BrainLM: Enhancing Brain Encoding and Decoding Capabilities with Applications in Multilingual Learning
With the rapid advancement of large-language models in natural language processing (NLP), many studies have explored their role in brain encoding and decoding. In this study, we developed BrainLM, a pre-trained multimodal model that incorporates paired brain activity data from text stimuli. We demon...
Saved in:
Published in | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 4; pp. 754 - 767 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Co. Ltd
20.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid advancement of large-language models in natural language processing (NLP), many studies have explored their role in brain encoding and decoding. In this study, we developed BrainLM, a pre-trained multimodal model that incorporates paired brain activity data from text stimuli. We demonstrated its accuracy in brain encoding and decoding across multiple NLP tasks. Our research produced several notable findings: we successfully developed a model for brain encoding and decoding, validated its reliability through bidirectional experiments, and outperformed 20 state-of-the-art models in brain encoding tasks. Additionally, we designed an autoencoder module to extract brain features. We extended the capabilities of BrainLM to new datasets and explored multilingual tasks using transfer learning, which enhanced the generalization ability of the model. Notably, BrainLM achieved 51.75% accuracy in binary classification tasks and increased the correlation coefficient by 3%–15% in brain prediction tasks. This study expands the applications of BrainLM and uncovers the complex interactions between brain regions and language models across different linguistic environments. |
---|---|
AbstractList | With the rapid advancement of large-language models in natural language processing (NLP), many studies have explored their role in brain encoding and decoding. In this study, we developed BrainLM, a pre-trained multimodal model that incorporates paired brain activity data from text stimuli. We demonstrated its accuracy in brain encoding and decoding across multiple NLP tasks. Our research produced several notable findings: we successfully developed a model for brain encoding and decoding, validated its reliability through bidirectional experiments, and outperformed 20 state-of-the-art models in brain encoding tasks. Additionally, we designed an autoencoder module to extract brain features. We extended the capabilities of BrainLM to new datasets and explored multilingual tasks using transfer learning, which enhanced the generalization ability of the model. Notably, BrainLM achieved 51.75% accuracy in binary classification tasks and increased the correlation coefficient by 3%–15% in brain prediction tasks. This study expands the applications of BrainLM and uncovers the complex interactions between brain regions and language models across different linguistic environments. |
Author | Kobayashi, Ichiro Luo, Ying |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0009-0009-1241-0385 surname: Luo fullname: Luo, Ying organization: Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan – sequence: 2 givenname: Ichiro orcidid: 0000-0001-7789-475X surname: Kobayashi fullname: Kobayashi, Ichiro organization: Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan |
BookMark | eNotkM1OwzAQhC1UJErpC3CKxDllHTtJw62U8iOl4gJna-3YravgBDsR4u0xbU87s5rZlb5rMnGd04TcUlhkUBX5_QGVtTaaLF_0UOb8gkzpcsnSJVA-iZpxlgJlcEXmIRwAos4K4HRKzKNH6-rtQ7Jxe3TKul1yXEWvuubfomuSJ302a-xR2tYOVofkxw77ZNX3rVU42M6FJPa2YzvEgNuN2Ca1Ru-iviGXBtug5-c5I5_Pm4_1a1q_v7ytV3WqKM15aqRR0hiGyjS5QqCy4oxLNFA0yAEzRstCVY1GIyko2eQAkqEsWCWX0Eg2I3enu73vvkcdBnHoRu_iS8FimVdlVdKYyk4p5bsQvDai9_YL_a-gII5IxQmp-EcqjkjZHyq-bs0 |
Cites_doi | 10.1007/3-540-48714-X_16 10.1017/S0267190513000081 10.1038/s41597-019-0052-3 10.1093/arclin/acv081 10.21437/Interspeech.2020-1570 10.18653/v1/D18-1269 10.18653/v1/N19-1423 10.1523/JNEUROSCI.17-01-00353.1997 10.1007/978-3-642-00525-1_15 10.1093/bioinformatics/btz128 10.18653/v1/2021.emnlp-main.552 10.3390/jimaging7040066 10.1109/CVPR52729.2023.01389 10.1101/059618 10.1038/s41597-022-01625-7 10.7554/eLife.32962 10.1371/journal.pcbi.1009138 10.1145/3609703.3609711 10.18653/v1/D19-1410 10.1109/MMSP.2018.8547051 10.1073/pnas.1005062107 10.1038/s41467-018-03068-4 10.1007/978-3-030-58577-8_7 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.20965/jaciii.2025.p0754 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (NC Live) Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1883-8014 |
EndPage | 767 |
ExternalDocumentID | 10_20965_jaciii_2025_p0754 |
GroupedDBID | AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c1154-fbfcbff3acfd5ca01b9434baf06da40a23176c9deafb10cbd500b3ab639b80db3 |
IEDL.DBID | BENPR |
ISSN | 1343-0130 |
IngestDate | Sat Aug 23 14:45:24 EDT 2025 Thu Jul 24 02:17:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1154-fbfcbff3acfd5ca01b9434baf06da40a23176c9deafb10cbd500b3ab639b80db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7789-475X 0009-0009-1241-0385 |
OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p0754 |
PQID | 3231497971 |
PQPubID | 4911628 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3231497971 crossref_primary_10_20965_jaciii_2025_p0754 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-20 |
PublicationDateYYYYMMDD | 2025-07-20 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
PublicationYear | 2025 |
Publisher | Fuji Technology Press Co. Ltd |
Publisher_xml | – name: Fuji Technology Press Co. Ltd |
References | key-10.20965/jaciii.2025.p0754-9 key-10.20965/jaciii.2025.p0754-23 key-10.20965/jaciii.2025.p0754-24 key-10.20965/jaciii.2025.p0754-21 key-10.20965/jaciii.2025.p0754-22 key-10.20965/jaciii.2025.p0754-27 key-10.20965/jaciii.2025.p0754-28 key-10.20965/jaciii.2025.p0754-25 key-10.20965/jaciii.2025.p0754-26 key-10.20965/jaciii.2025.p0754-20 key-10.20965/jaciii.2025.p0754-1 key-10.20965/jaciii.2025.p0754-2 key-10.20965/jaciii.2025.p0754-3 key-10.20965/jaciii.2025.p0754-29 key-10.20965/jaciii.2025.p0754-4 key-10.20965/jaciii.2025.p0754-5 key-10.20965/jaciii.2025.p0754-6 key-10.20965/jaciii.2025.p0754-7 key-10.20965/jaciii.2025.p0754-8 key-10.20965/jaciii.2025.p0754-12 key-10.20965/jaciii.2025.p0754-13 key-10.20965/jaciii.2025.p0754-10 key-10.20965/jaciii.2025.p0754-11 key-10.20965/jaciii.2025.p0754-16 key-10.20965/jaciii.2025.p0754-17 key-10.20965/jaciii.2025.p0754-14 key-10.20965/jaciii.2025.p0754-15 key-10.20965/jaciii.2025.p0754-30 key-10.20965/jaciii.2025.p0754-18 key-10.20965/jaciii.2025.p0754-19 |
References_xml | – ident: key-10.20965/jaciii.2025.p0754-2 – ident: key-10.20965/jaciii.2025.p0754-20 doi: 10.1007/3-540-48714-X_16 – ident: key-10.20965/jaciii.2025.p0754-8 doi: 10.1017/S0267190513000081 – ident: key-10.20965/jaciii.2025.p0754-16 – ident: key-10.20965/jaciii.2025.p0754-21 doi: 10.1038/s41597-019-0052-3 – ident: key-10.20965/jaciii.2025.p0754-24 – ident: key-10.20965/jaciii.2025.p0754-1 doi: 10.1093/arclin/acv081 – ident: key-10.20965/jaciii.2025.p0754-18 – ident: key-10.20965/jaciii.2025.p0754-4 – ident: key-10.20965/jaciii.2025.p0754-6 doi: 10.21437/Interspeech.2020-1570 – ident: key-10.20965/jaciii.2025.p0754-22 doi: 10.18653/v1/D18-1269 – ident: key-10.20965/jaciii.2025.p0754-23 – ident: key-10.20965/jaciii.2025.p0754-3 doi: 10.18653/v1/N19-1423 – ident: key-10.20965/jaciii.2025.p0754-28 doi: 10.1523/JNEUROSCI.17-01-00353.1997 – ident: key-10.20965/jaciii.2025.p0754-7 doi: 10.1007/978-3-642-00525-1_15 – ident: key-10.20965/jaciii.2025.p0754-26 doi: 10.1093/bioinformatics/btz128 – ident: key-10.20965/jaciii.2025.p0754-30 doi: 10.18653/v1/2021.emnlp-main.552 – ident: key-10.20965/jaciii.2025.p0754-17 doi: 10.3390/jimaging7040066 – ident: key-10.20965/jaciii.2025.p0754-14 doi: 10.1109/CVPR52729.2023.01389 – ident: key-10.20965/jaciii.2025.p0754-12 doi: 10.1101/059618 – ident: key-10.20965/jaciii.2025.p0754-11 doi: 10.1038/s41597-022-01625-7 – ident: key-10.20965/jaciii.2025.p0754-10 – ident: key-10.20965/jaciii.2025.p0754-15 doi: 10.7554/eLife.32962 – ident: key-10.20965/jaciii.2025.p0754-13 doi: 10.1371/journal.pcbi.1009138 – ident: key-10.20965/jaciii.2025.p0754-9 doi: 10.1145/3609703.3609711 – ident: key-10.20965/jaciii.2025.p0754-29 doi: 10.18653/v1/D19-1410 – ident: key-10.20965/jaciii.2025.p0754-25 doi: 10.1109/MMSP.2018.8547051 – ident: key-10.20965/jaciii.2025.p0754-27 doi: 10.1073/pnas.1005062107 – ident: key-10.20965/jaciii.2025.p0754-19 doi: 10.1038/s41467-018-03068-4 – ident: key-10.20965/jaciii.2025.p0754-5 doi: 10.1007/978-3-030-58577-8_7 |
SSID | ssj0001326041 ssib051641541 |
Score | 2.3288827 |
Snippet | With the rapid advancement of large-language models in natural language processing (NLP), many studies have explored their role in brain encoding and decoding.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 754 |
SubjectTerms | Accuracy Brain Coding Correlation coefficients Machine learning Multilingualism Natural language processing Task complexity |
Title | BrainLM: Enhancing Brain Encoding and Decoding Capabilities with Applications in Multilingual Learning |
URI | https://www.proquest.com/docview/3231497971 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ELl78bUSR9ODNTDrW_fJiQEFihBgjCbel7VqMh4EC_7_vdV2Qi8dt2ZZ8bd_7vte-9wi5EQpMox-EXsqk9LjSiYcywtMiTEQqIh6nmJw8nkSjKX-ZhTMXcFu5Y5WVTbSGOl8ojJF3AiAiPI3T2H9YfnvYNQp3V10LjRppgAlOkjpp9AeTt_dqRoUgBoAj-NuoC7AVxksVxvEgUcDKTJouVkHpfAmFJR26QATuluBM-a632jXW1gMNj8iBo460V471MdnTxQk5rNoyULdKT4npY9uH1_E9HRSfWE6jmFN7C67VAn0VFUVOn7S7eAR_aY_IgmimGJelvT-72hTes1m6mLe-gf-7iqzzMzIdDj4eR55rp-AprLnjGWmUNCYQyuShEsyXWBtOCsOiXHAmAOA4UmmuhZE-UzIPGZOBkMBhZMJyGZyTerEo9AWhMQiXQAkThxr4lFSplnEU-oFhiVamGzfJbQVbtiyrZmSgNizIWQlyhiBnFuQmaVXIZm4FrbLteF_-__iK7OOnMN7aZS1SX_9s9DUQhbVsk1oyfG67OdG2cvsXuhu-9Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzGeOcAJFdImbVckhHiNARsnkLiVJE2GOHSDgRB_it-I3YfGLtw4plUTyXH92U78GWBXGTSNvgi9hGvtSWObHoURnlVhUyUqknFCxcndu6j9IG8ew8cJ-K5rYehaZW0TC0Od9Q3lyA8FOiIyiZPYPxm8etQ1ik5X6xYapVrc2q9PDNmGx9cXuL97QdC6vD9ve1VXAc8Q9YzntDPaOaGMy0KjuK-JIk0rx6NMSa5wnTgySWaV0z43Ogs510JphHLd5JkWOO8kTEuBSE6V6a2rWn9DDD1wBX-U40HfiMsy5pN0bUnwsm4nIM6VwxdliEAiQLfjYIDQLcexcRwaCrxrLcBc5aiy01KzFmHC5kswXzeBYJVNWAZ3Rk0mOt0jdpk_E3lH3mPFIxybPiEjU3nGLmw1OEd0Li7kYojOKAvMTn-doTP8rqgJpir5D1y_4n_trcDDv4h5Fabyfm7XgMUYJgmjXBxa9N60SayOo9AXjjetcUHcgP1abOmg5OhIMbYphJyWQk5JyGkh5AZs1pJNq_91mI60a_3v1zsw077vdtLO9d3tBszStJTpDfgmTL2_fdgtdFHe9XahFwye_lsRfwCxCPuS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainLM%3A+Enhancing+Brain+Encoding+and+Decoding+Capabilities+with+Applications+in+Multilingual+Learning&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Luo%2C+Ying&rft.au=Kobayashi%2C+Ichiro&rft.date=2025-07-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=4&rft.spage=754&rft.epage=767&rft_id=info:doi/10.20965%2Fjaciii.2025.p0754&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p0754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |