An Example of a Globally Asymptotically Stable Anti-monotonic System of Rational Difference Equations in the Plane

We consider the following system of rational difference equations in the plane: $$\left\{\begin{aligned}%{rcl}x_{n+1} &= \frac{\alpha_1}{A_1+B_1 x_n+ C_1y_n} \\[0.2cm]y_{n+1} &= \frac{\alpha_2}{A_2+B_2 x_n+ C_2y_n}\end{aligned}\right. \, , \quad n=0,1,2,\ldots $$ where the parameters $\alpha...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 5; no. 2; pp. 235 - 145
Main Authors Burgić, Dževad, Nurkanović, Zehra
Format Journal Article
LanguageEnglish
Published 11.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.05.2.07

Cover

Abstract We consider the following system of rational difference equations in the plane: $$\left\{\begin{aligned}%{rcl}x_{n+1} &= \frac{\alpha_1}{A_1+B_1 x_n+ C_1y_n} \\[0.2cm]y_{n+1} &= \frac{\alpha_2}{A_2+B_2 x_n+ C_2y_n}\end{aligned}\right. \, , \quad n=0,1,2,\ldots $$ where the parameters $\alpha_1, \alpha_2, A_1, A_2, B_1, B_2, C_1, C_2$ are positive numbers and initial conditions $x_0$ and $y_0$ are nonnegative numbers. We prove that the unique positive equilibrium of this system is globally asymptotically stable. Also, we determine the rate of convergence of a solution that converges to the equilibrium $E=(\bar{x},\bar{y})$ of this systems.   2000 Mathematics Subject Classification. 39A10, 39A11, 39A20
AbstractList We consider the following system of rational difference equations in the plane: $$\left\{\begin{aligned}%{rcl}x_{n+1} &= \frac{\alpha_1}{A_1+B_1 x_n+ C_1y_n} \\[0.2cm]y_{n+1} &= \frac{\alpha_2}{A_2+B_2 x_n+ C_2y_n}\end{aligned}\right. \, , \quad n=0,1,2,\ldots $$ where the parameters $\alpha_1, \alpha_2, A_1, A_2, B_1, B_2, C_1, C_2$ are positive numbers and initial conditions $x_0$ and $y_0$ are nonnegative numbers. We prove that the unique positive equilibrium of this system is globally asymptotically stable. Also, we determine the rate of convergence of a solution that converges to the equilibrium $E=(\bar{x},\bar{y})$ of this systems.   2000 Mathematics Subject Classification. 39A10, 39A11, 39A20
Author Burgić, Dževad
Nurkanović, Zehra
Author_xml – sequence: 1
  givenname: Dževad
  surname: Burgić
  fullname: Burgić, Dževad
– sequence: 2
  givenname: Zehra
  surname: Nurkanović
  fullname: Nurkanović, Zehra
BookMark eNptkF1LwzAUhoNMcJte-QdyL61p0rTdZZlzKhPF6XVI84GRNJlJhPXf202vxKvDeXmew-GdgYnzTgFwWaCcVmV5vX14zBHNcY7qEzDFmJCsWFTlBEyLpkQZqig9A7MYPxCqSFPTKQitg6s973dWQa8hh2vrO27tANs49LvkkxHHdZt4NzKtSybrvfPJOyPgdohJ9QfzhSfjHbfwxmitgnJCwdXn1zGN0DiY3hV8ttypc3CquY3q4nfOwdvt6nV5l22e1vfLdpOJoqB11jUd0UgstG4azSWREteywbjBVSlJiWtBJBqjTguFypqOMNfVaEhZCYURmYPi564IPsagNBMmHf9JgRvLCsQOpbGxNIYowwzVo3P1x9kF0_Mw_Et_A2l6cbA
CitedBy_id crossref_primary_10_33434_cams_938775
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5644/SJM.05.2.07
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2233-1964
EndPage 145
ExternalDocumentID 10_5644_SJM_05_2_07
GroupedDBID AAYXX
ACIPV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBS
EJD
FRJ
OK1
TR2
ID FETCH-LOGICAL-c1157-b8b3f0c9ff88fad3dd27d8228264d3427c3d027dbfce04753f0af6f0cdd6ce203
ISSN 1840-0655
IngestDate Tue Jul 01 02:29:53 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1157-b8b3f0c9ff88fad3dd27d8228264d3427c3d027dbfce04753f0af6f0cdd6ce203
OpenAccessLink http://doi.org/10.5644/sjm.05.2.07
PageCount -89
ParticipantIDs crossref_citationtrail_10_5644_SJM_05_2_07
crossref_primary_10_5644_SJM_05_2_07
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-11
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-11
  day: 11
PublicationDecade 2020
PublicationTitle Sarajevo journal of mathematics
PublicationYear 2024
SSID ssj0063875
Score 2.258308
Snippet We consider the following system of rational difference equations in the plane: $$\left\{\begin{aligned}%{rcl}x_{n+1} &= \frac{\alpha_1}{A_1+B_1 x_n+ C_1y_n}...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 235
Title An Example of a Globally Asymptotically Stable Anti-monotonic System of Rational Difference Equations in the Plane
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F7QUOiKcolGoP7QXkYHb94pi2QVWlcGqliou1Twht7WI5UcuNf87MrmNvqhwKFytZ7caO5_Pst-OdbwjZt0xlWa5lBFRWRElu4ZlLlIiMtDBdFxlnLkls9jU7OU9OL9KL0ehPmF3SyrH6vTGv5H-sCm1gV8yS_QfL9j8KDfAZ7AtHsDAcH2TjSfVheitQ39enOXoB_6s7uOl31zdt7eLU8BUYJSZITap2HsHF1a0re-PFyp0aySoieNyVS4GHffprMewzR3aK5Y3W9g1hMPmnWdah-sR1rwI7hN8Xzfe546y5c3AHR-nB4dQshe4D0YvmUlT1Muj1zfxoRBiRYAnunOo8pneiBW4Zzbz87ti4NmAhPELxr9DzpgHAWOhFeRpMyJ-83uR9X58Ck8O3zaczlF5lY188d11R-95M1-8_hJUPDi9hcBmnJStRj2Cb5bl_04-rcj-Zg3dyWs39X_Ipnjj4Y3DmgNQE7OTsKXnSLSvoxGPkGRmZ6jl5PBus8YI0k4p2aKG1pYKu0ELX0UI9Wug6WqhHC45coYUOaKE9Wui8onBS6tDykpx_mZ4dnURdxY1IoehSJAvJbaw-W1sUVmiuNcs1UEhYgyaaJyxXXMfQJK0ycQIrXRsLm8EIrbGyXMxfka2qrsxrQpmIuVGMa1REFPDIp8omTBZW8swAKdoh71e3rFSdHD1WRbkqNxhnh-z3nW-8Csumbm8e1u0teTTAdpdstc3CvANq2co9Z_y_Gbl6gw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Example+of+a+Globally+Asymptotically+Stable+Anti-monotonic+System+of+Rational+Difference+Equations+in+the+Plane&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=Burgi%C4%87%2C+D%C5%BEevad&rft.au=Nurkanovi%C4%87%2C+Zehra&rft.date=2024-06-11&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=5&rft.issue=2&rft.spage=235&rft.epage=145&rft_id=info:doi/10.5644%2FSJM.05.2.07&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_05_2_07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon