
  end-page: 257
  article-title: A classification of auroral types
  publication-title: Journal of the British Astronomical Association
– volume: 10
  issue: 10
  year: 2023
  article-title: Automatic recognition and localization of poleward moving auroral forms (PMAFs) from all‐sky auroral videos
  publication-title: Earth and Space Science
– volume: 49
  issue: 15
  year: 2022
  article-title: Self‐supervised classification of weather systems based on spatiotemporal contrastive learning
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 3512
  issue: 5
  year: 2019
  end-page: 3521
  article-title: Extracting auroral key local structures from all‐sky auroral images by artificial intelligence technique
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 127
  start-page: 1
  issue: 1
  year: 2021
  end-page: 38
  article-title: Transfer learning aurora image classification and magnetic disturbance evaluation
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 23
  start-page: 995
  issue: 8
  year: 2004
  end-page: 1005
  article-title: Principal geodesic analysis for the study of nonlinear statistics of shape
  publication-title: IEEE Transactions on Medical Imaging
– volume: 216
  issue: 5
  year: 2020
  article-title: Quiet, discrete auroral arcs: Accelerations mechanisms
  publication-title: Space Science Reviews
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  end-page: 2326
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– year: 2008
– year: 2006
– year: 2004
– volume: 125
  issue: 10
  year: 2020
  article-title: Auroral image classification with deep neural networks
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  article-title: Clustered multiple manifold metric learning for hyperspectral image dimensionality reduction and classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 123
  start-page: 5640
  issue: 7
  year: 2018
  end-page: 5647
  article-title: Automatic classification of auroral images from the Oslo Auroral Themis (OATH) data set using machine learning
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 7
  start-page: 4717
  issue: 12
  year: 2017
  end-page: 4725
  article-title: Automatic auroral detection in color all‐sky camera images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing
– volume: 3
  start-page: 3
  year: 2002
  end-page: 14
  article-title: Analysis of auroral images: Detection and tracking
  publication-title: Geophysica
– volume: 10
  issue: 1
  year: 2023
  article-title: Aurora detection from nighttime lights for earth and space science applications
  publication-title: Earth and Space Science
– volume: 18
  start-page: 1941
  issue: 11
  year: 2021
  end-page: 1945
  article-title: Extension of image data using generative adversarial networks and application to identification of aurora
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 216
  issue: 1
  year: 2020
  article-title: Diffuse and pulsating aurora
  publication-title: Space Science Reviews
– volume: 125
  issue: 9
  year: 2020
  article-title: Automatic aurora image classification framework based on deep learning for occurrence distribution analysis: A case study of all‐sky image data sets from the yellow river station
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 140
  year: 2023
  article-title: RMAML: Riemannian meta‐learning with orthogonality constraints
  publication-title: Pattern Recognition
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  end-page: 2323
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 15
  start-page: 1455
  issue: 4
  year: 2014
  end-page: 1459
  article-title: Manopt, a matlab toolbox for optimization on manifolds
  publication-title: Journal of Machine Learning Research
– volume: 52
  start-page: 11273
  issue: 10
  year: 2022
  end-page: 11287
  article-title: Second‐order convolutional networks for iris recognition
  publication-title: Applied Intelligence
– volume: 516
  start-page: 109
  year: 2020
  end-page: 124
  article-title: Joint dimensionality reduction and metric learning for image set classification
  publication-title: Information Sciences
– volume: 15
  start-page: 1455
  issue: 4
  year: 2014
  ident: e_1_2_8_5_1
  article-title: Manopt, a matlab toolbox for optimization on manifolds
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_15_1
  doi: 10.1029/2022EA002513
– volume-title: Paper presented at IASTED International Conference on Visualization, Imaging, and Image Processing, Marbella, Spain
  year: 2004
  ident: e_1_2_8_33_1
– ident: e_1_2_8_12_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_20_1
  doi: 10.5194/amt‐11‐5351‐2018
– ident: e_1_2_8_16_1
  doi: 10.1016/j.eswa.2008.09.066
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jastp.2005.03.027
– ident: e_1_2_8_13_1
  doi: 10.1007/s10489‐021‐02925‐y
– ident: e_1_2_8_3_1
  doi: 10.1016/j.inffus.2020.01.005
– ident: e_1_2_8_21_1
  doi: 10.1007/s11214‐020‐00715‐5
– ident: e_1_2_8_32_1
  doi: 10.5194/angeo‐22‐1103‐2004
– ident: e_1_2_8_48_1
  doi: 10.3390/rs10020233
– ident: e_1_2_8_39_1
  doi: 10.1109/LGRS.2020.3012620
– ident: e_1_2_8_38_1
  doi: 10.1126/science.290.5500.2319
– volume-title: Paper presented at 2004 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA
  year: 2004
  ident: e_1_2_8_42_1
– ident: e_1_2_8_46_1
  doi: 10.1029/2023EA002843
– ident: e_1_2_8_43_1
  doi: 10.1029/2010JA015528
– ident: e_1_2_8_6_1
  doi: 10.1109/ICCV48922.2021.00041
– volume-title: Paper presented at 26th Annual Conference on Neural Information Processing Systems (NIPS 2012), Lake Tahoe Nevada
  year: 2012
  ident: e_1_2_8_30_1
– ident: e_1_2_8_18_1
  doi: 10.1029/2020GL087338
– ident: e_1_2_8_24_1
  doi: 10.1007/s11263-005-3222-z
– ident: e_1_2_8_26_1
  doi: 10.1126/science.290.5500.2323
– volume: 3
  start-page: 3
  year: 2002
  ident: e_1_2_8_34_1
  article-title: Analysis of auroral images: Detection and tracking
  publication-title: Geophysica
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ins.2019.12.041
– ident: e_1_2_8_25_1
  doi: 10.1109/JSTARS.2014.2321433
– volume-title: Paper presented at 2014 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Columbus, Ohio
  year: 2014
  ident: e_1_2_8_29_1
– ident: e_1_2_8_17_1
  doi: 10.1029/2020JA027808
– ident: e_1_2_8_7_1
  doi: 10.1109/TGRS.2021.3123651
– ident: e_1_2_8_22_1
  doi: 10.1007/s11214‐019‐0629‐3
– ident: e_1_2_8_2_1
  doi: 10.1515/9781400830244
– ident: e_1_2_8_23_1
  doi: 10.1029/2018JA025274
– ident: e_1_2_8_31_1
  doi: 10.1016/j.neucom.2021.03.003
– ident: e_1_2_8_4_1
  doi: 10.1162/089976603321780317
– ident: e_1_2_8_45_1
  doi: 10.1029/2018JA026119
– ident: e_1_2_8_36_1
  doi: 10.1016/j.patcog.2023.109563
– ident: e_1_2_8_41_1
  doi: 10.1016/j.patrec.2020.07.042
– volume-title: Paper presented at 2021 ICLR International Conference on Learning Representations
  year: 2021
  ident: e_1_2_8_9_1
– ident: e_1_2_8_11_1
  doi: 10.1109/TPAMI.2017.2655048
– ident: e_1_2_8_37_1
  doi: 10.5194/amt‐14‐737‐2021
– ident: e_1_2_8_10_1
  doi: 10.1109/TMI.2004.831793
– volume: 108
  start-page: 247
  year: 1998
  ident: e_1_2_8_28_1
  article-title: A classification of auroral types
  publication-title: Journal of the British Astronomical Association
– ident: e_1_2_8_14_1
  doi: 10.1109/TGRS.2022.3205178
– ident: e_1_2_8_19_1
  doi: 10.1109/TGRS.2021.3128764
– ident: e_1_2_8_40_1
  doi: 10.1029/2022GL099131
– ident: e_1_2_8_27_1
  doi: 10.1029/2021JA029683
– volume-title: Paper presented at 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada
  year: 2016
  ident: e_1_2_8_35_1
– ident: e_1_2_8_47_1
  doi: 10.1029/2018GL077787
– ident: e_1_2_8_49_1
  doi: 10.1029/2019JA027590
SSID ssj0003320807
Score 2.2577398
Snippet Automatically classifying a huge amount of ground‐based auroral images is essential to facilitate aurora morphology statistical research and aid in...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms auroral image classification
dimensionality reduction
Riemannian manifold learning
second‐order tensor feature
Title Classification of Ground‐Based Auroral Images by Learning Deep Tensor Feature Representation on Riemannian Manifold
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JH000109
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagLCwIBIjyU3mAgSEituOkHQu0lEpFqGqlbpGdnFElmlRpO7AgHoFn5Ek4O6EqCxJLhsjxcPH9-rvvCLmUkQ6lUr5n_CZggqLA0zIwXsgTqQVGqNIRaQ-ewt446E_kpCq42V6Ykh9iXXCzmuHstVVwpRcV2YDlyLRzv_s9393tbJMd211rIX08eF7XWITgftkxzS1MDT2VX2HfcYubzQ1-eaXNKNW5me4-2aviQ9ouf-gB2YLskKzc6EoL6nFypLmhtmaUpV8fn7fohlLaXhW21Z4-ztA-LKh-oxVx6gu9B5jTEWareUFtwLcqgA4d_rVqO8L9MjqcwsyOL1IZHahsavLX9IiMu53RXc-r5iV4CcPAzWuBFBz1C0IdasyMAq6ZSHSU-glPEhCgGKRMGxMJCDANa6G1Y0qyNNQsAMHFMalleQYnhHKtjGzil4ylgYikVlwCBx9EmDBhVJ1c_cgrnpe0GLG7zuateFOudXLthPnnorj_MGScnf5j7RnZxbdBidk6J7VlsYILjA6WuuGOQMPl1vgcvHe-AZoCtEY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgECDeeICBISJ-ph3Lo7SlrVDVSt0iO7mgSjSpQjOw8RP4jfwSbCdUZUFiv9xwju--O9_dh9ClCLQUSvle4tfBJCgKPC144kkaCc0MQhVukXZ_INtj3p2IScVzamdhyv0Qy4KbvRnOX9sLbgvS1bYBuyTTEn9327573FlHG1zSwFIYUP68LLIwRv1yZJraPjUTqvyq-d2ouFlV8CssrcJUF2daO2i7Aoi4WZ7oLlqDdA8VjrvSdvU4Q-IswbZolMZfH5-3Jg7FuFnkdtYed2bGQbxh_Y6rzakv-B5gjkcmXc1ybBFfkQMeugbYau7I6EvxcAozy1-kUtxX6TTJXuN9NG49jO7aXkWY4EXEIDevAYJRc8FAaqlNasSpJizSQexHNIqAgSIQE50kAQNu8rCGcXdECRJLTTgwyg5QLc1SOESYapWIuvmSkJizQGhFBVDwgcmIsEQdoasfe4Xzci9G6N6zaSNctesRunbG_FMo7D4OCSXH_5C9QJvtUb8X9jqDpxO0ZSR42cB1imqLvIAzAxUW-tz9Dt_r4rWM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJsaL0agRn3vQg4fG7qvAEUUEFEIIJNya3XbWkEhLKj148yf4G_0l7m4rwYuJ9-kcZjvvmW8QuhI1FQgpfU_7dTAJigRPCa69gEZCMROhCgek3R8EnQnvTcW0LLjZXZgCH2JVcLOa4ey1VfBFrEuwAYuRae9-9zq-6-1soi3b77MjXZQPVzUWxqhfbExTO6ZmPJVfzr4bFrfrDH55pfUo1bmZ9h7aLeND3CwedB9tQHKAcne60g71ODniVGNbM0rir4_PO-OGYtzMM7tqj7tzYx_esHrHJXDqC24BLPDYZKtphm3Al2eAR27-tVw7MvwSPJrB3J4vkgnuy2Sm09f4EE3aD-P7jlfeS_AiYgI3rwGCUaNfEKhAmcyIU0VYpGqxH9EoAgaSQEyU1jUG3KRhDWPtiBQkDhThwCg7QpUkTeAYYaqkFnXzJSExZzWhJBVAwQcWRIRpWUXXP_IKFwUsRuja2bQRrsu1im6cMP8kCnuPI0LJyT9oL9H2sNUOn7uDp1O0Ywh4Mb51hirLLIdzEygs1YX7G74BGPW0vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Ground%E2%80%90Based+Auroral+Images+by+Learning+Deep+Tensor+Feature+Representation+on+Riemannian+Manifold&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Hu%2C+Yangfan&rft.au=Zhou%2C+Zeming&rft.au=Yang%2C+Pinglv&rft.au=Zhao%2C+Xiaofeng&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1029%2F2023JH000109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023JH000109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon