Curvature of the Focal Conic in the Isotropic Plane
It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in \{-1,0,1\}$ and a parametrization. This paper gives the equation of the circle of curvature at the point $T$ of the focal conic $\mathcal{C}$....
Saved in:
Published in | Sarajevo journal of mathematics Vol. 6; no. 1; pp. 117 - 123 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
11.06.2024
|
Online Access | Get full text |
ISSN | 1840-0655 2233-1964 |
DOI | 10.5644/SJM.06.1.10 |
Cover
Abstract | It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in \{-1,0,1\}$ and a parametrization. This paper gives the equation of the circle of curvature at the point $T$ of the focal conic $\mathcal{C}$. The radius of curvature $\rho$ at the point $T$ of the focal conic $\mathcal{C}$ is given as well as its relation to the span $\delta $ from the center of $\mathcal{C}$ to the tangent $\lijepot$ at the point $T$ and to the length of the half diameter of $\mathcal{C}$ on the diameter parallel to the $\textup{tangent}$.
2000 Mathematics Subject Classification. 51N25 |
---|---|
AbstractList | It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in \{-1,0,1\}$ and a parametrization. This paper gives the equation of the circle of curvature at the point $T$ of the focal conic $\mathcal{C}$. The radius of curvature $\rho$ at the point $T$ of the focal conic $\mathcal{C}$ is given as well as its relation to the span $\delta $ from the center of $\mathcal{C}$ to the tangent $\lijepot$ at the point $T$ and to the length of the half diameter of $\mathcal{C}$ on the diameter parallel to the $\textup{tangent}$.
2000 Mathematics Subject Classification. 51N25 |
Author | Volenec, Vladimir Brkić, J. Beban Šimć, M. |
Author_xml | – sequence: 1 givenname: M. surname: Šimć fullname: Šimć, M. – sequence: 2 givenname: Vladimir surname: Volenec fullname: Volenec, Vladimir – sequence: 3 givenname: J. Beban surname: Brkić fullname: Brkić, J. Beban |
BookMark | eNptj0tLxDAYRYOMYGd05R_oXlrzNc8upTjOyIiCug5JmmClJkPSEfz31sdKXF043HPhLtEixOAQOgdcM07p5ePtXY15DTXgI1Q0DSEVtJwuUAGS4gpzxk7QMudXjDmRghWIdIf0rqdDcmX05fTiynW0eiy7GAZbDuEbbXOcUtzP4GHUwZ2iY6_H7M5-c4We19dP3aba3d9su6tdZQEYrih4Zoxoek2FET2honHc9Lqx0gOzBkCDNrgX0su-YYZ552jre--8BCNbskLws2tTzDk5r-ww6WmIYUp6GBVg9fVaza8V5gpmMDsXf5x9Gt50-vi3_QkzjVpa |
CitedBy_id | crossref_primary_10_3336_gm_56_1_10 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5644/SJM.06.1.10 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2233-1964 |
EndPage | 123 |
ExternalDocumentID | 10_5644_SJM_06_1_10 |
GroupedDBID | AAYXX ACIPV ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBS EJD FRJ OK1 TR2 |
ID | FETCH-LOGICAL-c1150-41f5bb72da47b7d3472e6bda2c8f15cb11a1ab0d78f8d25b5fee49fdfef81b893 |
ISSN | 1840-0655 |
IngestDate | Tue Jul 01 02:29:53 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1150-41f5bb72da47b7d3472e6bda2c8f15cb11a1ab0d78f8d25b5fee49fdfef81b893 |
OpenAccessLink | http://doi.org/10.5644/sjm.06.1.10 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_5644_SJM_06_1_10 crossref_primary_10_5644_SJM_06_1_10 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-11 |
PublicationDateYYYYMMDD | 2024-06-11 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Sarajevo journal of mathematics |
PublicationYear | 2024 |
SSID | ssj0063875 |
Score | 2.2581587 |
Snippet | It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 117 |
Title | Curvature of the Focal Conic in the Isotropic Plane |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYmuIzDBBtoMEA5wGVTQh3HcXOECsQqdSdA3CI7tqVs0KCucOCv5z3bdTPWA9slqhy7UfI-vff5_TIhR1VlrAUopJUWLC0aBXrQ5DyVTFNTMmpyjX7IyY_y8roY3_LbZe2Jqy6Zq6x5XllX8j9ShTGQK1bJ_oNk45_CAPwG-cIVJAzXN8l49IgeVQwBhEj_BVomrOJrm0UC4_ff3XzWPWAGPOa19skoeoN_mqeu3z7iPrZxjWT7eMSPTwetp5_CeVCzxb0bDOsbd0r6zZ3U7X0bk33PZr_a5ZJx9u3MqADF4GXIC8yGClrQK8YhpoGWvqVuZtwYMAuWYkOvvjYt_wKN14zUl2gGI0t9kfFr_c2BnWEEeTzBpqo0Cxmvf3TJfmW9Yk4h7GZweQ2L60FZ0xoL79ZzIXz0Hnfa3kCDxnH9l-Mr-bJNXHzSe3KPqPQYx9Um-RC2Csmpl_sWeWemH8nGZCmgT4RFBCSdTeBG4hCQOAQk7dQNRQQkDgHb5Pri_Gp0mYZjMNIG6XpaUMuVErmWhVBCs0LkplRa5s3QUt4oSiWVaqDF0A51zhW3xhSV1dZY2JMAH90ha9Nuaj6TBMh3KcsK7LOUBVd4mgB8HzlgXLNGWrZLvi7euW5Cj3g8quSuXvF1d8lRnPzgW6Osmrb3tmlfyPsl7vbJ2nz2aA6A783VoZPeC5zmUJE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curvature+of+the+Focal+Conic+in+the+Isotropic+Plane&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=%C5%A0im%C4%87%2C+M.&rft.au=Volenec%2C+Vladimir&rft.au=Brki%C4%87%2C+J.+Beban&rft.date=2024-06-11&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=6&rft.issue=1&rft.spage=117&rft.epage=123&rft_id=info:doi/10.5644%2FSJM.06.1.10&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_06_1_10 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon |