Analyzing the Existence and Uniqueness of Solutions in Coupled Fractional Differential Equations

This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary contributions are as follows: First, we introduce foundational lemmas and definitions pertinent to the problem. Second, we develop a solution co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied and computational mathematics Vol. 11; no. 2
Main Authors Ansari, Intesham, Dubey, Rishika, Devi, Amita, Kumar, Anoop
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2349-5103
2199-5796
DOI10.1007/s40819-025-01876-z

Cover

Loading…
Abstract This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary contributions are as follows: First, we introduce foundational lemmas and definitions pertinent to the problem. Second, we develop a solution composed of Green’s function and an additional constant term, thoroughly determining the Green’s function and its properties. Third, we establish the existence of solutions using Krasnoselskii’s fixed point theorem and prove their uniqueness through the Banach fixed point theorem. These contributions collectively provide a robust framework for solving mixed FDEs, highlighting the utility of these mathematical methods in addressing complex fractional differential equations.
AbstractList This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary contributions are as follows: First, we introduce foundational lemmas and definitions pertinent to the problem. Second, we develop a solution composed of Green’s function and an additional constant term, thoroughly determining the Green’s function and its properties. Third, we establish the existence of solutions using Krasnoselskii’s fixed point theorem and prove their uniqueness through the Banach fixed point theorem. These contributions collectively provide a robust framework for solving mixed FDEs, highlighting the utility of these mathematical methods in addressing complex fractional differential equations.
ArticleNumber 67
Author Kumar, Anoop
Ansari, Intesham
Dubey, Rishika
Devi, Amita
Author_xml – sequence: 1
  givenname: Intesham
  surname: Ansari
  fullname: Ansari, Intesham
  organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab
– sequence: 2
  givenname: Rishika
  surname: Dubey
  fullname: Dubey, Rishika
  organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab
– sequence: 3
  givenname: Amita
  surname: Devi
  fullname: Devi, Amita
  organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab
– sequence: 4
  givenname: Anoop
  surname: Kumar
  fullname: Kumar, Anoop
  email: anoopmath85@gmail.com
  organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab
BookMark eNp9kE9LwzAYh4NMcM59AU8Bz9WkSZP2OOamwsCD7hyz9M3sqOmWtOD66c1WwZun9w_P7-XluUYj1zhA6JaSe0qIfAic5LRISJolhOZSJP0FGqe0KJJMFmIUe8ZjTwm7QtMQdoSQlHJJ0nyMPmZO18e-clvcfgJefFehBWcAa1fitasOHTgIATcWvzV111aNC7hyeN50-xpKvPTanJa6xo-VteDBtVUcFodOn-EbdGl1HWD6WydovVy8z5-T1evTy3y2SgylWZ-YAjQRBZc6B8lZarTe5Fyw3HLBMyNAAN1QYXVkyoKkBWRUM7BlbgwwWbIJuhvu7n0Tnw6t2jWdj38FxaiUUYtkIlLpQBnfhODBqr2vvrQ_KkrUSaYaZKooU51lqj6G2BAKEXZb8H-n_0n9ALZsev4
Cites_doi 10.1186/s13661-019-1222-0
10.3390/math7060533
10.3390/sym10120667
10.1109/ACCESS.2023.3241482
10.1016/j.chaos.2021.110668
10.1186/1687-1847-2013-128
10.1186/s13662-019-2438-0
10.1186/s13662-020-02544-w
10.1016/j.chaos.2022.111859
10.1186/1687-2770-2011-1
10.1186/s13661-017-0801-1
10.1080/27690911.2023.2181959
10.1016/j.chaos.2020.110107
10.1016/j.chaos.2020.109705
10.1016/j.sigpro.2010.04.006
10.1186/s13661-023-01696-4
10.1515/math-2016-0064
10.1016/j.cnsns.2018.04.019
10.1023/A:1016539022492
10.3390/fractalfract7120849
10.1016/j.cnsns.2021.105844
10.1016/j.camwa.2012.01.009
10.1080/00207179.2017.1315242
10.3390/computation12010007
10.1142/S0218348X2040006X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s40819-025-01876-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID 10_1007_s40819_025_01876_z
GroupedDBID 0R~
203
4.4
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c115z-c9ea06947a8e7432caab84638f4645c6e6e1b16fa694d9029e51a3efd8cce37d3
ISSN 2349-5103
IngestDate Fri Jul 25 09:48:38 EDT 2025
Wed Aug 20 07:46:06 EDT 2025
Mon Jul 21 06:22:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Krasnoselskii’s fixed point theorem
Banach Contraction Mapping principle
Caputo fractional derivative
Coupled fractional differential equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c115z-c9ea06947a8e7432caab84638f4645c6e6e1b16fa694d9029e51a3efd8cce37d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3177876736
PQPubID 2044256
ParticipantIDs proquest_journals_3177876736
crossref_primary_10_1007_s40819_025_01876_z
springer_journals_10_1007_s40819_025_01876_z
PublicationCentury 2000
PublicationDate 20250400
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationYear 2025
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References A Devi (1876_CR16) 2020; 28
D Baleanu (1876_CR12) 2020; 2020
J An (1876_CR9) 2019; 28
Mark Aleksandrovich Krasnosel’skii (1876_CR25) 1955; 10
Y Liu (1876_CR24) 2023; 2023
B Ahmad (1876_CR3) 2011; 2011
SM Ulam (1876_CR36) 1968
HH Alsulami (1876_CR8) 2017; 2017
OP Agrawal (1876_CR2) 2002; 29
B Ahmad (1876_CR5) 2019; 2019
M Shams (1876_CR34) 2023; 31
1876_CR6
D Baleanu (1876_CR11) 2020; 134
A Kumar (1876_CR23) 2020; 2020
H Mohammadi (1876_CR27) 2021; 144
A Alsaedi (1876_CR7) 2018; 10
1876_CR29
D Baleanu (1876_CR13) 2021; 100
I Podlubny (1876_CR30) 1998
Imran A Muhammad (1876_CR28) 2020; 16
C Promsakon (1876_CR31) 2024; 2024
M Shams (1876_CR33) 2023; 7
B Ahmad (1876_CR4) 2019; 7
KM Furati (1876_CR18) 2012; 64
HG Sun (1876_CR19) 2018; 64
MM Matar (1876_CR26) 2021; 1–18
A Devi (1876_CR15) 2022; 156
M Shams (1876_CR35) 2023; 11
N Huy (1876_CR22) 2020; 140
1876_CR32
MH Aqlan (1876_CR10) 2016; 14
RP Agarwal (1876_CR1) 2013; 2013
K Hattaf (1876_CR20) 2024; 12
S Hussain (1876_CR21) 2022; 2022
1876_CR14
D Valério (1876_CR37) 2011; 91
1876_CR17
References_xml – volume: 2019
  start-page: 1
  issue: 1
  year: 2019
  ident: 1876_CR5
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-019-1222-0
– volume-title: Fractional Differential Equations
  year: 1998
  ident: 1876_CR30
– volume: 7
  start-page: 1
  issue: 6
  year: 2019
  ident: 1876_CR4
  publication-title: Mathematics
  doi: 10.3390/math7060533
– ident: 1876_CR32
– volume-title: A collection of mathematical problems interscience publishers
  year: 1968
  ident: 1876_CR36
– ident: 1876_CR6
– ident: 1876_CR17
– volume: 10
  start-page: 1
  issue: 12
  year: 2018
  ident: 1876_CR7
  publication-title: Symmetry
  doi: 10.3390/sym10120667
– volume: 11
  start-page: 33205
  year: 2023
  ident: 1876_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3241482
– volume: 144
  year: 2021
  ident: 1876_CR27
  publication-title: Chaos, Solit. Fract.
  doi: 10.1016/j.chaos.2021.110668
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  ident: 1876_CR1
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-128
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 1876_CR23
  publication-title: Adv. Differ. Equs.
  doi: 10.1186/s13662-019-2438-0
– volume: 2020
  start-page: 71
  issue: 1
  year: 2020
  ident: 1876_CR12
  publication-title: Adv. Difference Equ.
  doi: 10.1186/s13662-020-02544-w
– volume: 10
  start-page: 123
  issue: 1
  year: 1955
  ident: 1876_CR25
  publication-title: Uspekhi Matematicheskikh Nauk
– volume: 156
  year: 2022
  ident: 1876_CR15
  publication-title: Chaos, Solit. Fract.
  doi: 10.1016/j.chaos.2022.111859
– volume: 16
  start-page: 67
  issue: 2
  year: 2020
  ident: 1876_CR28
  publication-title: J. Prime Res. Math
– ident: 1876_CR29
– volume: 2011
  start-page: 1
  issue: 1
  year: 2011
  ident: 1876_CR3
  publication-title: Bound. Value Problems.
  doi: 10.1186/1687-2770-2011-1
– volume: 2017
  start-page: 1
  year: 2017
  ident: 1876_CR8
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-017-0801-1
– volume: 31
  start-page: 2181959
  issue: 1
  year: 2023
  ident: 1876_CR34
  publication-title: Appl. Math. Sci. Eng.
  doi: 10.1080/27690911.2023.2181959
– volume: 1–18
  start-page: 2021
  year: 2021
  ident: 1876_CR26
  publication-title: Adv. Difference Equ.
– volume: 140
  year: 2020
  ident: 1876_CR22
  publication-title: Chaos, Solit. Fract.
  doi: 10.1016/j.chaos.2020.110107
– volume: 134
  year: 2020
  ident: 1876_CR11
  publication-title: Chaos, Solit. Fract.
  doi: 10.1016/j.chaos.2020.109705
– volume: 91
  start-page: 470
  year: 2011
  ident: 1876_CR37
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.04.006
– volume: 2024
  start-page: 6844686
  issue: 1
  year: 2024
  ident: 1876_CR31
  publication-title: Math. Probl. Eng.
– volume: 2023
  start-page: 1
  issue: 1
  year: 2023
  ident: 1876_CR24
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-023-01696-4
– volume: 14
  start-page: 723
  issue: 1
  year: 2016
  ident: 1876_CR10
  publication-title: Open Math.
  doi: 10.1515/math-2016-0064
– volume: 64
  start-page: 213
  year: 2018
  ident: 1876_CR19
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.04.019
– volume: 29
  start-page: 145
  year: 2002
  ident: 1876_CR2
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016539022492
– volume: 7
  start-page: 849
  issue: 12
  year: 2023
  ident: 1876_CR33
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract7120849
– volume: 100
  year: 2021
  ident: 1876_CR13
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.105844
– volume: 2022
  start-page: 4320865
  issue: 1
  year: 2022
  ident: 1876_CR21
  publication-title: J. Funct. Spaces
– volume: 64
  start-page: 1616
  issue: 6
  year: 2012
  ident: 1876_CR18
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.01.009
– ident: 1876_CR14
  doi: 10.1080/00207179.2017.1315242
– volume: 12
  start-page: 7
  issue: 1
  year: 2024
  ident: 1876_CR20
  publication-title: Computation
  doi: 10.3390/computation12010007
– volume: 28
  start-page: 607
  year: 2019
  ident: 1876_CR9
  publication-title: Dyn. Syst. Appl.
– volume: 28
  start-page: 2040006
  issue: 08
  year: 2020
  ident: 1876_CR16
  publication-title: Fractals
  doi: 10.1142/S0218348X2040006X
SSID ssj0002147028
Score 2.2876048
Snippet This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Applications of Mathematics
Computational Science and Engineering
Differential equations
Fixed points (mathematics)
Fractional calculus
Green's functions
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theorems
Theoretical
Uniqueness
Title Analyzing the Existence and Uniqueness of Solutions in Coupled Fractional Differential Equations
URI https://link.springer.com/article/10.1007/s40819-025-01876-z
https://www.proquest.com/docview/3177876736
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QUOfBQQWwrygRsYxU7WSY5b2FWF1J66Um_BSRyxwGaXJpGq_BZ-LOOP2AFaiXKJVl4riTIv4zeTeWOE3kRchqKsOGFlXpBIJJQI4B2k5JIyoAiUJ0o7fHbOT9fRp8v55WTyc1S11LX5-6K_UVfyP1aFMbCrUsnewbLupDAAv8G-cAQLw_GfbKw7ivSD4Gl5rUw2KADWujOrdmRal2Lvw6j8uv13IJqrK6Nq0J7P7JPSqgT68kc3yuN99bXuPnU4ajghLI-1Arl91w6Ttq4lrCPui7oRRtuuztd8EVvPpHP7CUtlxb651eIjrNzagW03rRt0heGLerfbjzMXbD4qeBlnLuGC5UZ4v8fCKCWq0Z9ZoswYTWEsNpvfOsdNRwBlN64HpgSkiRTxIfoWKLh_0vvVz9Ukuv7NenIGkzM9OevvoQMGQQibooPF6uTk3OXw1B5Pgd6-192z1WVpdeZfV_2d-_iA5o9v8JraXDxGD21MghcGYE_QRNaH6JGNT7D1_s0henDmDfoUfXbowzCKHfowAAF79OFdhR368KbGFn3Yow-P0Ycd-p6h9Wp58eGU2P06SAFxRU-KVAqlo45FIoGYskKIHOhtmFTq83nBJbz_OeWVgDllGrBUzqkIZVUmRSHDuAyfo2m9q-ULhEUSBoLzOIgFjeZ5BXHAPKCSFymLS4iBZ-jt8CSzvWnLkt1uwBk6Hh52Zt-PJgPiDIuVKmucoXeDAfzft5_t6G7TX6L7HvzHaNpedfIVENk2f23x9AuR558Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+Existence+and+Uniqueness+of+Solutions+in+Coupled+Fractional+Differential+Equations&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Ansari%2C+Intesham&rft.au=Dubey%2C+Rishika&rft.au=Devi%2C+Amita&rft.au=Kumar%2C+Anoop&rft.date=2025-04-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1007%2Fs40819-025-01876-z&rft.externalDocID=10_1007_s40819_025_01876_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon