Advances in Polymer-Based Microwave Absorbers-From Design Principles to Technological Breakthroughs: A Review
Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of microwave absorption theory, material science, and engineering principles. This review article offers an extensive overview of polymer-constituted MA...
Saved in:
Published in | IEEE journal on flexible electronics Vol. 3; no. 9; pp. 401 - 417 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2768-167X 2768-167X |
DOI | 10.1109/JFLEX.2024.3432103 |
Cover
Loading…
Abstract | Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of microwave absorption theory, material science, and engineering principles. This review article offers an extensive overview of polymer-constituted MAMs and MASs, highlighting their significance in modern electromagnetic interference (EMI) mitigation and stealth applications. Polymer-based MAMs have gained significant attention due to their tunable electromagnetic (EM) properties, lightweight nature, flexibility, and versatility in design. This article dives into the synthesis methods, material properties, and various underlying EM mechanisms that govern the absorption behavior of these polymers in different frequency ranges. This article surveys various polymer-based systems such as intrinsically conducting polymers (ICPs), polymer nanocomposites, metamaterials (MMs), and frequency-selective surfaces (FSSs) elucidating their unique features in microwave absorption applications. It explores the critical factors influencing absorption performance, including dielectric and magnetic properties, filler content, morphology, and thickness. In addition, this article addresses the challenges associated with achieving broadband absorption with a lightweight and conformal structure. The comprehensive survey of recent research contributions and technological advancements demonstrates the potential applications of polymer-constituted microwave absorbers in diverse fields. It also discusses developing novel fabrication and performance evaluation techniques for polymer-constituted absorbers. In summary, this article is useful for researchers in designing and optimizing polymer-based MAMs and MASs. |
---|---|
AbstractList | Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of microwave absorption theory, material science, and engineering principles. This review article offers an extensive overview of polymer-constituted MAMs and MASs, highlighting their significance in modern electromagnetic interference (EMI) mitigation and stealth applications. Polymer-based MAMs have gained significant attention due to their tunable electromagnetic (EM) properties, lightweight nature, flexibility, and versatility in design. This article dives into the synthesis methods, material properties, and various underlying EM mechanisms that govern the absorption behavior of these polymers in different frequency ranges. This article surveys various polymer-based systems such as intrinsically conducting polymers (ICPs), polymer nanocomposites, metamaterials (MMs), and frequency-selective surfaces (FSSs) elucidating their unique features in microwave absorption applications. It explores the critical factors influencing absorption performance, including dielectric and magnetic properties, filler content, morphology, and thickness. In addition, this article addresses the challenges associated with achieving broadband absorption with a lightweight and conformal structure. The comprehensive survey of recent research contributions and technological advancements demonstrates the potential applications of polymer-constituted microwave absorbers in diverse fields. It also discusses developing novel fabrication and performance evaluation techniques for polymer-constituted absorbers. In summary, this article is useful for researchers in designing and optimizing polymer-based MAMs and MASs. |
Author | Panwar, Ravi Ray, Shovan |
Author_xml | – sequence: 1 givenname: Shovan surname: Ray fullname: Ray, Shovan organization: High Frequency Materials and Structures Laboratory, School of Materials Science and Technology, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, India – sequence: 2 givenname: Ravi orcidid: 0000-0002-9015-0891 surname: Panwar fullname: Panwar, Ravi email: rpanwar.iitr@gmail.com organization: High Frequency Materials and Structures Laboratory, School of Materials Science and Technology, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, India |
BookMark | eNp9kMtOwkAUhicGExF5AeNiXqA4l3amdVcQvASjMZiwa6bTA4y2HTJTIby9RVgQFyYnOWdxvj_5v0vUqW0NCF1TMqCUJLfPk-l4PmCEhQMeckYJP0NdJkUcUCHnnZP7AvW9_ySEsERQHpMuqtJio2oNHpsav9lyV4ELhspDgV-MdnarNoDT3FuXg_PBxNkK34M3y_bbmVqbddmyjcUz0KvalnZptCrx0IH6albOfi9X_g6n-B02BrZX6HyhSg_94-6hj8l4NnoMpq8PT6N0GmhKOQtYnigVEa1CCjxOVCG11AkTYUIVyJxFomCxXggdR1IzBiFIHknaDstppCXvofiQ2zbw3sEi06ZRjbF145QpM0qyvbns11y2N5cdzbUo-4OunamU2_0P3RwgAwAngCCCccZ_APBWfNM |
CODEN | IJFEBL |
CitedBy_id | crossref_primary_10_1021_acspolymersau_4c00087 crossref_primary_10_1021_acs_iecr_4c04544 |
Cites_doi | 10.1109/74.370526 10.1021/acsami.2c16166 10.1016/j.opelre.2017.10.002 10.1002/smsc.202200018 10.1109/TAP.2004.841320 10.1016/j.carbon.2021.02.044 10.1016/j.ast.2017.03.006 10.1016/j.mtchem.2022.100948 10.1016/j.polymer.2020.122981 10.1364/OME.476258 10.1039/c3ra40973b 10.1007/s12034-022-02702-8 10.1109/19.137363 10.1021/ja020542b 10.3390/s22166024 10.1021/am4036527 10.1038/s41467-020-17947-2 10.1039/D0NR06267G 10.1016/j.materresbull.2017.01.023 10.1038/s41598-024-55571-y 10.1002/adem.202200171 10.1039/D1TC04702G 10.3390/solids2010006 10.1039/D0SM00266F 10.1016/j.matpr.2021.03.559 10.1038/srep03161 10.1007/s10853-018-2957-1 10.3390/electronics12183776 10.1117/12.293483 10.1109/OJAP.2020.3021717 10.1007/s11431-009-0145-x 10.1016/j.compositesa.2012.08.001 10.1007/s40820-022-00926-1 10.1038/s41598-022-13210-4 10.1021/acs.molpharmaceut.0c01232 10.1039/C9NA00108E 10.1023/A:1010118609079 10.1007/s11051-021-05248-8 10.1007/s11431-022-2256-8 10.1049/iet-map.2018.5386 10.1016/j.porgcoat.2018.10.002 10.1209/0295-5075/85/58003 10.1039/C9TC04575A 10.3390/electronics11182882 10.1039/D1MA00114K 10.1109/LAWP.2013.2248073 10.5028/jatm.2010.02016370 10.1007/s10853-021-06394-z 10.3390/polym9010029 10.1016/j.dt.2022.06.013 10.1016/j.synthmet.2006.09.003 10.1021/acs.iecr.7b04905 10.1007/978-3-030-16347-1_9 10.1016/j.jsamd.2022.100454 10.1016/j.carbon.2018.03.061 10.1016/j.jajp.2022.100102 10.1038/srep17023 10.1016/j.cis.2024.103143 10.1039/C5RA17576C 10.1039/c2jm32692b 10.1007/s10854-017-8076-y 10.1039/C4TA03732D 10.1038/s41598-022-14911-6 10.1063/1.4872237 10.1016/j.materresbull.2010.06.021 10.1007/s00289-003-0223-3 10.1016/j.ceramint.2024.01.257 10.1016/s0065-2539(08)60352-2 10.1109/TMTT.1980.1130087 10.1021/acsapm.9b00538 10.1016/j.synthmet.2011.07.019 10.1109/LAWP.2015.2420712 10.1002/adv.21527 10.1119/1.1933590 10.1038/s41598-019-52230-5 10.1038/s41598-017-11884-9 10.1016/j.coco.2020.100421 10.1016/B978-0-12-821226-4.00018-8 10.1002/mop.32579 10.1016/S0379-6779(99)00085-5 10.1016/j.carbon.2021.11.045 10.1016/j.compositesa.2016.01.020 10.1038/s41598-020-60107-1 10.1002/mop.22506 10.1039/C5TA01924A 10.1038/s41598-024-55595-4 10.1007/s00289-005-0433-y 10.1007/s11664-023-10809-9 10.1016/j.optlastec.2024.111211 10.1007/s11595-005-2266-9 10.1007/s10854-017-8409-x 10.1002/ente.202300684 10.1016/j.compscitech.2015.05.010 10.1002/mop.31315 10.1016/j.jallcom.2020.156052 10.1364/OE.484934 10.1016/j.matdes.2023.111910 10.1016/j.compositesb.2021.109173 10.1007/s00339-020-3413-z 10.1016/j.carbpol.2012.06.034 10.1016/j.physb.2023.415108 10.1002/ppap.201900127 10.1002/adfm.202108194 10.1002/eng2.12543 10.24018/ejeng.2019.4.10.1409 10.1016/j.jmmm.2007.03.114 10.1016/j.mseb.2017.03.009 10.1016/j.optmat.2022.112173 10.1002/mop.33496 10.1039/D0NA00760A 10.1039/D1MA00989C 10.1021/acsami.3c07669 10.1007/s12045-023-1703-4 10.1109/JSEN.2021.3112336 10.1016/j.optcom.2023.129588 10.1038/s41598-019-40336-9 10.1002/adma.202107538 10.1109/20.278872 10.1109/TAP.2019.2948392 10.1038/srep44457 10.1109/TMTT.2018.2834510 10.1016/j.jmmm.2014.08.071 10.1002/pc.27240 10.1021/acsami.8b16088 10.1117/1.OE.57.11.113102 10.1109/LMAG.2018.2878946 10.1007/s11664-021-08927-3 10.1049/iet-map.2012.0450 10.1038/s41598-021-98666-6 10.1016/j.solener.2017.05.015 10.1088/2053-1591/ab2793 10.1021/acsomega.0c04864 10.1038/s41598-017-18859-w 10.1007/s00339-019-3251-z 10.1021/acsami.0c16169 10.3390/polym14153026 10.1016/0032-3861(85)90216-2 10.1007/s11468-021-01465-y 10.1364/OE.20.007165 10.1038/s41598-023-28922-4 10.1002/admi.202000658 10.1021/acs.iecr.3c02150 10.1016/j.jallcom.2017.12.215 10.1016/j.materresbull.2024.112806 10.1023/A:1004498705776 10.1016/j.carbon.2020.07.028 10.1007/s40089-018-0227-5 10.1002/app.38032 10.1016/j.jmat.2019.07.003 10.1007/s10854-023-10080-y 10.1007/s13538-024-01436-8 10.1038/s41598-023-41631-2 10.1021/acsomega.8b02037 10.1039/C8QM00003D 10.1364/OE.20.004675 10.1039/C6RA25142K 10.1016/j.jmst.2022.07.047 10.3390/ma9040231 10.1039/D0MA00807A 10.1016/j.ijleo.2023.171152 10.1016/j.jmmm.2021.167839 10.1002/dac.5599 10.1039/D1NA00789K 10.3390/polym15081839 10.1038/s41598-019-52967-z 10.1007/s40820-020-0388-4 10.3390/polym14071424 10.1002/adma.202106195 10.1021/acsami.1c14339 10.1002/mop.34158 10.3390/molecules27134117 10.1021/acsapm.3c00175 10.1021/acsami.8b06673 10.1109/LAWP.2019.2951845 10.1017/S0001924000011702 10.1063/1.1750906 10.1007/s12648-019-01633-1 10.1016/j.wasman.2020.08.047 10.1007/s10854-021-07181-x 10.1007/s10854-017-8069-x 10.1016/j.jallcom.2020.153847 10.3390/polym13050753 10.1049/iet-opt.2016.0003 10.1021/acsami.9b21048 10.1021/acsami.3c03250 10.3389/fmats.2023.1133287 10.1016/j.jmmm.2006.06.006 10.1016/j.jcis.2021.03.132 10.1038/s41598-021-95683-3 10.1007/s10762-016-0341-2 10.1016/j.apsadv.2023.100455 10.1038/s41467-021-24970-4 10.1533/9780857095152.268 10.1039/C7RA02631E 10.1016/j.jcis.2021.08.186 10.1039/D3DT04228F 10.3390/s22218470 10.1049/iet-map.2019.0571 10.1021/acsami.2c11642 10.1016/j.compositesa.2021.106594 10.1021/acsomega.8b01223 10.1016/j.synthmet.2021.116948 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JFLEX.2024.3432103 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2768-167X |
EndPage | 417 |
ExternalDocumentID | 10_1109_JFLEX_2024_3432103 10606232 |
Genre | orig-research |
GrantInformation_xml | – fundername: Council of Scientific and Industrial Research (CSIR), Government of India grantid: 22/0888/23/EMR-II funderid: 10.13039/501100001412 – fundername: Science and Engineering Research Board (SERB), Government of India grantid: CRG/2022/006951 funderid: 10.13039/501100001843 |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c1132-2b9aa50ca41e389ad7c7c926491ae7b256d28cf6c857c22e4e735715712b15c73 |
IEDL.DBID | RIE |
ISSN | 2768-167X |
IngestDate | Thu Apr 24 22:54:47 EDT 2025 Tue Jul 01 03:01:03 EDT 2025 Wed Aug 27 02:30:28 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1132-2b9aa50ca41e389ad7c7c926491ae7b256d28cf6c857c22e4e735715712b15c73 |
ORCID | 0000-0002-9015-0891 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_JFLEX_2024_3432103 crossref_primary_10_1109_JFLEX_2024_3432103 ieee_primary_10606232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Sept. 2024-9-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept. |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal on flexible electronics |
PublicationTitleAbbrev | JFLEX |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref207 ref56 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Rioux (ref180) 2009; 50 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 Namsheer (ref18) 2020; 11 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 Troung (ref117) 1998; 33 ref60 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 Esmaeili (ref141) 2022; 8 ref179 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 Smith (ref94) ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 Firestein (ref71) 2023; 17 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
References_xml | – ident: ref70 doi: 10.1109/74.370526 – ident: ref72 doi: 10.1021/acsami.2c16166 – ident: ref200 doi: 10.1016/j.opelre.2017.10.002 – ident: ref84 doi: 10.1002/smsc.202200018 – ident: ref74 doi: 10.1109/TAP.2004.841320 – ident: ref176 doi: 10.1016/j.carbon.2021.02.044 – ident: ref105 doi: 10.1016/j.ast.2017.03.006 – ident: ref174 doi: 10.1016/j.mtchem.2022.100948 – ident: ref9 doi: 10.1016/j.polymer.2020.122981 – ident: ref87 doi: 10.1364/OME.476258 – ident: ref121 doi: 10.1039/c3ra40973b – ident: ref27 doi: 10.1007/s12034-022-02702-8 – ident: ref17 doi: 10.1109/19.137363 – volume-title: Creating Artificial Response With Metamaterials ident: ref94 article-title: Metamaterials and circuit metamaterials – ident: ref164 doi: 10.1021/ja020542b – ident: ref189 doi: 10.3390/s22166024 – ident: ref150 doi: 10.1021/am4036527 – ident: ref90 doi: 10.1038/s41467-020-17947-2 – ident: ref45 doi: 10.1039/D0NR06267G – ident: ref77 doi: 10.1016/j.materresbull.2017.01.023 – ident: ref28 doi: 10.1038/s41598-024-55571-y – ident: ref177 doi: 10.1002/adem.202200171 – ident: ref33 doi: 10.1039/D1TC04702G – ident: ref183 doi: 10.3390/solids2010006 – ident: ref129 doi: 10.1039/D0SM00266F – ident: ref62 doi: 10.1016/j.matpr.2021.03.559 – ident: ref49 doi: 10.1038/srep03161 – ident: ref135 doi: 10.1007/s10853-018-2957-1 – ident: ref97 doi: 10.3390/electronics12183776 – ident: ref123 doi: 10.1117/12.293483 – ident: ref110 doi: 10.1109/OJAP.2020.3021717 – ident: ref80 doi: 10.1007/s11431-009-0145-x – ident: ref115 doi: 10.1016/j.compositesa.2012.08.001 – ident: ref26 doi: 10.1007/s40820-022-00926-1 – ident: ref173 doi: 10.1038/s41598-022-13210-4 – volume: 50 start-page: 449 issue: 7 year: 2009 ident: ref180 article-title: Colligative properties publication-title: J. Chem. Educ. – ident: ref181 doi: 10.1021/acs.molpharmaceut.0c01232 – ident: ref19 doi: 10.1039/C9NA00108E – ident: ref202 doi: 10.1023/A:1010118609079 – ident: ref63 doi: 10.1007/s11051-021-05248-8 – ident: ref92 doi: 10.1007/s11431-022-2256-8 – ident: ref100 doi: 10.1049/iet-map.2018.5386 – ident: ref158 doi: 10.1016/j.porgcoat.2018.10.002 – ident: ref166 doi: 10.1209/0295-5075/85/58003 – ident: ref57 doi: 10.1039/C9TC04575A – ident: ref99 doi: 10.3390/electronics11182882 – ident: ref175 doi: 10.1039/D1MA00114K – ident: ref108 doi: 10.1109/LAWP.2013.2248073 – ident: ref155 doi: 10.5028/jatm.2010.02016370 – ident: ref13 doi: 10.1007/s10853-021-06394-z – ident: ref31 doi: 10.3390/polym9010029 – ident: ref154 doi: 10.1016/j.dt.2022.06.013 – ident: ref55 doi: 10.1016/j.synthmet.2006.09.003 – ident: ref147 doi: 10.1021/acs.iecr.7b04905 – ident: ref53 doi: 10.1007/978-3-030-16347-1_9 – ident: ref44 doi: 10.1016/j.jsamd.2022.100454 – ident: ref151 doi: 10.1016/j.carbon.2018.03.061 – ident: ref205 doi: 10.1016/j.jajp.2022.100102 – ident: ref50 doi: 10.1038/srep17023 – ident: ref32 doi: 10.1016/j.cis.2024.103143 – ident: ref146 doi: 10.1039/C5RA17576C – ident: ref24 doi: 10.1039/c2jm32692b – ident: ref131 doi: 10.1007/s10854-017-8076-y – ident: ref127 doi: 10.1039/C4TA03732D – ident: ref93 doi: 10.1038/s41598-022-14911-6 – ident: ref48 doi: 10.1063/1.4872237 – ident: ref144 doi: 10.1016/j.materresbull.2010.06.021 – ident: ref112 doi: 10.1007/s00289-003-0223-3 – ident: ref139 doi: 10.1016/j.ceramint.2024.01.257 – ident: ref186 doi: 10.1016/s0065-2539(08)60352-2 – ident: ref187 doi: 10.1109/TMTT.1980.1130087 – ident: ref206 doi: 10.1021/acsapm.9b00538 – ident: ref149 doi: 10.1016/j.synthmet.2011.07.019 – ident: ref170 doi: 10.1109/LAWP.2015.2420712 – ident: ref140 doi: 10.1002/adv.21527 – ident: ref51 doi: 10.1119/1.1933590 – ident: ref138 doi: 10.1038/s41598-019-52230-5 – ident: ref167 doi: 10.1038/s41598-017-11884-9 – ident: ref6 doi: 10.1016/j.coco.2020.100421 – ident: ref79 doi: 10.1016/B978-0-12-821226-4.00018-8 – ident: ref107 doi: 10.1002/mop.32579 – ident: ref122 doi: 10.1016/S0379-6779(99)00085-5 – ident: ref8 doi: 10.1016/j.carbon.2021.11.045 – ident: ref132 doi: 10.1016/j.compositesa.2016.01.020 – ident: ref60 doi: 10.1038/s41598-020-60107-1 – ident: ref188 doi: 10.1002/mop.22506 – ident: ref137 doi: 10.1039/C5TA01924A – ident: ref75 doi: 10.1038/s41598-024-55595-4 – ident: ref114 doi: 10.1007/s00289-005-0433-y – ident: ref15 doi: 10.1007/s11664-023-10809-9 – ident: ref37 doi: 10.1016/j.optlastec.2024.111211 – ident: ref142 doi: 10.1007/s11595-005-2266-9 – ident: ref159 doi: 10.1007/s10854-017-8409-x – ident: ref3 doi: 10.1002/ente.202300684 – ident: ref125 doi: 10.1016/j.compscitech.2015.05.010 – ident: ref203 doi: 10.1002/mop.31315 – ident: ref134 doi: 10.1016/j.jallcom.2020.156052 – ident: ref102 doi: 10.1364/OE.484934 – ident: ref169 doi: 10.1016/j.matdes.2023.111910 – ident: ref52 doi: 10.1016/j.compositesb.2021.109173 – ident: ref145 doi: 10.1007/s00339-020-3413-z – ident: ref182 doi: 10.1016/j.carbpol.2012.06.034 – ident: ref38 doi: 10.1016/j.physb.2023.415108 – ident: ref65 doi: 10.1002/ppap.201900127 – ident: ref10 doi: 10.1002/adfm.202108194 – ident: ref98 doi: 10.1002/eng2.12543 – ident: ref76 doi: 10.24018/ejeng.2019.4.10.1409 – ident: ref83 doi: 10.1016/j.jmmm.2007.03.114 – ident: ref195 doi: 10.1016/j.mseb.2017.03.009 – ident: ref82 doi: 10.1016/j.optmat.2022.112173 – ident: ref192 doi: 10.1002/mop.33496 – ident: ref34 doi: 10.1039/D0NA00760A – ident: ref54 doi: 10.1039/D1MA00989C – ident: ref101 doi: 10.1021/acsami.3c07669 – ident: ref95 doi: 10.1007/s12045-023-1703-4 – ident: ref172 doi: 10.1109/JSEN.2021.3112336 – ident: ref85 doi: 10.1016/j.optcom.2023.129588 – ident: ref113 doi: 10.1038/s41598-019-40336-9 – ident: ref12 doi: 10.1002/adma.202107538 – ident: ref20 doi: 10.1109/20.278872 – ident: ref103 doi: 10.1109/TAP.2019.2948392 – ident: ref133 doi: 10.1038/srep44457 – ident: ref199 doi: 10.1109/TMTT.2018.2834510 – ident: ref21 doi: 10.1016/j.jmmm.2014.08.071 – ident: ref179 doi: 10.1002/pc.27240 – ident: ref126 doi: 10.1021/acsami.8b16088 – ident: ref196 doi: 10.1117/1.OE.57.11.113102 – ident: ref109 doi: 10.1109/LMAG.2018.2878946 – ident: ref194 doi: 10.1007/s11664-021-08927-3 – volume: 17 start-page: 1 issue: 52 year: 2023 ident: ref71 article-title: Bound and optimal design of Dallenbach absorber under finite-bandwidth multiple-angle illumination publication-title: Appl. Phys. – ident: ref1 doi: 10.1049/iet-map.2012.0450 – ident: ref157 doi: 10.1038/s41598-021-98666-6 – ident: ref191 doi: 10.1016/j.solener.2017.05.015 – ident: ref148 doi: 10.1088/2053-1591/ab2793 – ident: ref184 doi: 10.1021/acsomega.0c04864 – ident: ref207 doi: 10.1038/s41598-017-18859-w – ident: ref130 doi: 10.1007/s00339-019-3251-z – ident: ref23 doi: 10.1021/acsami.0c16169 – ident: ref111 doi: 10.3390/polym14153026 – ident: ref42 doi: 10.1016/0032-3861(85)90216-2 – ident: ref193 doi: 10.1007/s11468-021-01465-y – ident: ref35 doi: 10.1364/OE.20.007165 – ident: ref96 doi: 10.1038/s41598-023-28922-4 – ident: ref120 doi: 10.1002/admi.202000658 – ident: ref29 doi: 10.1021/acs.iecr.3c02150 – ident: ref163 doi: 10.1016/j.jallcom.2017.12.215 – ident: ref116 doi: 10.1016/j.materresbull.2024.112806 – volume: 33 start-page: 4971 year: 1998 ident: ref117 article-title: Polypyrrole based microwave absorbers publication-title: J. Mater. Sci. doi: 10.1023/A:1004498705776 – ident: ref36 doi: 10.1016/j.carbon.2020.07.028 – ident: ref61 doi: 10.1007/s40089-018-0227-5 – ident: ref124 doi: 10.1002/app.38032 – ident: ref41 doi: 10.1016/j.jmat.2019.07.003 – ident: ref81 doi: 10.1007/s10854-023-10080-y – ident: ref198 doi: 10.1007/s13538-024-01436-8 – ident: ref64 doi: 10.1038/s41598-023-41631-2 – ident: ref119 doi: 10.1021/acsomega.8b02037 – ident: ref39 doi: 10.1039/C8QM00003D – ident: ref89 doi: 10.1364/OE.20.004675 – ident: ref59 doi: 10.1039/C6RA25142K – ident: ref2 doi: 10.1016/j.jmst.2022.07.047 – volume: 11 start-page: 5659 issue: 10 year: 2020 ident: ref18 article-title: Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications publication-title: RSC Adv. – ident: ref201 doi: 10.3390/ma9040231 – ident: ref66 doi: 10.1039/D0MA00807A – ident: ref69 doi: 10.1016/j.ijleo.2023.171152 – ident: ref47 doi: 10.1016/j.jmmm.2021.167839 – ident: ref104 doi: 10.1002/dac.5599 – ident: ref91 doi: 10.1039/D1NA00789K – ident: ref160 doi: 10.3390/polym15081839 – ident: ref86 doi: 10.1038/s41598-019-52967-z – ident: ref40 doi: 10.1007/s40820-020-0388-4 – ident: ref168 doi: 10.3390/polym14071424 – ident: ref11 doi: 10.1002/adma.202106195 – ident: ref14 doi: 10.1021/acsami.1c14339 – ident: ref171 doi: 10.1002/mop.34158 – ident: ref67 doi: 10.3390/molecules27134117 – ident: ref118 doi: 10.1021/acsapm.3c00175 – ident: ref128 doi: 10.1021/acsami.8b06673 – ident: ref106 doi: 10.1109/LAWP.2019.2951845 – ident: ref204 doi: 10.1017/S0001924000011702 – ident: ref46 doi: 10.1063/1.1750906 – ident: ref185 doi: 10.1007/s12648-019-01633-1 – ident: ref78 doi: 10.1016/j.wasman.2020.08.047 – volume: 8 start-page: 1 issue: 3 year: 2022 ident: ref141 article-title: Polymer based nanocomposites reinforced by magnetic and dielectric particles for radar absorbing applications publication-title: Nano Res. Appl. – ident: ref136 doi: 10.1007/s10854-021-07181-x – ident: ref143 doi: 10.1007/s10854-017-8069-x – ident: ref178 doi: 10.1016/j.jallcom.2020.153847 – ident: ref165 doi: 10.3390/polym13050753 – ident: ref197 doi: 10.1049/iet-opt.2016.0003 – ident: ref25 doi: 10.1021/acsami.9b21048 – ident: ref162 doi: 10.1021/acsami.3c03250 – ident: ref16 doi: 10.3389/fmats.2023.1133287 – ident: ref43 doi: 10.1016/j.jmmm.2006.06.006 – ident: ref68 doi: 10.1016/j.jcis.2021.03.132 – ident: ref4 doi: 10.1038/s41598-021-95683-3 – ident: ref190 doi: 10.1007/s10762-016-0341-2 – ident: ref58 doi: 10.1016/j.apsadv.2023.100455 – ident: ref22 doi: 10.1038/s41467-021-24970-4 – ident: ref30 doi: 10.1533/9780857095152.268 – ident: ref156 doi: 10.1039/C7RA02631E – ident: ref7 doi: 10.1016/j.jcis.2021.08.186 – ident: ref5 doi: 10.1039/D3DT04228F – ident: ref161 doi: 10.3390/s22218470 – ident: ref73 doi: 10.1049/iet-map.2019.0571 – ident: ref153 doi: 10.1021/acsami.2c11642 – ident: ref152 doi: 10.1016/j.compositesa.2021.106594 – ident: ref88 doi: 10.1021/acsomega.8b01223 – ident: ref56 doi: 10.1016/j.synthmet.2021.116948 |
SSID | ssj0002961380 |
Score | 2.2673185 |
Snippet | Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 401 |
SubjectTerms | Absorption Conducting polymer Electromagnetic interference electromagnetic interference (EMI) shielding microwave absorber Microwave communication Microwave FET integrated circuits Microwave integrated circuits Microwave oscillators Polymers stealth technology |
Title | Advances in Polymer-Based Microwave Absorbers-From Design Principles to Technological Breakthroughs: A Review |
URI | https://ieeexplore.ieee.org/document/10606232 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXF-kYM3aW2zpk29dboyhhs7ONitNGkGMtdK2yn61_uStmMIitBDaRII_F55v_eN0A1lgqlGdwZPJDUcUJAGi6kLskxjK6GwrPsWjCfucOaM5nReF6vrWhgppU4-k6Z61bH8JBNr5SqDPxzoNlCAFmqBnFXFWhuHCvFBMzGrKYyx_LtR-DSYgwlIHFOVT9rNYKxa-WxNU9HKJDxAk-YaVQ7J0lyX3BRfPzo0_vueh2i_ppU4qOTgCO3I9BjtbTUbPEGroAr3F_glxdPs9XMlc6MPSizBY5WV9xG_SxzwIsu5SpIP82yFH3V-B542HvkClxneeOMVvrgPrHNZT_sp7nGAq2hDB83CwfPD0KiHLRhCDZs3CPfjmFoidmwJJCZOPOEJH-iSb8fS48CMEsLEwhWMeoIQ6UivRz0bHsJtKrzeKWqnWSrPEGacglHDxYIzYGOLhBOXOgntuZKowm2_i-wGhUjUncjVQIzXSFsklh9p5CKFXFQj10W3mzNvVR-OP3d3FCpbOytAzn_5foF21fEqd-wStct8La-AbJT8WgvZN0nSz_Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA86D-rBtzifOXiTzjZr-vDW6cqc29hhg91Kk2Yg21ppO0X_er-k7RiCIvRQmrQEfl_5ft8boVvqcEc2utNYJKhmgoLUnJBaIMs01CMKy6pvQX9gdcZmd0InZbG6qoURQqjkM9GQtyqWHyV8KV1l8IcD3QYKsIm2QPGbtCjXWrlUiAu6ydGr0hjdve_6vfYEjEBiNmQBpVGNxirVz9o8FaVO_H00qA5SZJHMGsucNfjXjx6N_z7pAdoriSX2Ckk4RBsiPkK7a-0Gj9HCKwL-GX6N8TCZfy5EqrVAjUW4L_PyPsJ3gT2WJSmTafJ-mizwk8rwwMPKJ5_hPMErf7xEGLeAd87KeT_ZA_ZwEW84QWO_PXrsaOW4BY3LcfMaYW4YUp2HpiGAxoSRzW3uAmFyjVDYDLhRRBw-tbhDbU6IMIXdpLYBF2EG5XbzFNXiJBZnCDuMglnD-JQ5wMemESMWNSPatASRpdtuHRkVCgEve5HLkRjzQNkkuhso5AKJXFAiV0d3q3feik4cf-4-kais7SwAOf_l-Q3a7oz6vaD3PHi5QDvyU0Um2SWq5elSXAH1yNm1ErhvV1vTQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Polymer-Based+Microwave+Absorbers%E2%80%94From+Design+Principles+to+Technological+Breakthroughs%3A+A+Review&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Ray%2C+Shovan&rft.au=Panwar%2C+Ravi&rft.date=2024-09-01&rft.issn=2768-167X&rft.eissn=2768-167X&rft.volume=3&rft.issue=9&rft.spage=401&rft.epage=417&rft_id=info:doi/10.1109%2FJFLEX.2024.3432103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JFLEX_2024_3432103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon |