How do tau PET and amyloid PET imaging markers correlate to changes in grey matter microstructure as detected by diffusion MRI?
Background Diffusion MRI (dMRI) allows non‐invasive mapping of microstructural changes in the brain. In this study, we assess the relationship between amyloid and tau deposition and grey matter microstructure as detected with diffusion kurtosis imaging (DKI) [1,2]. We hypothesize that inflammation a...
Saved in:
Published in | Alzheimer's & dementia Vol. 17; no. S4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Diffusion MRI (dMRI) allows non‐invasive mapping of microstructural changes in the brain. In this study, we assess the relationship between amyloid and tau deposition and grey matter microstructure as detected with diffusion kurtosis imaging (DKI) [1,2]. We hypothesize that inflammation associated with amyloid deposits might result in more restricted diffusion and neuronal death associated with tau pathology might result in less restricted diffusion.
Method
38 cognitively healthy subjects received 3‐T PET‐MR imaging, each including anatomical MPRAGE, DKI and static PET scans either with 18F‐Florbetaben (n=20, 12 females, age = 67.20±5.75 years) or 18F‐MK‐6240 tracer (n=18, 14 females, age = 66.56±5.23 years) to probe amyloid or tau deposition, respectively. For each subject, regions of interest (ROIs) were automatically segmented on MPRAGE using Freesurfer, combined and narrowed down to 4 regions of interest: primary motor cortex as a control, anterior/posterior cingulate cortex as high amyloid regions, and entorhinal cortex as a high tau region. The standardized uptake values in these ROIs normalized to grey matter cerebellum yielded cortical relative SUV (SUVR). DKI processing provided parametric maps of the mean diffusivity (MD), kurtosis (MK) and fractional anisotropy (FA). Pearson correlation between tau PET SUVR/amyloid PET SUVR and MD, FA, and MK was calculated with significance testing.
Result
Correlation analysis (Tables 1, 2) showed positive correlations between amyloid PET SUVR and MD in posterior cingulate cortex, tau PET SUVR and MD in anterior cingulate cortex and posterior cingulate cortex, and tau PET SUVR and MK in primary motor cortex. Negative correlation was observed between PET SUVR and FA in entorhinal cortex.
Conclusion
Increased amyloid and tau burden on PET correlated with less restricted diffusion as indicated by higher MD and lower FA, suggesting sensitivity of dMRI to cortical atrophy and late‐stage neuronal death, as previously observed in cortex and white matter tracts [2, 3]. The current study of healthy controls is limited by the narrow range of amyloid and tau burden. Future work will extend to subjects with mild cognitive impairment. References: [1] Jensen & Helpern, NMR Biomed., 2010(23):698‐710; [2] Dong et al, Neurobiol. Aging 2020(89):118‐128; [3] Montal et al, Alzheimer’s Dement., 2017(14):340‐351. |
---|---|
AbstractList | Background
Diffusion MRI (dMRI) allows non‐invasive mapping of microstructural changes in the brain. In this study, we assess the relationship between amyloid and tau deposition and grey matter microstructure as detected with diffusion kurtosis imaging (DKI) [1,2]. We hypothesize that inflammation associated with amyloid deposits might result in more restricted diffusion and neuronal death associated with tau pathology might result in less restricted diffusion.
Method
38 cognitively healthy subjects received 3‐T PET‐MR imaging, each including anatomical MPRAGE, DKI and static PET scans either with 18F‐Florbetaben (n=20, 12 females, age = 67.20±5.75 years) or 18F‐MK‐6240 tracer (n=18, 14 females, age = 66.56±5.23 years) to probe amyloid or tau deposition, respectively. For each subject, regions of interest (ROIs) were automatically segmented on MPRAGE using Freesurfer, combined and narrowed down to 4 regions of interest: primary motor cortex as a control, anterior/posterior cingulate cortex as high amyloid regions, and entorhinal cortex as a high tau region. The standardized uptake values in these ROIs normalized to grey matter cerebellum yielded cortical relative SUV (SUVR). DKI processing provided parametric maps of the mean diffusivity (MD), kurtosis (MK) and fractional anisotropy (FA). Pearson correlation between tau PET SUVR/amyloid PET SUVR and MD, FA, and MK was calculated with significance testing.
Result
Correlation analysis (Tables 1, 2) showed positive correlations between amyloid PET SUVR and MD in posterior cingulate cortex, tau PET SUVR and MD in anterior cingulate cortex and posterior cingulate cortex, and tau PET SUVR and MK in primary motor cortex. Negative correlation was observed between PET SUVR and FA in entorhinal cortex.
Conclusion
Increased amyloid and tau burden on PET correlated with less restricted diffusion as indicated by higher MD and lower FA, suggesting sensitivity of dMRI to cortical atrophy and late‐stage neuronal death, as previously observed in cortex and white matter tracts [2, 3]. The current study of healthy controls is limited by the narrow range of amyloid and tau burden. Future work will extend to subjects with mild cognitive impairment. References: [1] Jensen & Helpern, NMR Biomed., 2010(23):698‐710; [2] Dong et al, Neurobiol. Aging 2020(89):118‐128; [3] Montal et al, Alzheimer’s Dement., 2017(14):340‐351. |
Author | Osorio, Ricardo Ades‐Aron, Benjamin Chen, Jenny Kullakanda, Durga Prasad Fieremans, Els |
Author_xml | – sequence: 1 givenname: Durga Prasad surname: Kullakanda fullname: Kullakanda, Durga Prasad email: durga.kullakanda@nyulangone.org organization: New York University Grossman School of Medicine – sequence: 2 givenname: Jenny surname: Chen fullname: Chen, Jenny organization: New York University Grossman School of Medicine – sequence: 3 givenname: Benjamin surname: Ades‐Aron fullname: Ades‐Aron, Benjamin organization: New York University Grossman School of Medicine – sequence: 4 givenname: Ricardo surname: Osorio fullname: Osorio, Ricardo organization: New York University Grossman School of Medicine – sequence: 5 givenname: Els surname: Fieremans fullname: Fieremans, Els organization: New York University Grossman School of Medicine |
BookMark | eNp9kE9Lw0AQxRepYK1e_ARzFlJ3N9kmOUkp1RYqitSLl7DJTuJq_sjuhhIvfnW3tnj0MMw8-M3w5p2TUdu1SMgVo1NGKb-R9deUCp4wcULGTAgeCB6no795Rs_IubXvlEbUQ2Pyvep2oDpwsoen5RZkq0A2Q91p9at1IyvdVtBI84HGQtEZg7V0CK6D4k22FVrQLVQGBw85hwYaXZjOOtMXrjcI0oJCh4VDBfkASpdlb3XXwsPz-vaCnJaytnh57BPycrfcLlbB5vF-vZhvgoKxUAQqjhWVs5JJjONSRWlIExULkYhwxnmexphwyTiGYS5LEVEqQ4-meeTLCx5OyPXh7t6aNVhmn8b_ZoaM0WwfXeajyw7ReZgd4J2ucfiHzOab1-POD2Obc0Y |
ContentType | Journal Article |
Copyright | 2021 the Alzheimer's Association |
Copyright_xml | – notice: 2021 the Alzheimer's Association |
DBID | AAYXX CITATION |
DOI | 10.1002/alz.052815 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1552-5279 |
EndPage | n/a |
ExternalDocumentID | 10_1002_alz_052815 ALZ052815 |
Genre | article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGHNM AIGII AKBMS AKYEP CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c1135-d77d0a6f1ae77fd49308d755853622b97e82a12e33baf5400a31ae9b4e9b00a23 |
ISSN | 1552-5260 |
IngestDate | Tue Jul 01 01:51:55 EDT 2025 Wed Jan 22 16:25:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1135-d77d0a6f1ae77fd49308d755853622b97e82a12e33baf5400a31ae9b4e9b00a23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.052815 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1002_alz_052815 wiley_primary_10_1002_alz_052815_ALZ052815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Alzheimer's & dementia |
PublicationYear | 2021 |
SSID | ssj0040815 |
Score | 2.3114808 |
Snippet | Background
Diffusion MRI (dMRI) allows non‐invasive mapping of microstructural changes in the brain. In this study, we assess the relationship between amyloid... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
Title | How do tau PET and amyloid PET imaging markers correlate to changes in grey matter microstructure as detected by diffusion MRI? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.052815 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFFQGiUNBIcMJysHft2D6hAEHlUYpQiiou0Tq7LobYRnFyaC78Iv4js49sHF6iXKx4M7GUmU-zM-uZbwh5yAQmx3Ge-SnjuR_JNPZ5EHBfRJIp_joWabLn47fDo9Po1Vl81ut971QtrZb5YLb-bV_J_1gV19Cuqkv2EpZ1D8UF_Iz2xStaGK__ZGM1D05g7MhX3rvxxPCuVpiBl0Lfl5UZQVSpEpxF683UJI45Bpcq4DQdv7oaFlPuCxRSfT1epQr0DKmsfrXQekKq9wwmUFXjVFbqfM07fv_yp5rA0Xz9SZZ6GEvSakQJffRYOsf_GtNd_kUdXWhPt1qcc8WX1HKxLTKwvSLo_t1Z_0igK9vUZIwWpkzgqaw_86p00D5pm0XZWKoARH3TPc6gYac0xHrgWGXHZsjAQHbXzNQZ57aTzqbttrRfdgTDMMvn60EQ09S0ju7Sbjup-M9yhiH4zUfz3RWyRzEroX2yd_JhPH6-2fojjK9iTdBr_4Pjw6WPt0_eiYC6GZEOaSb75JrNRWBkgHWd9GR9g3xDUIFoAEEFCCJAc4EFlb63oAILKnCggmUDFlRQ1qBABQZUsAsq4C1sQAX5BThQAYLqyU1y-mI8eXbk2ykd_iwMWeyLJBEBHxYhl0lSiChjQSqSGNNQjI1oniUypTykkrGcF5gfBJyhaJZHUtFxcspukX7d1PI2AXQcGeowEzMMOoc0xd8mWZrRoYwLVoTRAXmw0dz0qyFjmRrabTpF_U6Nfg_II63Uv4hMnSnvXEb4Lrm6hewh6aPe5D2MSZf5fYuEHwQziKo |
linkProvider | Ovid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+tau+PET+and+amyloid+PET+imaging+markers+correlate+to+changes+in+grey+matter+microstructure+as+detected+by+diffusion+MRI%3F&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Kullakanda%2C+Durga+Prasad&rft.au=Chen%2C+Jenny&rft.au=Ades%E2%80%90Aron%2C+Benjamin&rft.au=Osorio%2C+Ricardo&rft.date=2021-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.052815&rft.externalDBID=10.1002%252Falz.052815&rft.externalDocID=ALZ052815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |