Curvature of the Focal Conic in the Isotropic Plane

It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in \{-1,0,1\}$ and a parametrization. This paper gives the equation of the circle of curvature at the point $T$ of the focal conic $\mathcal{C}$....

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 6; no. 1; pp. 117 - 123
Main Authors Šimć, M., Volenec, Vladimir, Brkić, J. Beban
Format Journal Article
LanguageEnglish
Published 11.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.06.1.10

Cover

Abstract It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in \{-1,0,1\}$ and a parametrization. This paper gives the equation of the circle of curvature at the point $T$ of the focal conic $\mathcal{C}$. The radius of curvature $\rho$ at the point $T$ of the focal conic $\mathcal{C}$ is given as well as its relation to the span $\delta $ from the center of $\mathcal{C}$ to the tangent $\lijepot$ at the point $T$ and to the length of the half diameter of $\mathcal{C}$ on the diameter parallel to the $\textup{tangent}$.   2000 Mathematics Subject Classification. 51N25
AbstractList It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in \{-1,0,1\}$ and a parametrization. This paper gives the equation of the circle of curvature at the point $T$ of the focal conic $\mathcal{C}$. The radius of curvature $\rho$ at the point $T$ of the focal conic $\mathcal{C}$ is given as well as its relation to the span $\delta $ from the center of $\mathcal{C}$ to the tangent $\lijepot$ at the point $T$ and to the length of the half diameter of $\mathcal{C}$ on the diameter parallel to the $\textup{tangent}$.   2000 Mathematics Subject Classification. 51N25
Author Volenec, Vladimir
Brkić, J. Beban
Šimć, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Šimć
  fullname: Šimć, M.
– sequence: 2
  givenname: Vladimir
  surname: Volenec
  fullname: Volenec, Vladimir
– sequence: 3
  givenname: J. Beban
  surname: Brkić
  fullname: Brkić, J. Beban
BookMark eNptj0tLxDAYRYOMYGd05R_oXlrzNc8upTjOyIiCug5JmmClJkPSEfz31sdKXF043HPhLtEixOAQOgdcM07p5ePtXY15DTXgI1Q0DSEVtJwuUAGS4gpzxk7QMudXjDmRghWIdIf0rqdDcmX05fTiynW0eiy7GAZbDuEbbXOcUtzP4GHUwZ2iY6_H7M5-c4We19dP3aba3d9su6tdZQEYrih4Zoxoek2FET2honHc9Lqx0gOzBkCDNrgX0su-YYZ552jre--8BCNbskLws2tTzDk5r-ww6WmIYUp6GBVg9fVaza8V5gpmMDsXf5x9Gt50-vi3_QkzjVpa
CitedBy_id crossref_primary_10_3336_gm_56_1_10
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5644/SJM.06.1.10
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2233-1964
EndPage 123
ExternalDocumentID 10_5644_SJM_06_1_10
GroupedDBID AAYXX
ACIPV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBS
EJD
FRJ
OK1
TR2
ID FETCH-LOGICAL-c1150-41f5bb72da47b7d3472e6bda2c8f15cb11a1ab0d78f8d25b5fee49fdfef81b893
ISSN 1840-0655
IngestDate Tue Jul 01 02:29:53 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1150-41f5bb72da47b7d3472e6bda2c8f15cb11a1ab0d78f8d25b5fee49fdfef81b893
OpenAccessLink http://doi.org/10.5644/sjm.06.1.10
PageCount 7
ParticipantIDs crossref_citationtrail_10_5644_SJM_06_1_10
crossref_primary_10_5644_SJM_06_1_10
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-11
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-11
  day: 11
PublicationDecade 2020
PublicationTitle Sarajevo journal of mathematics
PublicationYear 2024
SSID ssj0063875
Score 2.2581587
Snippet It is shown in \cite{beba} that every focal conic $\mathcal{C}$ in the isotropic plane can be represented by the equation $y^2=\epsilon x^2+x$, $\epsilon \in...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 117
Title Curvature of the Focal Conic in the Isotropic Plane
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYmuIzDBBtoMEA5wGVTQh3HcXOECsQqdSdA3CI7tqVs0KCucOCv5z3bdTPWA9slqhy7UfI-vff5_TIhR1VlrAUopJUWLC0aBXrQ5DyVTFNTMmpyjX7IyY_y8roY3_LbZe2Jqy6Zq6x5XllX8j9ShTGQK1bJ_oNk45_CAPwG-cIVJAzXN8l49IgeVQwBhEj_BVomrOJrm0UC4_ff3XzWPWAGPOa19skoeoN_mqeu3z7iPrZxjWT7eMSPTwetp5_CeVCzxb0bDOsbd0r6zZ3U7X0bk33PZr_a5ZJx9u3MqADF4GXIC8yGClrQK8YhpoGWvqVuZtwYMAuWYkOvvjYt_wKN14zUl2gGI0t9kfFr_c2BnWEEeTzBpqo0Cxmvf3TJfmW9Yk4h7GZweQ2L60FZ0xoL79ZzIXz0Hnfa3kCDxnH9l-Mr-bJNXHzSe3KPqPQYx9Um-RC2Csmpl_sWeWemH8nGZCmgT4RFBCSdTeBG4hCQOAQk7dQNRQQkDgHb5Pri_Gp0mYZjMNIG6XpaUMuVErmWhVBCs0LkplRa5s3QUt4oSiWVaqDF0A51zhW3xhSV1dZY2JMAH90ha9Nuaj6TBMh3KcsK7LOUBVd4mgB8HzlgXLNGWrZLvi7euW5Cj3g8quSuXvF1d8lRnPzgW6Osmrb3tmlfyPsl7vbJ2nz2aA6A783VoZPeC5zmUJE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Curvature+of+the+Focal+Conic+in+the+Isotropic+Plane&rft.jtitle=Sarajevo+journal+of+mathematics&rft.au=%C5%A0im%C4%87%2C+M.&rft.au=Volenec%2C+Vladimir&rft.au=Brki%C4%87%2C+J.+Beban&rft.date=2024-06-11&rft.issn=1840-0655&rft.eissn=2233-1964&rft.volume=6&rft.issue=1&rft.spage=117&rft.epage=123&rft_id=info:doi/10.5644%2FSJM.06.1.10&rft.externalDBID=n%2Fa&rft.externalDocID=10_5644_SJM_06_1_10
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1840-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1840-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1840-0655&client=summon