Analyzing the Existence and Uniqueness of Solutions in Coupled Fractional Differential Equations
This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary contributions are as follows: First, we introduce foundational lemmas and definitions pertinent to the problem. Second, we develop a solution co...
Saved in:
Published in | International journal of applied and computational mathematics Vol. 11; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2349-5103 2199-5796 |
DOI | 10.1007/s40819-025-01876-z |
Cover
Loading…
Abstract | This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary contributions are as follows: First, we introduce foundational lemmas and definitions pertinent to the problem. Second, we develop a solution composed of Green’s function and an additional constant term, thoroughly determining the Green’s function and its properties. Third, we establish the existence of solutions using Krasnoselskii’s fixed point theorem and prove their uniqueness through the Banach fixed point theorem. These contributions collectively provide a robust framework for solving mixed FDEs, highlighting the utility of these mathematical methods in addressing complex fractional differential equations. |
---|---|
AbstractList | This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary contributions are as follows: First, we introduce foundational lemmas and definitions pertinent to the problem. Second, we develop a solution composed of Green’s function and an additional constant term, thoroughly determining the Green’s function and its properties. Third, we establish the existence of solutions using Krasnoselskii’s fixed point theorem and prove their uniqueness through the Banach fixed point theorem. These contributions collectively provide a robust framework for solving mixed FDEs, highlighting the utility of these mathematical methods in addressing complex fractional differential equations. |
ArticleNumber | 67 |
Author | Kumar, Anoop Ansari, Intesham Dubey, Rishika Devi, Amita |
Author_xml | – sequence: 1 givenname: Intesham surname: Ansari fullname: Ansari, Intesham organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab – sequence: 2 givenname: Rishika surname: Dubey fullname: Dubey, Rishika organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab – sequence: 3 givenname: Amita surname: Devi fullname: Devi, Amita organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab – sequence: 4 givenname: Anoop surname: Kumar fullname: Kumar, Anoop email: anoopmath85@gmail.com organization: Department of Mathematics and Statistics, School of Basic Sciences, Central University of Punjab |
BookMark | eNp9kE9LwzAYh4NMcM59AU8Bz9WkSZP2OOamwsCD7hyz9M3sqOmWtOD66c1WwZun9w_P7-XluUYj1zhA6JaSe0qIfAic5LRISJolhOZSJP0FGqe0KJJMFmIUe8ZjTwm7QtMQdoSQlHJJ0nyMPmZO18e-clvcfgJefFehBWcAa1fitasOHTgIATcWvzV111aNC7hyeN50-xpKvPTanJa6xo-VteDBtVUcFodOn-EbdGl1HWD6WydovVy8z5-T1evTy3y2SgylWZ-YAjQRBZc6B8lZarTe5Fyw3HLBMyNAAN1QYXVkyoKkBWRUM7BlbgwwWbIJuhvu7n0Tnw6t2jWdj38FxaiUUYtkIlLpQBnfhODBqr2vvrQ_KkrUSaYaZKooU51lqj6G2BAKEXZb8H-n_0n9ALZsev4 |
Cites_doi | 10.1186/s13661-019-1222-0 10.3390/math7060533 10.3390/sym10120667 10.1109/ACCESS.2023.3241482 10.1016/j.chaos.2021.110668 10.1186/1687-1847-2013-128 10.1186/s13662-019-2438-0 10.1186/s13662-020-02544-w 10.1016/j.chaos.2022.111859 10.1186/1687-2770-2011-1 10.1186/s13661-017-0801-1 10.1080/27690911.2023.2181959 10.1016/j.chaos.2020.110107 10.1016/j.chaos.2020.109705 10.1016/j.sigpro.2010.04.006 10.1186/s13661-023-01696-4 10.1515/math-2016-0064 10.1016/j.cnsns.2018.04.019 10.1023/A:1016539022492 10.3390/fractalfract7120849 10.1016/j.cnsns.2021.105844 10.1016/j.camwa.2012.01.009 10.1080/00207179.2017.1315242 10.3390/computation12010007 10.1142/S0218348X2040006X |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s40819-025-01876-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 2199-5796 |
ExternalDocumentID | 10_1007_s40819_025_01876_z |
GroupedDBID | 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX CITATION |
ID | FETCH-LOGICAL-c115z-c9ea06947a8e7432caab84638f4645c6e6e1b16fa694d9029e51a3efd8cce37d3 |
ISSN | 2349-5103 |
IngestDate | Fri Jul 25 09:48:38 EDT 2025 Wed Aug 20 07:46:06 EDT 2025 Mon Jul 21 06:22:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Krasnoselskii’s fixed point theorem Banach Contraction Mapping principle Caputo fractional derivative Coupled fractional differential equation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c115z-c9ea06947a8e7432caab84638f4645c6e6e1b16fa694d9029e51a3efd8cce37d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3177876736 |
PQPubID | 2044256 |
ParticipantIDs | proquest_journals_3177876736 crossref_primary_10_1007_s40819_025_01876_z springer_journals_10_1007_s40819_025_01876_z |
PublicationCentury | 2000 |
PublicationDate | 20250400 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
PublicationTitle | International journal of applied and computational mathematics |
PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
PublicationYear | 2025 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | A Devi (1876_CR16) 2020; 28 D Baleanu (1876_CR12) 2020; 2020 J An (1876_CR9) 2019; 28 Mark Aleksandrovich Krasnosel’skii (1876_CR25) 1955; 10 Y Liu (1876_CR24) 2023; 2023 B Ahmad (1876_CR3) 2011; 2011 SM Ulam (1876_CR36) 1968 HH Alsulami (1876_CR8) 2017; 2017 OP Agrawal (1876_CR2) 2002; 29 B Ahmad (1876_CR5) 2019; 2019 M Shams (1876_CR34) 2023; 31 1876_CR6 D Baleanu (1876_CR11) 2020; 134 A Kumar (1876_CR23) 2020; 2020 H Mohammadi (1876_CR27) 2021; 144 A Alsaedi (1876_CR7) 2018; 10 1876_CR29 D Baleanu (1876_CR13) 2021; 100 I Podlubny (1876_CR30) 1998 Imran A Muhammad (1876_CR28) 2020; 16 C Promsakon (1876_CR31) 2024; 2024 M Shams (1876_CR33) 2023; 7 B Ahmad (1876_CR4) 2019; 7 KM Furati (1876_CR18) 2012; 64 HG Sun (1876_CR19) 2018; 64 MM Matar (1876_CR26) 2021; 1–18 A Devi (1876_CR15) 2022; 156 M Shams (1876_CR35) 2023; 11 N Huy (1876_CR22) 2020; 140 1876_CR32 MH Aqlan (1876_CR10) 2016; 14 RP Agarwal (1876_CR1) 2013; 2013 K Hattaf (1876_CR20) 2024; 12 S Hussain (1876_CR21) 2022; 2022 1876_CR14 D Valério (1876_CR37) 2011; 91 1876_CR17 |
References_xml | – volume: 2019 start-page: 1 issue: 1 year: 2019 ident: 1876_CR5 publication-title: Bound. Value Probl. doi: 10.1186/s13661-019-1222-0 – volume-title: Fractional Differential Equations year: 1998 ident: 1876_CR30 – volume: 7 start-page: 1 issue: 6 year: 2019 ident: 1876_CR4 publication-title: Mathematics doi: 10.3390/math7060533 – ident: 1876_CR32 – volume-title: A collection of mathematical problems interscience publishers year: 1968 ident: 1876_CR36 – ident: 1876_CR6 – ident: 1876_CR17 – volume: 10 start-page: 1 issue: 12 year: 2018 ident: 1876_CR7 publication-title: Symmetry doi: 10.3390/sym10120667 – volume: 11 start-page: 33205 year: 2023 ident: 1876_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3241482 – volume: 144 year: 2021 ident: 1876_CR27 publication-title: Chaos, Solit. Fract. doi: 10.1016/j.chaos.2021.110668 – volume: 2013 start-page: 1 issue: 1 year: 2013 ident: 1876_CR1 publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2013-128 – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 1876_CR23 publication-title: Adv. Differ. Equs. doi: 10.1186/s13662-019-2438-0 – volume: 2020 start-page: 71 issue: 1 year: 2020 ident: 1876_CR12 publication-title: Adv. Difference Equ. doi: 10.1186/s13662-020-02544-w – volume: 10 start-page: 123 issue: 1 year: 1955 ident: 1876_CR25 publication-title: Uspekhi Matematicheskikh Nauk – volume: 156 year: 2022 ident: 1876_CR15 publication-title: Chaos, Solit. Fract. doi: 10.1016/j.chaos.2022.111859 – volume: 16 start-page: 67 issue: 2 year: 2020 ident: 1876_CR28 publication-title: J. Prime Res. Math – ident: 1876_CR29 – volume: 2011 start-page: 1 issue: 1 year: 2011 ident: 1876_CR3 publication-title: Bound. Value Problems. doi: 10.1186/1687-2770-2011-1 – volume: 2017 start-page: 1 year: 2017 ident: 1876_CR8 publication-title: Bound. Value Probl. doi: 10.1186/s13661-017-0801-1 – volume: 31 start-page: 2181959 issue: 1 year: 2023 ident: 1876_CR34 publication-title: Appl. Math. Sci. Eng. doi: 10.1080/27690911.2023.2181959 – volume: 1–18 start-page: 2021 year: 2021 ident: 1876_CR26 publication-title: Adv. Difference Equ. – volume: 140 year: 2020 ident: 1876_CR22 publication-title: Chaos, Solit. Fract. doi: 10.1016/j.chaos.2020.110107 – volume: 134 year: 2020 ident: 1876_CR11 publication-title: Chaos, Solit. Fract. doi: 10.1016/j.chaos.2020.109705 – volume: 91 start-page: 470 year: 2011 ident: 1876_CR37 publication-title: Signal Process. doi: 10.1016/j.sigpro.2010.04.006 – volume: 2024 start-page: 6844686 issue: 1 year: 2024 ident: 1876_CR31 publication-title: Math. Probl. Eng. – volume: 2023 start-page: 1 issue: 1 year: 2023 ident: 1876_CR24 publication-title: Bound. Value Probl. doi: 10.1186/s13661-023-01696-4 – volume: 14 start-page: 723 issue: 1 year: 2016 ident: 1876_CR10 publication-title: Open Math. doi: 10.1515/math-2016-0064 – volume: 64 start-page: 213 year: 2018 ident: 1876_CR19 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.04.019 – volume: 29 start-page: 145 year: 2002 ident: 1876_CR2 publication-title: Nonlinear Dyn. doi: 10.1023/A:1016539022492 – volume: 7 start-page: 849 issue: 12 year: 2023 ident: 1876_CR33 publication-title: Fractal Fract. doi: 10.3390/fractalfract7120849 – volume: 100 year: 2021 ident: 1876_CR13 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.105844 – volume: 2022 start-page: 4320865 issue: 1 year: 2022 ident: 1876_CR21 publication-title: J. Funct. Spaces – volume: 64 start-page: 1616 issue: 6 year: 2012 ident: 1876_CR18 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.01.009 – ident: 1876_CR14 doi: 10.1080/00207179.2017.1315242 – volume: 12 start-page: 7 issue: 1 year: 2024 ident: 1876_CR20 publication-title: Computation doi: 10.3390/computation12010007 – volume: 28 start-page: 607 year: 2019 ident: 1876_CR9 publication-title: Dyn. Syst. Appl. – volume: 28 start-page: 2040006 issue: 08 year: 2020 ident: 1876_CR16 publication-title: Fractals doi: 10.1142/S0218348X2040006X |
SSID | ssj0002147028 |
Score | 2.2876048 |
Snippet | This paper investigates a mixed fractional differential equation (FDE) involving both left-sided and right-sided Caputo fractional derivatives. Our primary... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Applications of Mathematics Computational Science and Engineering Differential equations Fixed points (mathematics) Fractional calculus Green's functions Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theorems Theoretical Uniqueness |
Title | Analyzing the Existence and Uniqueness of Solutions in Coupled Fractional Differential Equations |
URI | https://link.springer.com/article/10.1007/s40819-025-01876-z https://www.proquest.com/docview/3177876736 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QUOfBQQWwrygRsYxU7WSY5b2FWF1J66Um_BSRyxwGaXJpGq_BZ-LOOP2AFaiXKJVl4riTIv4zeTeWOE3kRchqKsOGFlXpBIJJQI4B2k5JIyoAiUJ0o7fHbOT9fRp8v55WTyc1S11LX5-6K_UVfyP1aFMbCrUsnewbLupDAAv8G-cAQLw_GfbKw7ivSD4Gl5rUw2KADWujOrdmRal2Lvw6j8uv13IJqrK6Nq0J7P7JPSqgT68kc3yuN99bXuPnU4ajghLI-1Arl91w6Ttq4lrCPui7oRRtuuztd8EVvPpHP7CUtlxb651eIjrNzagW03rRt0heGLerfbjzMXbD4qeBlnLuGC5UZ4v8fCKCWq0Z9ZoswYTWEsNpvfOsdNRwBlN64HpgSkiRTxIfoWKLh_0vvVz9Ukuv7NenIGkzM9OevvoQMGQQibooPF6uTk3OXw1B5Pgd6-192z1WVpdeZfV_2d-_iA5o9v8JraXDxGD21MghcGYE_QRNaH6JGNT7D1_s0henDmDfoUfXbowzCKHfowAAF79OFdhR368KbGFn3Yow-P0Ycd-p6h9Wp58eGU2P06SAFxRU-KVAqlo45FIoGYskKIHOhtmFTq83nBJbz_OeWVgDllGrBUzqkIZVUmRSHDuAyfo2m9q-ULhEUSBoLzOIgFjeZ5BXHAPKCSFymLS4iBZ-jt8CSzvWnLkt1uwBk6Hh52Zt-PJgPiDIuVKmucoXeDAfzft5_t6G7TX6L7HvzHaNpedfIVENk2f23x9AuR558Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+Existence+and+Uniqueness+of+Solutions+in+Coupled+Fractional+Differential+Equations&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Ansari%2C+Intesham&rft.au=Dubey%2C+Rishika&rft.au=Devi%2C+Amita&rft.au=Kumar%2C+Anoop&rft.date=2025-04-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1007%2Fs40819-025-01876-z&rft.externalDocID=10_1007_s40819_025_01876_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |