Algorithm for the Quantitative Characterization of Galvanic Corrosion Morphology from Optical Micrographs

The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an improved understanding of environmental-assisted cracking mechanisms necessitates an understanding of static and dynamic corrosion morphology associ...

Full description

Saved in:
Bibliographic Details
Published inCorrosion (Houston, Tex.) Vol. 81; no. 4; pp. 325 - 337
Main Authors Perdomo-Hurtado, Luis, Osteguin, Vangelina, Abdelaziz, Haya, Dante, James, Rincon Troconis, Brendy C.
Format Journal Article
LanguageEnglish
Published 01.04.2025
Online AccessGet full text
ISSN0010-9312
1938-159X
DOI10.5006/4568

Cover

Abstract The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an improved understanding of environmental-assisted cracking mechanisms necessitates an understanding of static and dynamic corrosion morphology associated with cracking. Traditional methods have fallen short in addressing the complexities of characterizing damage observed under diverse testing conditions. This study introduces a new image analysis algorithm, capable of quantifying specific damage features. To validate the algorithm, panels of AA7075-T6 with an SS 316 fastener inserted were exposed to realistic relative humidity cycles that mimic outdoor environmental conditions. Then, robust statistical analyses were used to validate the algorithm’s performance by comparison with an analysis performed by a subject matter expert. Multiple analyses, including a significant Cohen’s κ statistic, Kruskal γ test, and F1 score were used. Low mean absolute and mean square error values were observed, indicating the precision of the algorithm. High R-squared values ensured the algorithm’s explanatory capacity, while the Bland-Altman plot revealed overall alignment between algorithmic predictions and expert measurements. Lin’s concordance correlation coefficient value further accentuates the outstanding agreement between algorithmic predictions and expert assessments. Together, these comprehensive statistical analyses affirm the algorithm’s accuracy, reliability, and precision in categorizing instances of intergranular corrosion from digital images, highlighting its potential as a powerful tool in corrosion analysis.
AbstractList The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an improved understanding of environmental-assisted cracking mechanisms necessitates an understanding of static and dynamic corrosion morphology associated with cracking. Traditional methods have fallen short in addressing the complexities of characterizing damage observed under diverse testing conditions. This study introduces a new image analysis algorithm, capable of quantifying specific damage features. To validate the algorithm, panels of AA7075-T6 with an SS 316 fastener inserted were exposed to realistic relative humidity cycles that mimic outdoor environmental conditions. Then, robust statistical analyses were used to validate the algorithm’s performance by comparison with an analysis performed by a subject matter expert. Multiple analyses, including a significant Cohen’s κ statistic, Kruskal γ test, and F1 score were used. Low mean absolute and mean square error values were observed, indicating the precision of the algorithm. High R-squared values ensured the algorithm’s explanatory capacity, while the Bland-Altman plot revealed overall alignment between algorithmic predictions and expert measurements. Lin’s concordance correlation coefficient value further accentuates the outstanding agreement between algorithmic predictions and expert assessments. Together, these comprehensive statistical analyses affirm the algorithm’s accuracy, reliability, and precision in categorizing instances of intergranular corrosion from digital images, highlighting its potential as a powerful tool in corrosion analysis.
Author Perdomo-Hurtado, Luis
Dante, James
Rincon Troconis, Brendy C.
Abdelaziz, Haya
Osteguin, Vangelina
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0002-5601-0481
  surname: Perdomo-Hurtado
  fullname: Perdomo-Hurtado, Luis
– sequence: 2
  givenname: Vangelina
  orcidid: 0009-0003-8276-6826
  surname: Osteguin
  fullname: Osteguin, Vangelina
– sequence: 3
  givenname: Haya
  surname: Abdelaziz
  fullname: Abdelaziz, Haya
– sequence: 4
  givenname: James
  orcidid: 0000-0001-9494-1570
  surname: Dante
  fullname: Dante, James
– sequence: 5
  givenname: Brendy C.
  orcidid: 0000-0002-8895-1016
  surname: Rincon Troconis
  fullname: Rincon Troconis, Brendy C.
BookMark eNotkF1LwzAYhYNMsNv8D7nwtvrmqyaXo-gcbAxBwbuSxqSNdE1J4mD-ejf06sBzcc7hmaPZGEaL0JLAvQCoHrio5BUqiGKyJEJ9zFABQKBUjNAbNE_pCwC4lKxAfjV0IfrcH7ALEefe4tdvPWafdfZHi-teR22yjf7nDMKIg8NrPRz16A2uQ4whXeguxKkPQ-hO2MVwwPspe6MHvPMmhi7qqU9LdO30kOztfy7Q-_PTW_1SbvfrTb3aloYQnksnDVgjKWs_RcWsldwZBa1SBs73DTPAQbZUUkpayqpWt4I-CkUE4ZRwQ9gC3f31npdTitY1U_QHHU8Ngeaip7noYb9kblns
Cites_doi 10.1038/nmeth.2019
10.1149/1.2778224
10.5006/0905
10.1007/978-3-319-97625-9
10.1533/9780857090256.2.574
10.1016/j.corsci.2009.01.016
10.1080/1478422X.2020.1740856
10.5006/0907
10.5006/0512
10.1515/corrrev-2019-0049
10.1016/j.csda.2006.04.014
10.1016/j.corsci.2019.01.033
10.1016/S0921-5093(02)00218-6
10.5006/1.3584905
10.1007/s10742-011-0077-3
10.5006/2132
10.5006/1.3278234
10.1149/2.059401jes
10.1149/1.3610401
10.1016/j.corsci.2004.05.007
10.1038/s41529-022-00281-x
10.1007/s00265-020-02916-y
10.5006/1887
10.5006/2885
10.1038/s41598-018-26340-5
10.1179/bcj.1993.28.2.103
10.1016/j.eswa.2017.02.049
10.1016/j.corsci.2006.02.007
10.1016/j.procs.2018.07.115
10.5006/1556
10.3390/diagnostics10050334
10.1016/j.corsci.2012.02.015
10.1038/s41529-023-00403-z
10.5006/1437
10.1149/1945-7111/acc42e
10.1007/BF02672284
10.1016/j.ijfatigue.2005.09.008
10.1149/1.2829897
10.1016/j.corsci.2006.04.015
10.1016/j.tca.2010.02.009
10.1016/j.jmst.2020.04.033
10.1016/S0300-9440(01)00132-1
10.1149/1945-7111/abdc75
10.1149/1.1837033
10.7717/peerj-cs.623
10.1016/j.corsci.2010.11.005
10.1149/2.0551911jes
10.1016/j.mtla.2022.101330
10.31399/asm.tb.caaa.9781627082990
10.1016/j.ijfatigue.2017.05.028
10.1016/j.ijfatigue.2009.02.033
10.1063/5.0026653
10.5006/3438
10.5006/1643
10.1149/2.023408jes
10.5006/3308
10.1038/s41529-021-00211-3
10.1080/1478422X.2020.1732113
10.1016/S0921-5093(01)01892-5
10.5006/0010-9312-33.7.243
10.1016/j.radonc.2019.09.004
10.1149/1945-7111/ace700
10.1016/j.corsci.2015.06.023
10.1016/j.corsci.2006.05.037
10.1016/j.corsci.2009.10.006
10.1002/maco.202213049
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5006/4568
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1938-159X
EndPage 337
ExternalDocumentID 10_5006_4568
GroupedDBID -~X
.DC
29F
2FS
8FE
8FG
8FH
8FW
8R4
8R5
9NC
AAYXX
ABEFU
ABJCF
ACGOD
ACIWK
ACNCT
AENEX
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
CITATION
D1I
EBS
EJD
HCIFZ
KB.
L6V
LK5
M2P
M2Q
M7R
M7S
P0W
PCBAR
PDBOC
PQQKQ
PROAC
Q2X
RNH
RNS
S0X
SJN
TAE
UGJ
WH7
Y3D
~02
ID FETCH-LOGICAL-c114t-f8c0ec823bd563ee84fc90b99c0931c3c0408b28221b236bab527591514214c13
ISSN 0010-9312
IngestDate Wed Sep 10 04:59:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c114t-f8c0ec823bd563ee84fc90b99c0931c3c0408b28221b236bab527591514214c13
ORCID 0009-0003-8276-6826
0000-0001-9494-1570
0000-0002-8895-1016
0000-0002-5601-0481
PageCount 13
ParticipantIDs crossref_primary_10_5006_4568
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Corrosion (Houston, Tex.)
PublicationYear 2025
References Feng (2025033102314002600_i0010-9312-81-4-4568-r28) 2014; 161
Codaro (2025033102314002600_i0010-9312-81-4-4568-r40) 2002; 334
Osborne (2025033102314002600_i0010-9312-81-4-4568-r9) 2001; 41
Speidel (2025033102314002600_i0010-9312-81-4-4568-r6) 1975; 6
Frankel (2025033102314002600_i0010-9312-81-4-4568-r3) 2015; 71
Guo (2025033102314002600_i0010-9312-81-4-4568-r39) 2018; 8
Choi (2025033102314002600_i0010-9312-81-4-4568-r42) 2005; 47
Song (2025033102314002600_i0010-9312-81-4-4568-r74) 2017; 81
Bondada (2025033102314002600_i0010-9312-81-4-4568-r48) 2018; 133
Shah (2025033102314002600_i0010-9312-81-4-4568-r14) 2013
Marshall (2025033102314002600_i0010-9312-81-4-4568-r26) 2019; 75
Kopp-Schneider (2025033102314002600_i0010-9312-81-4-4568-r79) 2019; 141
Feng (2025033102314002600_i0010-9312-81-4-4568-r21) 2014; 70
Gerke (2025033102314002600_i0010-9312-81-4-4568-r78) 2020; 10
Ghahari (2025033102314002600_i0010-9312-81-4-4568-r45) 2015; 100
Arriscorreta (2025033102314002600_i0010-9312-81-4-4568-r35) 2012; 68
Jokar (2025033102314002600_i0010-9312-81-4-4568-r20) 2022; 73
Chicco (2025033102314002600_i0010-9312-81-4-4568-r77) 2021; 7
Aditiyawarman (2025033102314002600_i0010-9312-81-4-4568-r63) 2023
Birbilis (2025033102314002600_i0010-9312-81-4-4568-r1) 2006; 48
ASTM B117-19 (2025033102314002600_i0010-9312-81-4-4568-r25)
Co (2025033102314002600_i0010-9312-81-4-4568-r34) 2017; 103
Vagbharathi (2025033102314002600_i0010-9312-81-4-4568-r56) 2014
Xia (2025033102314002600_i0010-9312-81-4-4568-r58) 2020; 53
Shoales (2025033102314002600_i0010-9312-81-4-4568-r7) 2009
Jafarzadeh (2025033102314002600_i0010-9312-81-4-4568-r57) 2019; 37
Pembury Smith (2025033102314002600_i0010-9312-81-4-4568-r73) 2020; 74
Chen (2025033102314002600_i0010-9312-81-4-4568-r53) 2015; 71
Zhao (2025033102314002600_i0010-9312-81-4-4568-r16) 2007; 49
Buitrago-Osorio (2025033102314002600_i0010-9312-81-4-4568-r80) 2022; 21
Kowal (2025033102314002600_i0010-9312-81-4-4568-r36) 1996; 143
Shibata (2025033102314002600_i0010-9312-81-4-4568-r38) 1977; 33
ASTM D1141-98 (2025033102314002600_i0010-9312-81-4-4568-r65) 2021
Matzdorf (2025033102314002600_i0010-9312-81-4-4568-r8) 2013; 69
Pedeferri (2025033102314002600_i0010-9312-81-4-4568-r13) 2018
Mondou (2025033102314002600_i0010-9312-81-4-4568-r49) 2023; 170
Osteguin (2025033102314002600_i0010-9312-81-4-4568-r72) 2021
Foley (2025033102314002600_i0010-9312-81-4-4568-r67) 1986; 42
Augustin (2025033102314002600_i0010-9312-81-4-4568-r47) 2007; 154
Wang (2025033102314002600_i0010-9312-81-4-4568-r51) 2012; 59
Cerchier (2025033102314002600_i0010-9312-81-4-4568-r2) 2020
Birbilis (2025033102314002600_i0010-9312-81-4-4568-r17) 2008; 155
A. G44-21 (2025033102314002600_i0010-9312-81-4-4568-r66) 2021
Weirich (2025033102314002600_i0010-9312-81-4-4568-r43) 2019; 166
Rafla (2025033102314002600_i0010-9312-81-4-4568-r19) 2019; 75
Clark (2025033102314002600_i0010-9312-81-4-4568-r30) 2019
Menan (2025033102314002600_i0010-9312-81-4-4568-r31) 2009; 31
Zhao (2025033102314002600_i0010-9312-81-4-4568-r15) 2006; 62
Boerstler (2025033102314002600_i0010-9312-81-4-4568-r24) 2020; 55
Codaro (2025033102314002600_i0010-9312-81-4-4568-r54) 2003; 341
Feng (2025033102314002600_i0010-9312-81-4-4568-r22) 2015; 71
Guo (2025033102314002600_i0010-9312-81-4-4568-r29) 2019; 150
Burns (2025033102314002600_i0010-9312-81-4-4568-r32) 2010; 52
Schindelin (2025033102314002600_i0010-9312-81-4-4568-r70) 2012; 9
Larignon (2025033102314002600_i0010-9312-81-4-4568-r46) 2011; 158
Marshall (2025033102314002600_i0010-9312-81-4-4568-r27) 2020; 76
Sun (2025033102314002600_i0010-9312-81-4-4568-r75) 2011; 11
Srinivasan (2025033102314002600_i0010-9312-81-4-4568-r37) 2021; 168
Peng (2025033102314002600_i0010-9312-81-4-4568-r50) 1993; 28
Alexander Lilly (2025033102314002600_i0010-9312-81-4-4568-r71) 2022
Liu (2025033102314002600_i0010-9312-81-4-4568-r59) 2021; 92
Davis (2025033102314002600_i0010-9312-81-4-4568-r5) 1999
Birbilis (2025033102314002600_i0010-9312-81-4-4568-r11) 2011
Richardson (2025033102314002600_i0010-9312-81-4-4568-r10) 2009
Knight (2025033102314002600_i0010-9312-81-4-4568-r12) 2011; 53
Boerstler (2025033102314002600_i0010-9312-81-4-4568-r23) 2020; 55
Coelho (2025033102314002600_i0010-9312-81-4-4568-r61) 2023; 7
Sasidhar (2025033102314002600_i0010-9312-81-4-4568-r62) 2022; 6
Co (2025033102314002600_i0010-9312-81-4-4568-r33) 2016; 72
Hryniewicz (2025033102314002600_i0010-9312-81-4-4568-r76) 2006; 51
Alrubaie (2025033102314002600_i0010-9312-81-4-4568-r4) 2006; 28
Montoya (2025033102314002600_i0010-9312-81-4-4568-r41) 2023; 170
Jafarzadeh (2025033102314002600_i0010-9312-81-4-4568-r55) 2019
Padovani (2025033102314002600_i0010-9312-81-4-4568-r68) 2015; 71
Sun (2025033102314002600_i0010-9312-81-4-4568-r52) 2009; 51
Zhang (2025033102314002600_i0010-9312-81-4-4568-r64) 2020
Jiang (2025033102314002600_i0010-9312-81-4-4568-r60) 2022; 6
Posern (2025033102314002600_i0010-9312-81-4-4568-r69) 2010; 502
Huang (2025033102314002600_i0010-9312-81-4-4568-r18) 2007; 49
Woldemedhin (2025033102314002600_i0010-9312-81-4-4568-r44) 2014; 161
References_xml – volume: 9
  start-page: 676
  year: 2012
  ident: 2025033102314002600_i0010-9312-81-4-4568-r70
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 154
  start-page: C637
  year: 2007
  ident: 2025033102314002600_i0010-9312-81-4-4568-r47
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2778224
– volume: 69
  start-page: 1240
  year: 2013
  ident: 2025033102314002600_i0010-9312-81-4-4568-r8
  publication-title: Corrosion
  doi: 10.5006/0905
– volume-title: Corrosion Science and Engineering
  year: 2018
  ident: 2025033102314002600_i0010-9312-81-4-4568-r13
  doi: 10.1007/978-3-319-97625-9
– start-page: 574
  volume-title: Fundamentals of Aluminium Metallurgy
  year: 2011
  ident: 2025033102314002600_i0010-9312-81-4-4568-r11
  article-title: Corrosion and Corrosion Protection of Aluminium
  doi: 10.1533/9780857090256.2.574
– ident: 2025033102314002600_i0010-9312-81-4-4568-r25
  article-title: Standard Practice for Operating Salt Spray (Fog) Apparatus
– volume: 51
  start-page: 719
  year: 2009
  ident: 2025033102314002600_i0010-9312-81-4-4568-r52
  publication-title: Corros. Sci
  doi: 10.1016/j.corsci.2009.01.016
– volume: 55
  start-page: 411
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r24
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1080/1478422X.2020.1740856
– volume: 70
  start-page: 95
  year: 2014
  ident: 2025033102314002600_i0010-9312-81-4-4568-r21
  publication-title: Corrosion
  doi: 10.5006/0907
– volume: 68
  start-page: 950
  year: 2012
  ident: 2025033102314002600_i0010-9312-81-4-4568-r35
  publication-title: Corrosion
  doi: 10.5006/0512
– year: 2021
  ident: 2025033102314002600_i0010-9312-81-4-4568-r65
  article-title: Standard Practice for Preparation of Substitute Ocean Water
– year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r30
  article-title: Environment-Assisted Cracking and Corrosion Fatigue of Aircraft Aluminum Alloys in Corrosive Atmospheres
– volume: 37
  start-page: 419
  year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r57
  publication-title: Corros. Rev.
  doi: 10.1515/corrrev-2019-0049
– volume: 51
  start-page: 323
  year: 2006
  ident: 2025033102314002600_i0010-9312-81-4-4568-r76
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.04.014
– volume: 150
  start-page: 110
  year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r29
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.01.033
– volume: 341
  start-page: 202
  year: 2003
  ident: 2025033102314002600_i0010-9312-81-4-4568-r54
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00218-6
– volume: 42
  start-page: 277
  year: 1986
  ident: 2025033102314002600_i0010-9312-81-4-4568-r67
  publication-title: Corrosion
  doi: 10.5006/1.3584905
– volume: 11
  start-page: 145
  year: 2011
  ident: 2025033102314002600_i0010-9312-81-4-4568-r75
  publication-title: Health Serv Outcomes Res. Methodol.
  doi: 10.1007/s10742-011-0077-3
– start-page: 1
  year: 2013
  ident: 2025033102314002600_i0010-9312-81-4-4568-r14
  article-title: No Multi-Site Fatigue Testing and Characterization of Fuselage Panels from Aging Aircraft Structure
– volume: 72
  start-page: 1215
  year: 2016
  ident: 2025033102314002600_i0010-9312-81-4-4568-r33
  publication-title: Corrosion
  doi: 10.5006/2132
– volume-title: Shreir’s Corrosion
  year: 2009
  ident: 2025033102314002600_i0010-9312-81-4-4568-r10
– volume: 62
  start-page: 956
  year: 2006
  ident: 2025033102314002600_i0010-9312-81-4-4568-r15
  publication-title: Corrosion
  doi: 10.5006/1.3278234
– volume: 161
  start-page: C42
  year: 2014
  ident: 2025033102314002600_i0010-9312-81-4-4568-r28
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.059401jes
– volume: 158
  start-page: C284
  year: 2011
  ident: 2025033102314002600_i0010-9312-81-4-4568-r46
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3610401
– volume: 47
  start-page: 1
  year: 2005
  ident: 2025033102314002600_i0010-9312-81-4-4568-r42
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2004.05.007
– volume: 6
  start-page: 1
  year: 2022
  ident: 2025033102314002600_i0010-9312-81-4-4568-r62
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-022-00281-x
– volume: 74
  start-page: 1
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r73
  publication-title: Behav. Ecol. Sociobiol.
  doi: 10.1007/s00265-020-02916-y
– volume: 71
  start-page: 1308
  year: 2015
  ident: 2025033102314002600_i0010-9312-81-4-4568-r3
  publication-title: Corrosion
  doi: 10.5006/1887
– volume: 75
  start-page: 12
  year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r19
  publication-title: Corrosion
  doi: 10.5006/2885
– volume: 8
  start-page: 7990
  year: 2018
  ident: 2025033102314002600_i0010-9312-81-4-4568-r39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26340-5
– volume: 28
  start-page: 103
  year: 1993
  ident: 2025033102314002600_i0010-9312-81-4-4568-r50
  publication-title: Brit. Corros. J.
  doi: 10.1179/bcj.1993.28.2.103
– volume: 81
  start-page: 22
  year: 2017
  ident: 2025033102314002600_i0010-9312-81-4-4568-r74
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.02.049
– volume: 48
  start-page: 4202
  year: 2006
  ident: 2025033102314002600_i0010-9312-81-4-4568-r1
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2006.02.007
– volume: 133
  start-page: 804
  year: 2018
  ident: 2025033102314002600_i0010-9312-81-4-4568-r48
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.07.115
– volume: 71
  start-page: 1184
  year: 2015
  ident: 2025033102314002600_i0010-9312-81-4-4568-r53
  publication-title: Corrosion
  doi: 10.5006/1556
– volume: 10
  start-page: 334
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r78
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10050334
– volume: 59
  start-page: 63
  year: 2012
  ident: 2025033102314002600_i0010-9312-81-4-4568-r51
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.02.015
– volume: 7
  start-page: 1
  year: 2023
  ident: 2025033102314002600_i0010-9312-81-4-4568-r61
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-023-00403-z
– start-page: 012024
  volume-title: IOP Conf. Ser. Earth Environ. Sci.
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r64
– volume: 71
  start-page: 292
  year: 2015
  ident: 2025033102314002600_i0010-9312-81-4-4568-r68
  publication-title: Corrosion
  doi: 10.5006/1437
– volume: 170
  start-page: 41502
  year: 2023
  ident: 2025033102314002600_i0010-9312-81-4-4568-r41
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acc42e
– year: 2021
  ident: 2025033102314002600_i0010-9312-81-4-4568-r66
  article-title: Standard Practice for Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5% Sodium Chloride Solution
– volume-title: Surf. Coat. Technol.
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r2
– volume: 6
  start-page: 631
  year: 1975
  ident: 2025033102314002600_i0010-9312-81-4-4568-r6
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02672284
– volume: 28
  start-page: 934
  year: 2006
  ident: 2025033102314002600_i0010-9312-81-4-4568-r4
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2005.09.008
– year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r55
– volume: 155
  start-page: C117
  year: 2008
  ident: 2025033102314002600_i0010-9312-81-4-4568-r17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2829897
– volume: 49
  start-page: 858
  year: 2007
  ident: 2025033102314002600_i0010-9312-81-4-4568-r18
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2006.04.015
– volume: 502
  start-page: 73
  year: 2010
  ident: 2025033102314002600_i0010-9312-81-4-4568-r69
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2010.02.009
– volume: 53
  start-page: 146
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r58
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.04.033
– volume: 41
  start-page: 217
  year: 2001
  ident: 2025033102314002600_i0010-9312-81-4-4568-r9
  publication-title: Prog. Org. Coat.
  doi: 10.1016/S0300-9440(01)00132-1
– volume: 168
  start-page: 21501
  year: 2021
  ident: 2025033102314002600_i0010-9312-81-4-4568-r37
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abdc75
– volume: 143
  start-page: 2471
  year: 1996
  ident: 2025033102314002600_i0010-9312-81-4-4568-r36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837033
– volume: 7
  start-page: 1
  year: 2021
  ident: 2025033102314002600_i0010-9312-81-4-4568-r77
  publication-title: PeerJ. Comput. Sci.
  doi: 10.7717/peerj-cs.623
– volume: 53
  start-page: 727
  year: 2011
  ident: 2025033102314002600_i0010-9312-81-4-4568-r12
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.11.005
– volume: 166
  start-page: C3477
  year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0551911jes
– volume: 21
  start-page: 101330
  year: 2022
  ident: 2025033102314002600_i0010-9312-81-4-4568-r80
  publication-title: Materialia (Oxf)
  doi: 10.1016/j.mtla.2022.101330
– volume-title: Corrosion of Aluminum and Aluminum Alloys
  year: 1999
  ident: 2025033102314002600_i0010-9312-81-4-4568-r5
  doi: 10.31399/asm.tb.caaa.9781627082990
– year: 2021
  ident: 2025033102314002600_i0010-9312-81-4-4568-r72
– volume: 103
  start-page: 234
  year: 2017
  ident: 2025033102314002600_i0010-9312-81-4-4568-r34
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.05.028
– volume: 31
  start-page: 1684
  year: 2009
  ident: 2025033102314002600_i0010-9312-81-4-4568-r31
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2009.02.033
– volume: 92
  start-page: 035116
  issue: 3
  year: 2021
  ident: 2025033102314002600_i0010-9312-81-4-4568-r59
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0026653
– volume-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. B
  year: 2023
  ident: 2025033102314002600_i0010-9312-81-4-4568-r63
– start-page: 187
  year: 2009
  ident: 2025033102314002600_i0010-9312-81-4-4568-r7
  article-title: Compilation of Damage Findings from Multiple Recent Teardown Analysis Programs
– volume: 76
  start-page: 476
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r27
  publication-title: Corrosion
  doi: 10.5006/3438
– year: 2022
  ident: 2025033102314002600_i0010-9312-81-4-4568-r71
– volume: 71
  start-page: 771
  year: 2015
  ident: 2025033102314002600_i0010-9312-81-4-4568-r22
  publication-title: Corrosion
  doi: 10.5006/1643
– volume: 161
  start-page: E3216
  year: 2014
  ident: 2025033102314002600_i0010-9312-81-4-4568-r44
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.023408jes
– volume: 75
  start-page: 1461
  year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r26
  publication-title: Corrosion
  doi: 10.5006/3308
– volume: 6
  start-page: 1
  year: 2022
  ident: 2025033102314002600_i0010-9312-81-4-4568-r60
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-021-00211-3
– volume: 55
  start-page: 268
  year: 2020
  ident: 2025033102314002600_i0010-9312-81-4-4568-r23
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1080/1478422X.2020.1732113
– volume: 334
  start-page: 298
  year: 2002
  ident: 2025033102314002600_i0010-9312-81-4-4568-r40
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01892-5
– volume-title: Proc. R. Soc. A
  year: 2014
  ident: 2025033102314002600_i0010-9312-81-4-4568-r56
– volume: 33
  start-page: 243
  year: 1977
  ident: 2025033102314002600_i0010-9312-81-4-4568-r38
  publication-title: Corrosion
  doi: 10.5006/0010-9312-33.7.243
– volume: 141
  start-page: 321
  year: 2019
  ident: 2025033102314002600_i0010-9312-81-4-4568-r79
  publication-title: Radiotherapy Oncol.
  doi: 10.1016/j.radonc.2019.09.004
– volume: 170
  start-page: 071506
  year: 2023
  ident: 2025033102314002600_i0010-9312-81-4-4568-r49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ace700
– volume: 100
  start-page: 23
  year: 2015
  ident: 2025033102314002600_i0010-9312-81-4-4568-r45
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.06.023
– volume: 49
  start-page: 920
  year: 2007
  ident: 2025033102314002600_i0010-9312-81-4-4568-r16
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2006.05.037
– volume: 52
  start-page: 498
  year: 2010
  ident: 2025033102314002600_i0010-9312-81-4-4568-r32
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.10.006
– volume: 73
  start-page: 1015
  year: 2022
  ident: 2025033102314002600_i0010-9312-81-4-4568-r20
  publication-title: Mater. Corros.
  doi: 10.1002/maco.202213049
SSID ssj0004883
Score 2.4156713
Snippet The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an...
SourceID crossref
SourceType Index Database
StartPage 325
Title Algorithm for the Quantitative Characterization of Galvanic Corrosion Morphology from Optical Micrographs
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZCmUbjK3tWNdl6GGvbmPJP-THkDUxY2laSEvegiXLXSCNSxJDl79jf_BOlqJoodCuL8bIKMG6j9N35-9OCH3zZR7LnDCviP0CAhSqjnkRkRdlghMZScp9VeA8uIjS6-DHOBw3Gn8c1VK14qdi_WhdyUusCmNgV1Ul-x-WtT8KA3AP9oUrWBiuz7JxZ3ZbQnD_686KBa-qbF6XjSlBUNc2Y15bYtjPZsCdpwIcwQI2SDU6KGGtdSumuthkeK_z2wOl1asbWi9dCrudCOQ0LaulEeCP5MOpk1e4lIu8vCu9tAJ-n9cJ2Z_V1DL4IaDrttINDG5UgcPMnOOtv0Wp3pXraZ3cTrPf9sF3hQMr7nUzFiR0hC7GC4PvT6iRT0vteBNwvECtxq5nZr6DwMBxs1QXS5sdm-q2MbubQQgORZ3sFOpze_7ttb2zB1plIsREat5EzXqF9kgc1x__Wa-_rbZlurnr5i320Vvzb2dqlkNwHKYyeo_emRADdzRePqCGnB-gN07jyUM0tcjBgBwMyMEucvAucnBZ4A1ysAUA3iIHK-RggxzsIOcIXffOR93UM4dueAJC45VXMNGWghHK8zCiUrKgEEmbJ4low8sKKsDrM67Exz4nNOIZD0kcJkAcA-IHwqcfUXNezuUnhOMgyCHACCPJBCwaz-J2LhI_J1IkjPPoGLU2KzW5171VJu76f37i-Ql6vYXXF9RcLSrZAoq44l9ri_0FmPdsew
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+the+Quantitative+Characterization+of+Galvanic+Corrosion+Morphology+from+Optical+Micrographs&rft.jtitle=Corrosion+%28Houston%2C+Tex.%29&rft.au=Perdomo-Hurtado%2C+Luis&rft.au=Osteguin%2C+Vangelina&rft.au=Abdelaziz%2C+Haya&rft.au=Dante%2C+James&rft.date=2025-04-01&rft.issn=0010-9312&rft.eissn=1938-159X&rft.volume=81&rft.issue=4&rft.spage=325&rft.epage=337&rft_id=info:doi/10.5006%2F4568&rft.externalDBID=n%2Fa&rft.externalDocID=10_5006_4568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9312&client=summon