Combined Machine Learning, Computational and Experimental Analysis of the Iridium(III) Complexes with Red to Near-IR Emission
Various coordination complexes have been the subject of experimental or theoretical studies in recent decades because of their fascinating photophysical properties. In this work a combined experimental and computational approach applied to investigate the optical properties of monocationic Ir(III) c...
Saved in:
Published in | ChemRxiv |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Washington
American Chemical Society
30.11.2022
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various coordination complexes have been the subject of experimental or theoretical studies in recent decades because of their fascinating photophysical properties. In this work a combined experimental and computational approach applied to investigate the optical properties of monocationic Ir(III) complexes. In result, an interpretative machine learning-based Quantitative Structure-Activity Relationship (QSAR) model was successfully developed, which can reliably predict the emission wavelength of the Ir(III) complexes and provides foundations for theoretical evaluation of the optical properties of Ir(III) complexes. A hypothesis was proposed to mechanistically explain the differences in emission wavelengths between structurally different individual Ir(III) complexes. To the best of our knowledge, this is the first attempt to develop predictive machine learning (QSAR) model for the optical properties of Ir(III) complexes. The efficacy of the developed model was demonstrated by high R2 values for the training and test sets of 0.84 and 0.87, respectively, and by performing the validation using y-scrambling techniques. A notable relationship between the N-N distance in the diimine ligands of the Ir(III) complexes and emission wavelengths was revealed. This combined experimental and computational approach shows a great potential for rational design of new Ir(III) complexes with desired optical properties. Moreover, the developed methodology could be extended to other octahedral transition-metal complexes. |
---|---|
AbstractList | Various coordination complexes have been the subject of experimental or theoretical studies in recent decades because of their fascinating photophysical properties. In this work a combined experimental and computational approach applied to investigate the optical properties of monocationic Ir(III) complexes. In result, an interpretative machine learning-based Quantitative Structure-Activity Relationship (QSAR) model was successfully developed, which can reliably predict the emission wavelength of the Ir(III) complexes and provides foundations for theoretical evaluation of the optical properties of Ir(III) complexes. A hypothesis was proposed to mechanistically explain the differences in emission wavelengths between structurally different individual Ir(III) complexes. To the best of our knowledge, this is the first attempt to develop predictive machine learning (QSAR) model for the optical properties of Ir(III) complexes. The efficacy of the developed model was demonstrated by high R2 values for the training and test sets of 0.84 and 0.87, respectively, and by performing the validation using y-scrambling techniques. A notable relationship between the N-N distance in the diimine ligands of the Ir(III) complexes and emission wavelengths was revealed. This combined experimental and computational approach shows a great potential for rational design of new Ir(III) complexes with desired optical properties. Moreover, the developed methodology could be extended to other octahedral transition-metal complexes. |
Author | Lystrom, Levi Karuth, Anas Casanola-Martin, Gerardo Kilin, Dmitri Kilina, Svetlana Rasulev, Bakhtiyor Sun, Wenfang |
Author_xml | – sequence: 1 givenname: Anas surname: Karuth fullname: Karuth, Anas organization: North Dakota State University – sequence: 2 givenname: Gerardo surname: Casanola-Martin fullname: Casanola-Martin, Gerardo organization: North Dakota State University – sequence: 3 givenname: Levi surname: Lystrom fullname: Lystrom, Levi organization: North Dakota State University – sequence: 4 givenname: Wenfang surname: Sun fullname: Sun, Wenfang organization: North Dakota State University – sequence: 5 givenname: Dmitri surname: Kilin fullname: Kilin, Dmitri organization: North Dakota State University – sequence: 6 givenname: Svetlana surname: Kilina fullname: Kilina, Svetlana organization: North Dakota State University – sequence: 7 givenname: Bakhtiyor orcidid: 0000-0002-7845-4884 surname: Rasulev fullname: Rasulev, Bakhtiyor organization: North Dakota State University |
BookMark | eNo1kN1LwzAUxYMoOOf-Ax8CvihYzVeT9lHG1MJUGPpckjSxGf2yaef24P9u5vTpXM7l_C7nnoHjpm0MABcY3RLOKLvTpan7rdtEBBESFbxKNkdgQmJBI0JSegpm3q8RQiTGGLN4Ar7nba1cYwr4LHUZBrg0sm9c83EDw6obBzm4tpEVlE0BF9vO9K42zRCM--DuvPOwtXAoDcx6V7ixvsqy7Po3W5mt8fDLDSVchQNDC18CO8pWcFE77wP2HJxYWXkz-9MpeH9YvM2fouXrYza_X0Ya43gTWatYKhQVKRNcaSIxUbHBXCeCU1UkqRJWFFxzLKwliGrG0yBM4ThlhjA6BejA_f9P3oUast_lnCY8tVbrmIuYciT2MKX3kctDpOvbz9H4IV-3Yx8q-5wIRgRKKMb0B2lvcsw |
ContentType | Paper |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS CQEMM |
DOI | 10.26434/chemrxiv-2022-d6l8v |
DatabaseName | METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ChemRxiv |
DatabaseTitle | Publicly Available Content Database Materials Research Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: CQEMM name: ChemRxiv url: https://chemrxiv.org/engage/chemrxiv/public-dashboard sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2573-2293 |
Edition | 1 |
ExternalDocumentID | 63869ffcc5675360789b7bc4 |
Genre | Working Paper/Pre-Print |
GrantInformation_xml | – fundername: National Science Foundation grantid: CHE-1800476 funderid: 10.13039/100000001 – fundername: National Science Foundation grantid: OAC-2019077 funderid: 10.13039/100000001 – fundername: National Science Foundation grantid: #IIA-1355466 funderid: 10.13039/100000001 – fundername: XSEDE grantid: TG-DMR110088 |
GroupedDBID | 8BQ 8FD ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR CCPQU DWQXO JG9 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS CQEMM |
ID | FETCH-LOGICAL-c115v-ffb497b379476bc2a12b5e16c8763bd89b7f7d6c617ff203c4692034b1594e243 |
IEDL.DBID | CQEMM |
IngestDate | Fri Mar 14 12:02:43 EDT 2025 Sun Jun 29 12:21:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | QSPR near-IR emission machine learning iridium(III) complexes predictive modeling computational |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c115v-ffb497b379476bc2a12b5e16c8763bd89b7f7d6c617ff203c4692034b1594e243 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ORCID | 0000-0002-7845-4884 |
OpenAccessLink | https://chemrxiv.org/engage/chemrxiv/article-details/63869ffcc5675360789b7bc4 |
PQID | 2742708311 |
PQPubID | 4765368 |
ParticipantIDs | chemrxiv_primary_63869ffcc5675360789b7bc4 proquest_journals_2742708311 |
PublicationCentury | 2000 |
PublicationDate | 20221130 |
PublicationDateYYYYMMDD | 2022-11-30 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221130 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | ChemRxiv |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0002511145 |
Score | 1.6745583 |
SecondaryResourceType | preprint |
Snippet | Various coordination complexes have been the subject of experimental or theoretical studies in recent decades because of their fascinating photophysical... |
SourceID | chemrxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Chemistry Chemoinformatics - Computational Chemistry Computational Chemistry and Modeling Coordination compounds Emission analysis Inorganic Chemistry Iridium compounds Machine Learning Optical properties Organometallic Chemistry Theoretical and Computational Chemistry Transition metal compounds Wavelengths |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XbwpKk6n5ODBgWVrmzbtSVA2VmFjDAe7leQlkcF-2f1gF_93X7pMBcFToaUtvC_v5b0vyfcIuec8EtDSiICMAAsUwzwhhPKUb-XXGAgd2PPOvX7cHbHXcTR2hNvKbas8xMQyUKsFWI68aZcUuW2L5T8tPzzbNcqurroWGsekiiE4weKr-tzuD4bfLItNoH0W7c_M4dwfsibaYlbsJlscH1iHqXiabO2c5O7-CcnlPNM5JdWBWOrijBzp-Tn5RGfFwlUr2iu3PGrq1FDfH-m-G4Nj8qiYK9r-pdVPD1ojdGEopng0KyZqspk9ZFnWKN-d6p1eUcvC0iH-YL2gffy2lw1pG5G3FNoFGXXaby9dz7VL8ADTuq1njGQplyF6GI8lBMJH-2s_Bis6J1WSSm64igFzFmOCVghYGeOFScxomA5YeEkq88VcXxGacl9oAyoAxCsyaZJYnT8BCQMFIuI10jgYLF_uVTFydOQ4NQYgwhokjK2MveQSWI3UDxbNnX-s8h80r_9_fENOSpxKscU6qayLjb7FNGAt7xzWXy8utD4 priority: 102 providerName: ProQuest |
Title | Combined Machine Learning, Computational and Experimental Analysis of the Iridium(III) Complexes with Red to Near-IR Emission |
URI | https://www.proquest.com/docview/2742708311 https://chemrxiv.org/engage/chemrxiv/article-details/63869ffcc5675360789b7bc4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6sOfTYJ7VY2UMPFRo0ySar10rEFCJWKngL-xRBo8QHXvrfO5uHFEoPPQUWMhtmZrPfzO58g9AzpT4TXQUW4L6AAEUTmzEmbekY-jUimHJNvXM8DkYz8j735zUUV7Uw8KXr7LQ85of4Kl3AojqPdUpl2sXtyl0HfCfoay2ED7DXCwxzOqdckAtkgZsRcHtr8BHG8TnpYvC0Q_yihA6ggEfOwsFdICyTwap3NFtUOfrrD51vO8MrZE3YVmXXqKbSG3Q5qJqz3aIvWMcQ0yqJ4_w2pMIlUeriFReNGsokH2apxOEPGn9c0ZDgjcaA_nCULeXysH6Joqidv7tSJ7XDJkGLpzDBfoPHINuOpjiE6U127Q7NhuHnYGSXnRRsAYjvaGvNSZ9yD7RCAy5c5oBplBMIw0fHpVGbpjIQAGe0druegKAZHoQD2CHKJd49qqebVD0g3KcOU1pIV4Apfd3v9QwFIBM9IqRgPm2gdqW8ZFsQZiR_2amBmpV2k3Lp7BJzdkxN_zPn8R-imqi-zw7qCRDCnreQ9RaOJ9NWaf9vYHi_ww |
linkProvider | ChemRxiv |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS-NAEB60fTjfFD3O3_twgsIFTbLJJg8iqJVGbZGi4Fvcnd2VQm1rW6s--C_5NzqbJufBgW8-BRKyG2a-zMw3uzsD8FuISOKBIQ2oCImgWO5JKbWnfVd-jaM0gTvv3GrHzRt-fhvdzsF7dRbGbausbGJhqPUAXY583y0pCtcWyz8aPnqua5RbXa1aaMxgcWFen4myjQ-zU9LvThCcNa5Pml7ZVcBDin6mnrWKp0KFBEQRKwykT59p_BhdbTalk1QJK3SM5NqtDQ5CJAJJF67I8XMT8JDGnYc6D4nK1KB-3Ghfdf5mdVzA7vNodkaPYo2Q75PsH0Yv3SnhkXifjnvJ1PnA8u5_LqDwa2eLUL-SQzNagjnTX4Y3Mg5ElI1mrWKLpWFl9dX7P2zW_aHMHDLZ16zxT28AVtU2YQPLKKRk2airu08Pu1mW7RXv9syLGTOX9WUdmmAyYG0a28s6rEFIcym7Fbj5FkH-hFp_0De_gKXCl8aiDpDwEdk0SVxdQYkJR40yEquwVwksH86qcORkOOLUWsSIOA8pQ7gJFfJV2Kgkmpf_4zj_RM_a14-34UfzunWZX2bti3VYKHRWFHrcgNpk9GQ2KQSZqK1S7wzuvhtqH5_V7-M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBZdA9txP1lHt-qwwwp7c23LdnJ2E-puCV1ZoTejn8HQ2MFxQy_7i_tP9EmWQ2Ds0JNBtmV90hP63pP1PUK-ZlnC5ZnGERCJRAfFMOCcK1ChlV9jkuvInneeL9KLG3Z5m9wekMfhLAy2dNU-VFu3ia_rJU6qgK-rIdi0ux8gtdTdJmjatVXZdoFul7wsQINKJ8ZImSAXjlMrpy4yIVkwZJoKcCjR69QKVu5_RQ0-QcMSpMuk4KNwgK487OvsY0GvEwKNAaRnULWVqu5XUFWVe_VOP-gN2AAqtFh910CNNeNjYHO32ejXj7UyL8gIJwHD6TjKf0_n811IyLL9kCX9AT8kKjHbwUVjRqdRpXfjrV1Afek_64dbFGevyeiKY7PfkANdvyWv8iF13DvyN_fY6bzHTr2M6_I7zffBUwRPp3vg6SCSQhtDETwtevDfiqI4de869NSip9f4ga6hC4u-uKZTj_49uZlN_-QX4PM8gEQ-ugVjBJtkIsZeyVIhIx6i4egwlVYtTyg7fiZTqUSyZUx0Fkt06fHCBFIxpiMWfyCHdVPrj4ROspBrI1Uk0dASMxmPrUAhl2MmleRJdkROh84r172cR_k_gzkix0Pvln5ib0q7s53Z7Gzhp2dUdUJeXp3Pyl_F4ucxOezae_0ZqUwnvngTeALTXf3q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Machine+Learning%2C+Computational+and+Experimental+Analysis+of+the+Iridium%28III%29+Complexes+with+Red+to+Near-IR+Emission&rft.jtitle=ChemRxiv&rft.date=2022-11-30&rft.pub=American+Chemical+Society&rft.eissn=2573-2293&rft_id=info:doi/10.26434%2Fchemrxiv-2022-d6l8v |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fchemrxiv.org%2Fengage%2Fapi-gateway%2Fchemrxiv%2Fassets%2Forp%2Fresource%2Fitem%2F63869ffcc5675360789b7bc4%2FsmallThumb%2Fcombined-machine-learning-computational-and-experimental-analysis-of-the-iridium-iii-complexes-with-red-to-near-ir-emission.jpg |