Algorithm for the Quantitative Characterization of Galvanic Corrosion Morphology from Optical Micrographs
The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an improved understanding of environmental-assisted cracking mechanisms necessitates an understanding of static and dynamic corrosion morphology associ...
Saved in:
Published in | Corrosion (Houston, Tex.) Vol. 81; no. 4; pp. 325 - 337 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2025
|
Online Access | Get full text |
ISSN | 0010-9312 1938-159X |
DOI | 10.5006/4568 |
Cover
Abstract | The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an improved understanding of environmental-assisted cracking mechanisms necessitates an understanding of static and dynamic corrosion morphology associated with cracking. Traditional methods have fallen short in addressing the complexities of characterizing damage observed under diverse testing conditions. This study introduces a new image analysis algorithm, capable of quantifying specific damage features. To validate the algorithm, panels of AA7075-T6 with an SS 316 fastener inserted were exposed to realistic relative humidity cycles that mimic outdoor environmental conditions. Then, robust statistical analyses were used to validate the algorithm’s performance by comparison with an analysis performed by a subject matter expert. Multiple analyses, including a significant Cohen’s κ statistic, Kruskal γ test, and F1 score were used. Low mean absolute and mean square error values were observed, indicating the precision of the algorithm. High R-squared values ensured the algorithm’s explanatory capacity, while the Bland-Altman plot revealed overall alignment between algorithmic predictions and expert measurements. Lin’s concordance correlation coefficient value further accentuates the outstanding agreement between algorithmic predictions and expert assessments. Together, these comprehensive statistical analyses affirm the algorithm’s accuracy, reliability, and precision in categorizing instances of intergranular corrosion from digital images, highlighting its potential as a powerful tool in corrosion analysis. |
---|---|
AbstractList | The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an improved understanding of environmental-assisted cracking mechanisms necessitates an understanding of static and dynamic corrosion morphology associated with cracking. Traditional methods have fallen short in addressing the complexities of characterizing damage observed under diverse testing conditions. This study introduces a new image analysis algorithm, capable of quantifying specific damage features. To validate the algorithm, panels of AA7075-T6 with an SS 316 fastener inserted were exposed to realistic relative humidity cycles that mimic outdoor environmental conditions. Then, robust statistical analyses were used to validate the algorithm’s performance by comparison with an analysis performed by a subject matter expert. Multiple analyses, including a significant Cohen’s κ statistic, Kruskal γ test, and F1 score were used. Low mean absolute and mean square error values were observed, indicating the precision of the algorithm. High R-squared values ensured the algorithm’s explanatory capacity, while the Bland-Altman plot revealed overall alignment between algorithmic predictions and expert measurements. Lin’s concordance correlation coefficient value further accentuates the outstanding agreement between algorithmic predictions and expert assessments. Together, these comprehensive statistical analyses affirm the algorithm’s accuracy, reliability, and precision in categorizing instances of intergranular corrosion from digital images, highlighting its potential as a powerful tool in corrosion analysis. |
Author | Perdomo-Hurtado, Luis Dante, James Rincon Troconis, Brendy C. Abdelaziz, Haya Osteguin, Vangelina |
Author_xml | – sequence: 1 givenname: Luis orcidid: 0000-0002-5601-0481 surname: Perdomo-Hurtado fullname: Perdomo-Hurtado, Luis – sequence: 2 givenname: Vangelina orcidid: 0009-0003-8276-6826 surname: Osteguin fullname: Osteguin, Vangelina – sequence: 3 givenname: Haya surname: Abdelaziz fullname: Abdelaziz, Haya – sequence: 4 givenname: James orcidid: 0000-0001-9494-1570 surname: Dante fullname: Dante, James – sequence: 5 givenname: Brendy C. orcidid: 0000-0002-8895-1016 surname: Rincon Troconis fullname: Rincon Troconis, Brendy C. |
BookMark | eNotkF1LwzAYhYNMsNv8D7nwtvrmqyaXo-gcbAxBwbuSxqSNdE1J4mD-ejf06sBzcc7hmaPZGEaL0JLAvQCoHrio5BUqiGKyJEJ9zFABQKBUjNAbNE_pCwC4lKxAfjV0IfrcH7ALEefe4tdvPWafdfZHi-teR22yjf7nDMKIg8NrPRz16A2uQ4whXeguxKkPQ-hO2MVwwPspe6MHvPMmhi7qqU9LdO30kOztfy7Q-_PTW_1SbvfrTb3aloYQnksnDVgjKWs_RcWsldwZBa1SBs73DTPAQbZUUkpayqpWt4I-CkUE4ZRwQ9gC3f31npdTitY1U_QHHU8Ngeaip7noYb9kblns |
Cites_doi | 10.1038/nmeth.2019 10.1149/1.2778224 10.5006/0905 10.1007/978-3-319-97625-9 10.1533/9780857090256.2.574 10.1016/j.corsci.2009.01.016 10.1080/1478422X.2020.1740856 10.5006/0907 10.5006/0512 10.1515/corrrev-2019-0049 10.1016/j.csda.2006.04.014 10.1016/j.corsci.2019.01.033 10.1016/S0921-5093(02)00218-6 10.5006/1.3584905 10.1007/s10742-011-0077-3 10.5006/2132 10.5006/1.3278234 10.1149/2.059401jes 10.1149/1.3610401 10.1016/j.corsci.2004.05.007 10.1038/s41529-022-00281-x 10.1007/s00265-020-02916-y 10.5006/1887 10.5006/2885 10.1038/s41598-018-26340-5 10.1179/bcj.1993.28.2.103 10.1016/j.eswa.2017.02.049 10.1016/j.corsci.2006.02.007 10.1016/j.procs.2018.07.115 10.5006/1556 10.3390/diagnostics10050334 10.1016/j.corsci.2012.02.015 10.1038/s41529-023-00403-z 10.5006/1437 10.1149/1945-7111/acc42e 10.1007/BF02672284 10.1016/j.ijfatigue.2005.09.008 10.1149/1.2829897 10.1016/j.corsci.2006.04.015 10.1016/j.tca.2010.02.009 10.1016/j.jmst.2020.04.033 10.1016/S0300-9440(01)00132-1 10.1149/1945-7111/abdc75 10.1149/1.1837033 10.7717/peerj-cs.623 10.1016/j.corsci.2010.11.005 10.1149/2.0551911jes 10.1016/j.mtla.2022.101330 10.31399/asm.tb.caaa.9781627082990 10.1016/j.ijfatigue.2017.05.028 10.1016/j.ijfatigue.2009.02.033 10.1063/5.0026653 10.5006/3438 10.5006/1643 10.1149/2.023408jes 10.5006/3308 10.1038/s41529-021-00211-3 10.1080/1478422X.2020.1732113 10.1016/S0921-5093(01)01892-5 10.5006/0010-9312-33.7.243 10.1016/j.radonc.2019.09.004 10.1149/1945-7111/ace700 10.1016/j.corsci.2015.06.023 10.1016/j.corsci.2006.05.037 10.1016/j.corsci.2009.10.006 10.1002/maco.202213049 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5006/4568 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1938-159X |
EndPage | 337 |
ExternalDocumentID | 10_5006_4568 |
GroupedDBID | -~X .DC 29F 2FS 8FE 8FG 8FH 8FW 8R4 8R5 9NC AAYXX ABEFU ABJCF ACGOD ACIWK ACNCT AENEX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ BHPHI BKSAR BPHCQ CITATION D1I EBS EJD HCIFZ KB. L6V LK5 M2P M2Q M7R M7S P0W PCBAR PDBOC PQQKQ PROAC Q2X RNH RNS S0X SJN TAE UGJ WH7 Y3D ~02 |
ID | FETCH-LOGICAL-c114t-f8c0ec823bd563ee84fc90b99c0931c3c0408b28221b236bab527591514214c13 |
ISSN | 0010-9312 |
IngestDate | Wed Sep 10 04:59:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c114t-f8c0ec823bd563ee84fc90b99c0931c3c0408b28221b236bab527591514214c13 |
ORCID | 0009-0003-8276-6826 0000-0001-9494-1570 0000-0002-8895-1016 0000-0002-5601-0481 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_5006_4568 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Corrosion (Houston, Tex.) |
PublicationYear | 2025 |
References | Feng (2025033102314002600_i0010-9312-81-4-4568-r28) 2014; 161 Codaro (2025033102314002600_i0010-9312-81-4-4568-r40) 2002; 334 Osborne (2025033102314002600_i0010-9312-81-4-4568-r9) 2001; 41 Speidel (2025033102314002600_i0010-9312-81-4-4568-r6) 1975; 6 Frankel (2025033102314002600_i0010-9312-81-4-4568-r3) 2015; 71 Guo (2025033102314002600_i0010-9312-81-4-4568-r39) 2018; 8 Choi (2025033102314002600_i0010-9312-81-4-4568-r42) 2005; 47 Song (2025033102314002600_i0010-9312-81-4-4568-r74) 2017; 81 Bondada (2025033102314002600_i0010-9312-81-4-4568-r48) 2018; 133 Shah (2025033102314002600_i0010-9312-81-4-4568-r14) 2013 Marshall (2025033102314002600_i0010-9312-81-4-4568-r26) 2019; 75 Kopp-Schneider (2025033102314002600_i0010-9312-81-4-4568-r79) 2019; 141 Feng (2025033102314002600_i0010-9312-81-4-4568-r21) 2014; 70 Gerke (2025033102314002600_i0010-9312-81-4-4568-r78) 2020; 10 Ghahari (2025033102314002600_i0010-9312-81-4-4568-r45) 2015; 100 Arriscorreta (2025033102314002600_i0010-9312-81-4-4568-r35) 2012; 68 Jokar (2025033102314002600_i0010-9312-81-4-4568-r20) 2022; 73 Chicco (2025033102314002600_i0010-9312-81-4-4568-r77) 2021; 7 Aditiyawarman (2025033102314002600_i0010-9312-81-4-4568-r63) 2023 Birbilis (2025033102314002600_i0010-9312-81-4-4568-r1) 2006; 48 ASTM B117-19 (2025033102314002600_i0010-9312-81-4-4568-r25) Co (2025033102314002600_i0010-9312-81-4-4568-r34) 2017; 103 Vagbharathi (2025033102314002600_i0010-9312-81-4-4568-r56) 2014 Xia (2025033102314002600_i0010-9312-81-4-4568-r58) 2020; 53 Shoales (2025033102314002600_i0010-9312-81-4-4568-r7) 2009 Jafarzadeh (2025033102314002600_i0010-9312-81-4-4568-r57) 2019; 37 Pembury Smith (2025033102314002600_i0010-9312-81-4-4568-r73) 2020; 74 Chen (2025033102314002600_i0010-9312-81-4-4568-r53) 2015; 71 Zhao (2025033102314002600_i0010-9312-81-4-4568-r16) 2007; 49 Buitrago-Osorio (2025033102314002600_i0010-9312-81-4-4568-r80) 2022; 21 Kowal (2025033102314002600_i0010-9312-81-4-4568-r36) 1996; 143 Shibata (2025033102314002600_i0010-9312-81-4-4568-r38) 1977; 33 ASTM D1141-98 (2025033102314002600_i0010-9312-81-4-4568-r65) 2021 Matzdorf (2025033102314002600_i0010-9312-81-4-4568-r8) 2013; 69 Pedeferri (2025033102314002600_i0010-9312-81-4-4568-r13) 2018 Mondou (2025033102314002600_i0010-9312-81-4-4568-r49) 2023; 170 Osteguin (2025033102314002600_i0010-9312-81-4-4568-r72) 2021 Foley (2025033102314002600_i0010-9312-81-4-4568-r67) 1986; 42 Augustin (2025033102314002600_i0010-9312-81-4-4568-r47) 2007; 154 Wang (2025033102314002600_i0010-9312-81-4-4568-r51) 2012; 59 Cerchier (2025033102314002600_i0010-9312-81-4-4568-r2) 2020 Birbilis (2025033102314002600_i0010-9312-81-4-4568-r17) 2008; 155 A. G44-21 (2025033102314002600_i0010-9312-81-4-4568-r66) 2021 Weirich (2025033102314002600_i0010-9312-81-4-4568-r43) 2019; 166 Rafla (2025033102314002600_i0010-9312-81-4-4568-r19) 2019; 75 Clark (2025033102314002600_i0010-9312-81-4-4568-r30) 2019 Menan (2025033102314002600_i0010-9312-81-4-4568-r31) 2009; 31 Zhao (2025033102314002600_i0010-9312-81-4-4568-r15) 2006; 62 Boerstler (2025033102314002600_i0010-9312-81-4-4568-r24) 2020; 55 Codaro (2025033102314002600_i0010-9312-81-4-4568-r54) 2003; 341 Feng (2025033102314002600_i0010-9312-81-4-4568-r22) 2015; 71 Guo (2025033102314002600_i0010-9312-81-4-4568-r29) 2019; 150 Burns (2025033102314002600_i0010-9312-81-4-4568-r32) 2010; 52 Schindelin (2025033102314002600_i0010-9312-81-4-4568-r70) 2012; 9 Larignon (2025033102314002600_i0010-9312-81-4-4568-r46) 2011; 158 Marshall (2025033102314002600_i0010-9312-81-4-4568-r27) 2020; 76 Sun (2025033102314002600_i0010-9312-81-4-4568-r75) 2011; 11 Srinivasan (2025033102314002600_i0010-9312-81-4-4568-r37) 2021; 168 Peng (2025033102314002600_i0010-9312-81-4-4568-r50) 1993; 28 Alexander Lilly (2025033102314002600_i0010-9312-81-4-4568-r71) 2022 Liu (2025033102314002600_i0010-9312-81-4-4568-r59) 2021; 92 Davis (2025033102314002600_i0010-9312-81-4-4568-r5) 1999 Birbilis (2025033102314002600_i0010-9312-81-4-4568-r11) 2011 Richardson (2025033102314002600_i0010-9312-81-4-4568-r10) 2009 Knight (2025033102314002600_i0010-9312-81-4-4568-r12) 2011; 53 Boerstler (2025033102314002600_i0010-9312-81-4-4568-r23) 2020; 55 Coelho (2025033102314002600_i0010-9312-81-4-4568-r61) 2023; 7 Sasidhar (2025033102314002600_i0010-9312-81-4-4568-r62) 2022; 6 Co (2025033102314002600_i0010-9312-81-4-4568-r33) 2016; 72 Hryniewicz (2025033102314002600_i0010-9312-81-4-4568-r76) 2006; 51 Alrubaie (2025033102314002600_i0010-9312-81-4-4568-r4) 2006; 28 Montoya (2025033102314002600_i0010-9312-81-4-4568-r41) 2023; 170 Jafarzadeh (2025033102314002600_i0010-9312-81-4-4568-r55) 2019 Padovani (2025033102314002600_i0010-9312-81-4-4568-r68) 2015; 71 Sun (2025033102314002600_i0010-9312-81-4-4568-r52) 2009; 51 Zhang (2025033102314002600_i0010-9312-81-4-4568-r64) 2020 Jiang (2025033102314002600_i0010-9312-81-4-4568-r60) 2022; 6 Posern (2025033102314002600_i0010-9312-81-4-4568-r69) 2010; 502 Huang (2025033102314002600_i0010-9312-81-4-4568-r18) 2007; 49 Woldemedhin (2025033102314002600_i0010-9312-81-4-4568-r44) 2014; 161 |
References_xml | – volume: 9 start-page: 676 year: 2012 ident: 2025033102314002600_i0010-9312-81-4-4568-r70 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 154 start-page: C637 year: 2007 ident: 2025033102314002600_i0010-9312-81-4-4568-r47 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2778224 – volume: 69 start-page: 1240 year: 2013 ident: 2025033102314002600_i0010-9312-81-4-4568-r8 publication-title: Corrosion doi: 10.5006/0905 – volume-title: Corrosion Science and Engineering year: 2018 ident: 2025033102314002600_i0010-9312-81-4-4568-r13 doi: 10.1007/978-3-319-97625-9 – start-page: 574 volume-title: Fundamentals of Aluminium Metallurgy year: 2011 ident: 2025033102314002600_i0010-9312-81-4-4568-r11 article-title: Corrosion and Corrosion Protection of Aluminium doi: 10.1533/9780857090256.2.574 – ident: 2025033102314002600_i0010-9312-81-4-4568-r25 article-title: Standard Practice for Operating Salt Spray (Fog) Apparatus – volume: 51 start-page: 719 year: 2009 ident: 2025033102314002600_i0010-9312-81-4-4568-r52 publication-title: Corros. Sci doi: 10.1016/j.corsci.2009.01.016 – volume: 55 start-page: 411 year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r24 publication-title: Corros. Eng. Sci. Technol. doi: 10.1080/1478422X.2020.1740856 – volume: 70 start-page: 95 year: 2014 ident: 2025033102314002600_i0010-9312-81-4-4568-r21 publication-title: Corrosion doi: 10.5006/0907 – volume: 68 start-page: 950 year: 2012 ident: 2025033102314002600_i0010-9312-81-4-4568-r35 publication-title: Corrosion doi: 10.5006/0512 – year: 2021 ident: 2025033102314002600_i0010-9312-81-4-4568-r65 article-title: Standard Practice for Preparation of Substitute Ocean Water – year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r30 article-title: Environment-Assisted Cracking and Corrosion Fatigue of Aircraft Aluminum Alloys in Corrosive Atmospheres – volume: 37 start-page: 419 year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r57 publication-title: Corros. Rev. doi: 10.1515/corrrev-2019-0049 – volume: 51 start-page: 323 year: 2006 ident: 2025033102314002600_i0010-9312-81-4-4568-r76 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.04.014 – volume: 150 start-page: 110 year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r29 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.01.033 – volume: 341 start-page: 202 year: 2003 ident: 2025033102314002600_i0010-9312-81-4-4568-r54 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(02)00218-6 – volume: 42 start-page: 277 year: 1986 ident: 2025033102314002600_i0010-9312-81-4-4568-r67 publication-title: Corrosion doi: 10.5006/1.3584905 – volume: 11 start-page: 145 year: 2011 ident: 2025033102314002600_i0010-9312-81-4-4568-r75 publication-title: Health Serv Outcomes Res. Methodol. doi: 10.1007/s10742-011-0077-3 – start-page: 1 year: 2013 ident: 2025033102314002600_i0010-9312-81-4-4568-r14 article-title: No Multi-Site Fatigue Testing and Characterization of Fuselage Panels from Aging Aircraft Structure – volume: 72 start-page: 1215 year: 2016 ident: 2025033102314002600_i0010-9312-81-4-4568-r33 publication-title: Corrosion doi: 10.5006/2132 – volume-title: Shreir’s Corrosion year: 2009 ident: 2025033102314002600_i0010-9312-81-4-4568-r10 – volume: 62 start-page: 956 year: 2006 ident: 2025033102314002600_i0010-9312-81-4-4568-r15 publication-title: Corrosion doi: 10.5006/1.3278234 – volume: 161 start-page: C42 year: 2014 ident: 2025033102314002600_i0010-9312-81-4-4568-r28 publication-title: J. Electrochem. Soc. doi: 10.1149/2.059401jes – volume: 158 start-page: C284 year: 2011 ident: 2025033102314002600_i0010-9312-81-4-4568-r46 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3610401 – volume: 47 start-page: 1 year: 2005 ident: 2025033102314002600_i0010-9312-81-4-4568-r42 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2004.05.007 – volume: 6 start-page: 1 year: 2022 ident: 2025033102314002600_i0010-9312-81-4-4568-r62 publication-title: npj Mater. Degrad. doi: 10.1038/s41529-022-00281-x – volume: 74 start-page: 1 year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r73 publication-title: Behav. Ecol. Sociobiol. doi: 10.1007/s00265-020-02916-y – volume: 71 start-page: 1308 year: 2015 ident: 2025033102314002600_i0010-9312-81-4-4568-r3 publication-title: Corrosion doi: 10.5006/1887 – volume: 75 start-page: 12 year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r19 publication-title: Corrosion doi: 10.5006/2885 – volume: 8 start-page: 7990 year: 2018 ident: 2025033102314002600_i0010-9312-81-4-4568-r39 publication-title: Sci. Rep. doi: 10.1038/s41598-018-26340-5 – volume: 28 start-page: 103 year: 1993 ident: 2025033102314002600_i0010-9312-81-4-4568-r50 publication-title: Brit. Corros. J. doi: 10.1179/bcj.1993.28.2.103 – volume: 81 start-page: 22 year: 2017 ident: 2025033102314002600_i0010-9312-81-4-4568-r74 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.02.049 – volume: 48 start-page: 4202 year: 2006 ident: 2025033102314002600_i0010-9312-81-4-4568-r1 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2006.02.007 – volume: 133 start-page: 804 year: 2018 ident: 2025033102314002600_i0010-9312-81-4-4568-r48 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2018.07.115 – volume: 71 start-page: 1184 year: 2015 ident: 2025033102314002600_i0010-9312-81-4-4568-r53 publication-title: Corrosion doi: 10.5006/1556 – volume: 10 start-page: 334 year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r78 publication-title: Diagnostics doi: 10.3390/diagnostics10050334 – volume: 59 start-page: 63 year: 2012 ident: 2025033102314002600_i0010-9312-81-4-4568-r51 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.02.015 – volume: 7 start-page: 1 year: 2023 ident: 2025033102314002600_i0010-9312-81-4-4568-r61 publication-title: npj Mater. Degrad. doi: 10.1038/s41529-023-00403-z – start-page: 012024 volume-title: IOP Conf. Ser. Earth Environ. Sci. year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r64 – volume: 71 start-page: 292 year: 2015 ident: 2025033102314002600_i0010-9312-81-4-4568-r68 publication-title: Corrosion doi: 10.5006/1437 – volume: 170 start-page: 41502 year: 2023 ident: 2025033102314002600_i0010-9312-81-4-4568-r41 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acc42e – year: 2021 ident: 2025033102314002600_i0010-9312-81-4-4568-r66 article-title: Standard Practice for Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5% Sodium Chloride Solution – volume-title: Surf. Coat. Technol. year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r2 – volume: 6 start-page: 631 year: 1975 ident: 2025033102314002600_i0010-9312-81-4-4568-r6 publication-title: Metall. Trans. A doi: 10.1007/BF02672284 – volume: 28 start-page: 934 year: 2006 ident: 2025033102314002600_i0010-9312-81-4-4568-r4 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2005.09.008 – year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r55 – volume: 155 start-page: C117 year: 2008 ident: 2025033102314002600_i0010-9312-81-4-4568-r17 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2829897 – volume: 49 start-page: 858 year: 2007 ident: 2025033102314002600_i0010-9312-81-4-4568-r18 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2006.04.015 – volume: 502 start-page: 73 year: 2010 ident: 2025033102314002600_i0010-9312-81-4-4568-r69 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2010.02.009 – volume: 53 start-page: 146 year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r58 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.04.033 – volume: 41 start-page: 217 year: 2001 ident: 2025033102314002600_i0010-9312-81-4-4568-r9 publication-title: Prog. Org. Coat. doi: 10.1016/S0300-9440(01)00132-1 – volume: 168 start-page: 21501 year: 2021 ident: 2025033102314002600_i0010-9312-81-4-4568-r37 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abdc75 – volume: 143 start-page: 2471 year: 1996 ident: 2025033102314002600_i0010-9312-81-4-4568-r36 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837033 – volume: 7 start-page: 1 year: 2021 ident: 2025033102314002600_i0010-9312-81-4-4568-r77 publication-title: PeerJ. Comput. Sci. doi: 10.7717/peerj-cs.623 – volume: 53 start-page: 727 year: 2011 ident: 2025033102314002600_i0010-9312-81-4-4568-r12 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.11.005 – volume: 166 start-page: C3477 year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r43 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0551911jes – volume: 21 start-page: 101330 year: 2022 ident: 2025033102314002600_i0010-9312-81-4-4568-r80 publication-title: Materialia (Oxf) doi: 10.1016/j.mtla.2022.101330 – volume-title: Corrosion of Aluminum and Aluminum Alloys year: 1999 ident: 2025033102314002600_i0010-9312-81-4-4568-r5 doi: 10.31399/asm.tb.caaa.9781627082990 – year: 2021 ident: 2025033102314002600_i0010-9312-81-4-4568-r72 – volume: 103 start-page: 234 year: 2017 ident: 2025033102314002600_i0010-9312-81-4-4568-r34 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.05.028 – volume: 31 start-page: 1684 year: 2009 ident: 2025033102314002600_i0010-9312-81-4-4568-r31 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2009.02.033 – volume: 92 start-page: 035116 issue: 3 year: 2021 ident: 2025033102314002600_i0010-9312-81-4-4568-r59 publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0026653 – volume-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. B year: 2023 ident: 2025033102314002600_i0010-9312-81-4-4568-r63 – start-page: 187 year: 2009 ident: 2025033102314002600_i0010-9312-81-4-4568-r7 article-title: Compilation of Damage Findings from Multiple Recent Teardown Analysis Programs – volume: 76 start-page: 476 year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r27 publication-title: Corrosion doi: 10.5006/3438 – year: 2022 ident: 2025033102314002600_i0010-9312-81-4-4568-r71 – volume: 71 start-page: 771 year: 2015 ident: 2025033102314002600_i0010-9312-81-4-4568-r22 publication-title: Corrosion doi: 10.5006/1643 – volume: 161 start-page: E3216 year: 2014 ident: 2025033102314002600_i0010-9312-81-4-4568-r44 publication-title: J. Electrochem. Soc. doi: 10.1149/2.023408jes – volume: 75 start-page: 1461 year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r26 publication-title: Corrosion doi: 10.5006/3308 – volume: 6 start-page: 1 year: 2022 ident: 2025033102314002600_i0010-9312-81-4-4568-r60 publication-title: npj Mater. Degrad. doi: 10.1038/s41529-021-00211-3 – volume: 55 start-page: 268 year: 2020 ident: 2025033102314002600_i0010-9312-81-4-4568-r23 publication-title: Corros. Eng. Sci. Technol. doi: 10.1080/1478422X.2020.1732113 – volume: 334 start-page: 298 year: 2002 ident: 2025033102314002600_i0010-9312-81-4-4568-r40 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01892-5 – volume-title: Proc. R. Soc. A year: 2014 ident: 2025033102314002600_i0010-9312-81-4-4568-r56 – volume: 33 start-page: 243 year: 1977 ident: 2025033102314002600_i0010-9312-81-4-4568-r38 publication-title: Corrosion doi: 10.5006/0010-9312-33.7.243 – volume: 141 start-page: 321 year: 2019 ident: 2025033102314002600_i0010-9312-81-4-4568-r79 publication-title: Radiotherapy Oncol. doi: 10.1016/j.radonc.2019.09.004 – volume: 170 start-page: 071506 year: 2023 ident: 2025033102314002600_i0010-9312-81-4-4568-r49 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ace700 – volume: 100 start-page: 23 year: 2015 ident: 2025033102314002600_i0010-9312-81-4-4568-r45 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.06.023 – volume: 49 start-page: 920 year: 2007 ident: 2025033102314002600_i0010-9312-81-4-4568-r16 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2006.05.037 – volume: 52 start-page: 498 year: 2010 ident: 2025033102314002600_i0010-9312-81-4-4568-r32 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.10.006 – volume: 73 start-page: 1015 year: 2022 ident: 2025033102314002600_i0010-9312-81-4-4568-r20 publication-title: Mater. Corros. doi: 10.1002/maco.202213049 |
SSID | ssj0004883 |
Score | 2.4156713 |
Snippet | The vulnerability of aluminum alloys to localized corrosion, particularly near fastener holes, is known to directly affect crack initiation. Gaining an... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 325 |
Title | Algorithm for the Quantitative Characterization of Galvanic Corrosion Morphology from Optical Micrographs |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZCmUbjK3tWNdl6GGvbmPJP-THkDUxY2laSEvegiXLXSCNSxJDl79jf_BOlqJoodCuL8bIKMG6j9N35-9OCH3zZR7LnDCviP0CAhSqjnkRkRdlghMZScp9VeA8uIjS6-DHOBw3Gn8c1VK14qdi_WhdyUusCmNgV1Ul-x-WtT8KA3AP9oUrWBiuz7JxZ3ZbQnD_686KBa-qbF6XjSlBUNc2Y15bYtjPZsCdpwIcwQI2SDU6KGGtdSumuthkeK_z2wOl1asbWi9dCrudCOQ0LaulEeCP5MOpk1e4lIu8vCu9tAJ-n9cJ2Z_V1DL4IaDrttINDG5UgcPMnOOtv0Wp3pXraZ3cTrPf9sF3hQMr7nUzFiR0hC7GC4PvT6iRT0vteBNwvECtxq5nZr6DwMBxs1QXS5sdm-q2MbubQQgORZ3sFOpze_7ttb2zB1plIsREat5EzXqF9kgc1x__Wa-_rbZlurnr5i320Vvzb2dqlkNwHKYyeo_emRADdzRePqCGnB-gN07jyUM0tcjBgBwMyMEucvAucnBZ4A1ysAUA3iIHK-RggxzsIOcIXffOR93UM4dueAJC45VXMNGWghHK8zCiUrKgEEmbJ4low8sKKsDrM67Exz4nNOIZD0kcJkAcA-IHwqcfUXNezuUnhOMgyCHACCPJBCwaz-J2LhI_J1IkjPPoGLU2KzW5171VJu76f37i-Ql6vYXXF9RcLSrZAoq44l9ri_0FmPdsew |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+the+Quantitative+Characterization+of+Galvanic+Corrosion+Morphology+from+Optical+Micrographs&rft.jtitle=Corrosion+%28Houston%2C+Tex.%29&rft.au=Perdomo-Hurtado%2C+Luis&rft.au=Osteguin%2C+Vangelina&rft.au=Abdelaziz%2C+Haya&rft.au=Dante%2C+James&rft.date=2025-04-01&rft.issn=0010-9312&rft.eissn=1938-159X&rft.volume=81&rft.issue=4&rft.spage=325&rft.epage=337&rft_id=info:doi/10.5006%2F4568&rft.externalDBID=n%2Fa&rft.externalDocID=10_5006_4568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9312&client=summon |