Advances in Polymer-Based Microwave Absorbers-From Design Principles to Technological Breakthroughs: A Review

Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of microwave absorption theory, material science, and engineering principles. This review article offers an extensive overview of polymer-constituted MA...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 3; no. 9; pp. 401 - 417
Main Authors Ray, Shovan, Panwar, Ravi
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text
ISSN2768-167X
2768-167X
DOI10.1109/JFLEX.2024.3432103

Cover

Loading…
Abstract Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of microwave absorption theory, material science, and engineering principles. This review article offers an extensive overview of polymer-constituted MAMs and MASs, highlighting their significance in modern electromagnetic interference (EMI) mitigation and stealth applications. Polymer-based MAMs have gained significant attention due to their tunable electromagnetic (EM) properties, lightweight nature, flexibility, and versatility in design. This article dives into the synthesis methods, material properties, and various underlying EM mechanisms that govern the absorption behavior of these polymers in different frequency ranges. This article surveys various polymer-based systems such as intrinsically conducting polymers (ICPs), polymer nanocomposites, metamaterials (MMs), and frequency-selective surfaces (FSSs) elucidating their unique features in microwave absorption applications. It explores the critical factors influencing absorption performance, including dielectric and magnetic properties, filler content, morphology, and thickness. In addition, this article addresses the challenges associated with achieving broadband absorption with a lightweight and conformal structure. The comprehensive survey of recent research contributions and technological advancements demonstrates the potential applications of polymer-constituted microwave absorbers in diverse fields. It also discusses developing novel fabrication and performance evaluation techniques for polymer-constituted absorbers. In summary, this article is useful for researchers in designing and optimizing polymer-based MAMs and MASs.
AbstractList Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of microwave absorption theory, material science, and engineering principles. This review article offers an extensive overview of polymer-constituted MAMs and MASs, highlighting their significance in modern electromagnetic interference (EMI) mitigation and stealth applications. Polymer-based MAMs have gained significant attention due to their tunable electromagnetic (EM) properties, lightweight nature, flexibility, and versatility in design. This article dives into the synthesis methods, material properties, and various underlying EM mechanisms that govern the absorption behavior of these polymers in different frequency ranges. This article surveys various polymer-based systems such as intrinsically conducting polymers (ICPs), polymer nanocomposites, metamaterials (MMs), and frequency-selective surfaces (FSSs) elucidating their unique features in microwave absorption applications. It explores the critical factors influencing absorption performance, including dielectric and magnetic properties, filler content, morphology, and thickness. In addition, this article addresses the challenges associated with achieving broadband absorption with a lightweight and conformal structure. The comprehensive survey of recent research contributions and technological advancements demonstrates the potential applications of polymer-constituted microwave absorbers in diverse fields. It also discusses developing novel fabrication and performance evaluation techniques for polymer-constituted absorbers. In summary, this article is useful for researchers in designing and optimizing polymer-based MAMs and MASs.
Author Panwar, Ravi
Ray, Shovan
Author_xml – sequence: 1
  givenname: Shovan
  surname: Ray
  fullname: Ray, Shovan
  organization: High Frequency Materials and Structures Laboratory, School of Materials Science and Technology, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, India
– sequence: 2
  givenname: Ravi
  orcidid: 0000-0002-9015-0891
  surname: Panwar
  fullname: Panwar, Ravi
  email: rpanwar.iitr@gmail.com
  organization: High Frequency Materials and Structures Laboratory, School of Materials Science and Technology, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, India
BookMark eNp9kMtOwkAUhicGExF5AeNiXqA4l3amdVcQvASjMZiwa6bTA4y2HTJTIby9RVgQFyYnOWdxvj_5v0vUqW0NCF1TMqCUJLfPk-l4PmCEhQMeckYJP0NdJkUcUCHnnZP7AvW9_ySEsERQHpMuqtJio2oNHpsav9lyV4ELhspDgV-MdnarNoDT3FuXg_PBxNkK34M3y_bbmVqbddmyjcUz0KvalnZptCrx0IH6albOfi9X_g6n-B02BrZX6HyhSg_94-6hj8l4NnoMpq8PT6N0GmhKOQtYnigVEa1CCjxOVCG11AkTYUIVyJxFomCxXggdR1IzBiFIHknaDstppCXvofiQ2zbw3sEi06ZRjbF145QpM0qyvbns11y2N5cdzbUo-4OunamU2_0P3RwgAwAngCCCccZ_APBWfNM
CODEN IJFEBL
CitedBy_id crossref_primary_10_1021_acspolymersau_4c00087
crossref_primary_10_1021_acs_iecr_4c04544
Cites_doi 10.1109/74.370526
10.1021/acsami.2c16166
10.1016/j.opelre.2017.10.002
10.1002/smsc.202200018
10.1109/TAP.2004.841320
10.1016/j.carbon.2021.02.044
10.1016/j.ast.2017.03.006
10.1016/j.mtchem.2022.100948
10.1016/j.polymer.2020.122981
10.1364/OME.476258
10.1039/c3ra40973b
10.1007/s12034-022-02702-8
10.1109/19.137363
10.1021/ja020542b
10.3390/s22166024
10.1021/am4036527
10.1038/s41467-020-17947-2
10.1039/D0NR06267G
10.1016/j.materresbull.2017.01.023
10.1038/s41598-024-55571-y
10.1002/adem.202200171
10.1039/D1TC04702G
10.3390/solids2010006
10.1039/D0SM00266F
10.1016/j.matpr.2021.03.559
10.1038/srep03161
10.1007/s10853-018-2957-1
10.3390/electronics12183776
10.1117/12.293483
10.1109/OJAP.2020.3021717
10.1007/s11431-009-0145-x
10.1016/j.compositesa.2012.08.001
10.1007/s40820-022-00926-1
10.1038/s41598-022-13210-4
10.1021/acs.molpharmaceut.0c01232
10.1039/C9NA00108E
10.1023/A:1010118609079
10.1007/s11051-021-05248-8
10.1007/s11431-022-2256-8
10.1049/iet-map.2018.5386
10.1016/j.porgcoat.2018.10.002
10.1209/0295-5075/85/58003
10.1039/C9TC04575A
10.3390/electronics11182882
10.1039/D1MA00114K
10.1109/LAWP.2013.2248073
10.5028/jatm.2010.02016370
10.1007/s10853-021-06394-z
10.3390/polym9010029
10.1016/j.dt.2022.06.013
10.1016/j.synthmet.2006.09.003
10.1021/acs.iecr.7b04905
10.1007/978-3-030-16347-1_9
10.1016/j.jsamd.2022.100454
10.1016/j.carbon.2018.03.061
10.1016/j.jajp.2022.100102
10.1038/srep17023
10.1016/j.cis.2024.103143
10.1039/C5RA17576C
10.1039/c2jm32692b
10.1007/s10854-017-8076-y
10.1039/C4TA03732D
10.1038/s41598-022-14911-6
10.1063/1.4872237
10.1016/j.materresbull.2010.06.021
10.1007/s00289-003-0223-3
10.1016/j.ceramint.2024.01.257
10.1016/s0065-2539(08)60352-2
10.1109/TMTT.1980.1130087
10.1021/acsapm.9b00538
10.1016/j.synthmet.2011.07.019
10.1109/LAWP.2015.2420712
10.1002/adv.21527
10.1119/1.1933590
10.1038/s41598-019-52230-5
10.1038/s41598-017-11884-9
10.1016/j.coco.2020.100421
10.1016/B978-0-12-821226-4.00018-8
10.1002/mop.32579
10.1016/S0379-6779(99)00085-5
10.1016/j.carbon.2021.11.045
10.1016/j.compositesa.2016.01.020
10.1038/s41598-020-60107-1
10.1002/mop.22506
10.1039/C5TA01924A
10.1038/s41598-024-55595-4
10.1007/s00289-005-0433-y
10.1007/s11664-023-10809-9
10.1016/j.optlastec.2024.111211
10.1007/s11595-005-2266-9
10.1007/s10854-017-8409-x
10.1002/ente.202300684
10.1016/j.compscitech.2015.05.010
10.1002/mop.31315
10.1016/j.jallcom.2020.156052
10.1364/OE.484934
10.1016/j.matdes.2023.111910
10.1016/j.compositesb.2021.109173
10.1007/s00339-020-3413-z
10.1016/j.carbpol.2012.06.034
10.1016/j.physb.2023.415108
10.1002/ppap.201900127
10.1002/adfm.202108194
10.1002/eng2.12543
10.24018/ejeng.2019.4.10.1409
10.1016/j.jmmm.2007.03.114
10.1016/j.mseb.2017.03.009
10.1016/j.optmat.2022.112173
10.1002/mop.33496
10.1039/D0NA00760A
10.1039/D1MA00989C
10.1021/acsami.3c07669
10.1007/s12045-023-1703-4
10.1109/JSEN.2021.3112336
10.1016/j.optcom.2023.129588
10.1038/s41598-019-40336-9
10.1002/adma.202107538
10.1109/20.278872
10.1109/TAP.2019.2948392
10.1038/srep44457
10.1109/TMTT.2018.2834510
10.1016/j.jmmm.2014.08.071
10.1002/pc.27240
10.1021/acsami.8b16088
10.1117/1.OE.57.11.113102
10.1109/LMAG.2018.2878946
10.1007/s11664-021-08927-3
10.1049/iet-map.2012.0450
10.1038/s41598-021-98666-6
10.1016/j.solener.2017.05.015
10.1088/2053-1591/ab2793
10.1021/acsomega.0c04864
10.1038/s41598-017-18859-w
10.1007/s00339-019-3251-z
10.1021/acsami.0c16169
10.3390/polym14153026
10.1016/0032-3861(85)90216-2
10.1007/s11468-021-01465-y
10.1364/OE.20.007165
10.1038/s41598-023-28922-4
10.1002/admi.202000658
10.1021/acs.iecr.3c02150
10.1016/j.jallcom.2017.12.215
10.1016/j.materresbull.2024.112806
10.1023/A:1004498705776
10.1016/j.carbon.2020.07.028
10.1007/s40089-018-0227-5
10.1002/app.38032
10.1016/j.jmat.2019.07.003
10.1007/s10854-023-10080-y
10.1007/s13538-024-01436-8
10.1038/s41598-023-41631-2
10.1021/acsomega.8b02037
10.1039/C8QM00003D
10.1364/OE.20.004675
10.1039/C6RA25142K
10.1016/j.jmst.2022.07.047
10.3390/ma9040231
10.1039/D0MA00807A
10.1016/j.ijleo.2023.171152
10.1016/j.jmmm.2021.167839
10.1002/dac.5599
10.1039/D1NA00789K
10.3390/polym15081839
10.1038/s41598-019-52967-z
10.1007/s40820-020-0388-4
10.3390/polym14071424
10.1002/adma.202106195
10.1021/acsami.1c14339
10.1002/mop.34158
10.3390/molecules27134117
10.1021/acsapm.3c00175
10.1021/acsami.8b06673
10.1109/LAWP.2019.2951845
10.1017/S0001924000011702
10.1063/1.1750906
10.1007/s12648-019-01633-1
10.1016/j.wasman.2020.08.047
10.1007/s10854-021-07181-x
10.1007/s10854-017-8069-x
10.1016/j.jallcom.2020.153847
10.3390/polym13050753
10.1049/iet-opt.2016.0003
10.1021/acsami.9b21048
10.1021/acsami.3c03250
10.3389/fmats.2023.1133287
10.1016/j.jmmm.2006.06.006
10.1016/j.jcis.2021.03.132
10.1038/s41598-021-95683-3
10.1007/s10762-016-0341-2
10.1016/j.apsadv.2023.100455
10.1038/s41467-021-24970-4
10.1533/9780857095152.268
10.1039/C7RA02631E
10.1016/j.jcis.2021.08.186
10.1039/D3DT04228F
10.3390/s22218470
10.1049/iet-map.2019.0571
10.1021/acsami.2c11642
10.1016/j.compositesa.2021.106594
10.1021/acsomega.8b01223
10.1016/j.synthmet.2021.116948
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JFLEX.2024.3432103
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2768-167X
EndPage 417
ExternalDocumentID 10_1109_JFLEX_2024_3432103
10606232
Genre orig-research
GrantInformation_xml – fundername: Council of Scientific and Industrial Research (CSIR), Government of India
  grantid: 22/0888/23/EMR-II
  funderid: 10.13039/501100001412
– fundername: Science and Engineering Research Board (SERB), Government of India
  grantid: CRG/2022/006951
  funderid: 10.13039/501100001843
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c1132-2b9aa50ca41e389ad7c7c926491ae7b256d28cf6c857c22e4e735715712b15c73
IEDL.DBID RIE
ISSN 2768-167X
IngestDate Thu Apr 24 22:54:47 EDT 2025
Tue Jul 01 03:01:03 EDT 2025
Wed Aug 27 02:30:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1132-2b9aa50ca41e389ad7c7c926491ae7b256d28cf6c857c22e4e735715712b15c73
ORCID 0000-0002-9015-0891
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_JFLEX_2024_3432103
crossref_primary_10_1109_JFLEX_2024_3432103
ieee_primary_10606232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Sept.
2024-9-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.
PublicationDecade 2020
PublicationTitle IEEE journal on flexible electronics
PublicationTitleAbbrev JFLEX
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref207
ref56
ref59
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref54
ref202
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Rioux (ref180) 2009; 50
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref200
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
ref93
ref133
ref92
ref134
ref95
ref131
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
Namsheer (ref18) 2020; 11
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
Troung (ref117) 1998; 33
ref60
ref122
ref123
ref62
ref120
ref61
ref121
ref168
ref169
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
Esmaeili (ref141) 2022; 8
ref179
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
Smith (ref94)
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
Firestein (ref71) 2023; 17
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
References_xml – ident: ref70
  doi: 10.1109/74.370526
– ident: ref72
  doi: 10.1021/acsami.2c16166
– ident: ref200
  doi: 10.1016/j.opelre.2017.10.002
– ident: ref84
  doi: 10.1002/smsc.202200018
– ident: ref74
  doi: 10.1109/TAP.2004.841320
– ident: ref176
  doi: 10.1016/j.carbon.2021.02.044
– ident: ref105
  doi: 10.1016/j.ast.2017.03.006
– ident: ref174
  doi: 10.1016/j.mtchem.2022.100948
– ident: ref9
  doi: 10.1016/j.polymer.2020.122981
– ident: ref87
  doi: 10.1364/OME.476258
– ident: ref121
  doi: 10.1039/c3ra40973b
– ident: ref27
  doi: 10.1007/s12034-022-02702-8
– ident: ref17
  doi: 10.1109/19.137363
– volume-title: Creating Artificial Response With Metamaterials
  ident: ref94
  article-title: Metamaterials and circuit metamaterials
– ident: ref164
  doi: 10.1021/ja020542b
– ident: ref189
  doi: 10.3390/s22166024
– ident: ref150
  doi: 10.1021/am4036527
– ident: ref90
  doi: 10.1038/s41467-020-17947-2
– ident: ref45
  doi: 10.1039/D0NR06267G
– ident: ref77
  doi: 10.1016/j.materresbull.2017.01.023
– ident: ref28
  doi: 10.1038/s41598-024-55571-y
– ident: ref177
  doi: 10.1002/adem.202200171
– ident: ref33
  doi: 10.1039/D1TC04702G
– ident: ref183
  doi: 10.3390/solids2010006
– ident: ref129
  doi: 10.1039/D0SM00266F
– ident: ref62
  doi: 10.1016/j.matpr.2021.03.559
– ident: ref49
  doi: 10.1038/srep03161
– ident: ref135
  doi: 10.1007/s10853-018-2957-1
– ident: ref97
  doi: 10.3390/electronics12183776
– ident: ref123
  doi: 10.1117/12.293483
– ident: ref110
  doi: 10.1109/OJAP.2020.3021717
– ident: ref80
  doi: 10.1007/s11431-009-0145-x
– ident: ref115
  doi: 10.1016/j.compositesa.2012.08.001
– ident: ref26
  doi: 10.1007/s40820-022-00926-1
– ident: ref173
  doi: 10.1038/s41598-022-13210-4
– volume: 50
  start-page: 449
  issue: 7
  year: 2009
  ident: ref180
  article-title: Colligative properties
  publication-title: J. Chem. Educ.
– ident: ref181
  doi: 10.1021/acs.molpharmaceut.0c01232
– ident: ref19
  doi: 10.1039/C9NA00108E
– ident: ref202
  doi: 10.1023/A:1010118609079
– ident: ref63
  doi: 10.1007/s11051-021-05248-8
– ident: ref92
  doi: 10.1007/s11431-022-2256-8
– ident: ref100
  doi: 10.1049/iet-map.2018.5386
– ident: ref158
  doi: 10.1016/j.porgcoat.2018.10.002
– ident: ref166
  doi: 10.1209/0295-5075/85/58003
– ident: ref57
  doi: 10.1039/C9TC04575A
– ident: ref99
  doi: 10.3390/electronics11182882
– ident: ref175
  doi: 10.1039/D1MA00114K
– ident: ref108
  doi: 10.1109/LAWP.2013.2248073
– ident: ref155
  doi: 10.5028/jatm.2010.02016370
– ident: ref13
  doi: 10.1007/s10853-021-06394-z
– ident: ref31
  doi: 10.3390/polym9010029
– ident: ref154
  doi: 10.1016/j.dt.2022.06.013
– ident: ref55
  doi: 10.1016/j.synthmet.2006.09.003
– ident: ref147
  doi: 10.1021/acs.iecr.7b04905
– ident: ref53
  doi: 10.1007/978-3-030-16347-1_9
– ident: ref44
  doi: 10.1016/j.jsamd.2022.100454
– ident: ref151
  doi: 10.1016/j.carbon.2018.03.061
– ident: ref205
  doi: 10.1016/j.jajp.2022.100102
– ident: ref50
  doi: 10.1038/srep17023
– ident: ref32
  doi: 10.1016/j.cis.2024.103143
– ident: ref146
  doi: 10.1039/C5RA17576C
– ident: ref24
  doi: 10.1039/c2jm32692b
– ident: ref131
  doi: 10.1007/s10854-017-8076-y
– ident: ref127
  doi: 10.1039/C4TA03732D
– ident: ref93
  doi: 10.1038/s41598-022-14911-6
– ident: ref48
  doi: 10.1063/1.4872237
– ident: ref144
  doi: 10.1016/j.materresbull.2010.06.021
– ident: ref112
  doi: 10.1007/s00289-003-0223-3
– ident: ref139
  doi: 10.1016/j.ceramint.2024.01.257
– ident: ref186
  doi: 10.1016/s0065-2539(08)60352-2
– ident: ref187
  doi: 10.1109/TMTT.1980.1130087
– ident: ref206
  doi: 10.1021/acsapm.9b00538
– ident: ref149
  doi: 10.1016/j.synthmet.2011.07.019
– ident: ref170
  doi: 10.1109/LAWP.2015.2420712
– ident: ref140
  doi: 10.1002/adv.21527
– ident: ref51
  doi: 10.1119/1.1933590
– ident: ref138
  doi: 10.1038/s41598-019-52230-5
– ident: ref167
  doi: 10.1038/s41598-017-11884-9
– ident: ref6
  doi: 10.1016/j.coco.2020.100421
– ident: ref79
  doi: 10.1016/B978-0-12-821226-4.00018-8
– ident: ref107
  doi: 10.1002/mop.32579
– ident: ref122
  doi: 10.1016/S0379-6779(99)00085-5
– ident: ref8
  doi: 10.1016/j.carbon.2021.11.045
– ident: ref132
  doi: 10.1016/j.compositesa.2016.01.020
– ident: ref60
  doi: 10.1038/s41598-020-60107-1
– ident: ref188
  doi: 10.1002/mop.22506
– ident: ref137
  doi: 10.1039/C5TA01924A
– ident: ref75
  doi: 10.1038/s41598-024-55595-4
– ident: ref114
  doi: 10.1007/s00289-005-0433-y
– ident: ref15
  doi: 10.1007/s11664-023-10809-9
– ident: ref37
  doi: 10.1016/j.optlastec.2024.111211
– ident: ref142
  doi: 10.1007/s11595-005-2266-9
– ident: ref159
  doi: 10.1007/s10854-017-8409-x
– ident: ref3
  doi: 10.1002/ente.202300684
– ident: ref125
  doi: 10.1016/j.compscitech.2015.05.010
– ident: ref203
  doi: 10.1002/mop.31315
– ident: ref134
  doi: 10.1016/j.jallcom.2020.156052
– ident: ref102
  doi: 10.1364/OE.484934
– ident: ref169
  doi: 10.1016/j.matdes.2023.111910
– ident: ref52
  doi: 10.1016/j.compositesb.2021.109173
– ident: ref145
  doi: 10.1007/s00339-020-3413-z
– ident: ref182
  doi: 10.1016/j.carbpol.2012.06.034
– ident: ref38
  doi: 10.1016/j.physb.2023.415108
– ident: ref65
  doi: 10.1002/ppap.201900127
– ident: ref10
  doi: 10.1002/adfm.202108194
– ident: ref98
  doi: 10.1002/eng2.12543
– ident: ref76
  doi: 10.24018/ejeng.2019.4.10.1409
– ident: ref83
  doi: 10.1016/j.jmmm.2007.03.114
– ident: ref195
  doi: 10.1016/j.mseb.2017.03.009
– ident: ref82
  doi: 10.1016/j.optmat.2022.112173
– ident: ref192
  doi: 10.1002/mop.33496
– ident: ref34
  doi: 10.1039/D0NA00760A
– ident: ref54
  doi: 10.1039/D1MA00989C
– ident: ref101
  doi: 10.1021/acsami.3c07669
– ident: ref95
  doi: 10.1007/s12045-023-1703-4
– ident: ref172
  doi: 10.1109/JSEN.2021.3112336
– ident: ref85
  doi: 10.1016/j.optcom.2023.129588
– ident: ref113
  doi: 10.1038/s41598-019-40336-9
– ident: ref12
  doi: 10.1002/adma.202107538
– ident: ref20
  doi: 10.1109/20.278872
– ident: ref103
  doi: 10.1109/TAP.2019.2948392
– ident: ref133
  doi: 10.1038/srep44457
– ident: ref199
  doi: 10.1109/TMTT.2018.2834510
– ident: ref21
  doi: 10.1016/j.jmmm.2014.08.071
– ident: ref179
  doi: 10.1002/pc.27240
– ident: ref126
  doi: 10.1021/acsami.8b16088
– ident: ref196
  doi: 10.1117/1.OE.57.11.113102
– ident: ref109
  doi: 10.1109/LMAG.2018.2878946
– ident: ref194
  doi: 10.1007/s11664-021-08927-3
– volume: 17
  start-page: 1
  issue: 52
  year: 2023
  ident: ref71
  article-title: Bound and optimal design of Dallenbach absorber under finite-bandwidth multiple-angle illumination
  publication-title: Appl. Phys.
– ident: ref1
  doi: 10.1049/iet-map.2012.0450
– ident: ref157
  doi: 10.1038/s41598-021-98666-6
– ident: ref191
  doi: 10.1016/j.solener.2017.05.015
– ident: ref148
  doi: 10.1088/2053-1591/ab2793
– ident: ref184
  doi: 10.1021/acsomega.0c04864
– ident: ref207
  doi: 10.1038/s41598-017-18859-w
– ident: ref130
  doi: 10.1007/s00339-019-3251-z
– ident: ref23
  doi: 10.1021/acsami.0c16169
– ident: ref111
  doi: 10.3390/polym14153026
– ident: ref42
  doi: 10.1016/0032-3861(85)90216-2
– ident: ref193
  doi: 10.1007/s11468-021-01465-y
– ident: ref35
  doi: 10.1364/OE.20.007165
– ident: ref96
  doi: 10.1038/s41598-023-28922-4
– ident: ref120
  doi: 10.1002/admi.202000658
– ident: ref29
  doi: 10.1021/acs.iecr.3c02150
– ident: ref163
  doi: 10.1016/j.jallcom.2017.12.215
– ident: ref116
  doi: 10.1016/j.materresbull.2024.112806
– volume: 33
  start-page: 4971
  year: 1998
  ident: ref117
  article-title: Polypyrrole based microwave absorbers
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004498705776
– ident: ref36
  doi: 10.1016/j.carbon.2020.07.028
– ident: ref61
  doi: 10.1007/s40089-018-0227-5
– ident: ref124
  doi: 10.1002/app.38032
– ident: ref41
  doi: 10.1016/j.jmat.2019.07.003
– ident: ref81
  doi: 10.1007/s10854-023-10080-y
– ident: ref198
  doi: 10.1007/s13538-024-01436-8
– ident: ref64
  doi: 10.1038/s41598-023-41631-2
– ident: ref119
  doi: 10.1021/acsomega.8b02037
– ident: ref39
  doi: 10.1039/C8QM00003D
– ident: ref89
  doi: 10.1364/OE.20.004675
– ident: ref59
  doi: 10.1039/C6RA25142K
– ident: ref2
  doi: 10.1016/j.jmst.2022.07.047
– volume: 11
  start-page: 5659
  issue: 10
  year: 2020
  ident: ref18
  article-title: Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications
  publication-title: RSC Adv.
– ident: ref201
  doi: 10.3390/ma9040231
– ident: ref66
  doi: 10.1039/D0MA00807A
– ident: ref69
  doi: 10.1016/j.ijleo.2023.171152
– ident: ref47
  doi: 10.1016/j.jmmm.2021.167839
– ident: ref104
  doi: 10.1002/dac.5599
– ident: ref91
  doi: 10.1039/D1NA00789K
– ident: ref160
  doi: 10.3390/polym15081839
– ident: ref86
  doi: 10.1038/s41598-019-52967-z
– ident: ref40
  doi: 10.1007/s40820-020-0388-4
– ident: ref168
  doi: 10.3390/polym14071424
– ident: ref11
  doi: 10.1002/adma.202106195
– ident: ref14
  doi: 10.1021/acsami.1c14339
– ident: ref171
  doi: 10.1002/mop.34158
– ident: ref67
  doi: 10.3390/molecules27134117
– ident: ref118
  doi: 10.1021/acsapm.3c00175
– ident: ref128
  doi: 10.1021/acsami.8b06673
– ident: ref106
  doi: 10.1109/LAWP.2019.2951845
– ident: ref204
  doi: 10.1017/S0001924000011702
– ident: ref46
  doi: 10.1063/1.1750906
– ident: ref185
  doi: 10.1007/s12648-019-01633-1
– ident: ref78
  doi: 10.1016/j.wasman.2020.08.047
– volume: 8
  start-page: 1
  issue: 3
  year: 2022
  ident: ref141
  article-title: Polymer based nanocomposites reinforced by magnetic and dielectric particles for radar absorbing applications
  publication-title: Nano Res. Appl.
– ident: ref136
  doi: 10.1007/s10854-021-07181-x
– ident: ref143
  doi: 10.1007/s10854-017-8069-x
– ident: ref178
  doi: 10.1016/j.jallcom.2020.153847
– ident: ref165
  doi: 10.3390/polym13050753
– ident: ref197
  doi: 10.1049/iet-opt.2016.0003
– ident: ref25
  doi: 10.1021/acsami.9b21048
– ident: ref162
  doi: 10.1021/acsami.3c03250
– ident: ref16
  doi: 10.3389/fmats.2023.1133287
– ident: ref43
  doi: 10.1016/j.jmmm.2006.06.006
– ident: ref68
  doi: 10.1016/j.jcis.2021.03.132
– ident: ref4
  doi: 10.1038/s41598-021-95683-3
– ident: ref190
  doi: 10.1007/s10762-016-0341-2
– ident: ref58
  doi: 10.1016/j.apsadv.2023.100455
– ident: ref22
  doi: 10.1038/s41467-021-24970-4
– ident: ref30
  doi: 10.1533/9780857095152.268
– ident: ref156
  doi: 10.1039/C7RA02631E
– ident: ref7
  doi: 10.1016/j.jcis.2021.08.186
– ident: ref5
  doi: 10.1039/D3DT04228F
– ident: ref161
  doi: 10.3390/s22218470
– ident: ref73
  doi: 10.1049/iet-map.2019.0571
– ident: ref153
  doi: 10.1021/acsami.2c11642
– ident: ref152
  doi: 10.1016/j.compositesa.2021.106594
– ident: ref88
  doi: 10.1021/acsomega.8b01223
– ident: ref56
  doi: 10.1016/j.synthmet.2021.116948
SSID ssj0002961380
Score 2.2673185
Snippet Designing effective microwave-absorbing materials (MAMs) and microwave-absorbing structures (MASs) can be complex and requires a deep understanding of...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 401
SubjectTerms Absorption
Conducting polymer
Electromagnetic interference
electromagnetic interference (EMI) shielding
microwave absorber
Microwave communication
Microwave FET integrated circuits
Microwave integrated circuits
Microwave oscillators
Polymers
stealth technology
Title Advances in Polymer-Based Microwave Absorbers-From Design Principles to Technological Breakthroughs: A Review
URI https://ieeexplore.ieee.org/document/10606232
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXF-kYM3aW2zpk29dboyhhs7ONitNGkGMtdK2yn61_uStmMIitBDaRII_F55v_eN0A1lgqlGdwZPJDUcUJAGi6kLskxjK6GwrPsWjCfucOaM5nReF6vrWhgppU4-k6Z61bH8JBNr5SqDPxzoNlCAFmqBnFXFWhuHCvFBMzGrKYyx_LtR-DSYgwlIHFOVT9rNYKxa-WxNU9HKJDxAk-YaVQ7J0lyX3BRfPzo0_vueh2i_ppU4qOTgCO3I9BjtbTUbPEGroAr3F_glxdPs9XMlc6MPSizBY5WV9xG_SxzwIsu5SpIP82yFH3V-B542HvkClxneeOMVvrgPrHNZT_sp7nGAq2hDB83CwfPD0KiHLRhCDZs3CPfjmFoidmwJJCZOPOEJH-iSb8fS48CMEsLEwhWMeoIQ6UivRz0bHsJtKrzeKWqnWSrPEGacglHDxYIzYGOLhBOXOgntuZKowm2_i-wGhUjUncjVQIzXSFsklh9p5CKFXFQj10W3mzNvVR-OP3d3FCpbOytAzn_5foF21fEqd-wStct8La-AbJT8WgvZN0nSz_Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA86D-rBtzifOXiTzjZr-vDW6cqc29hhg91Kk2Yg21ppO0X_er-k7RiCIvRQmrQEfl_5ft8boVvqcEc2utNYJKhmgoLUnJBaIMs01CMKy6pvQX9gdcZmd0InZbG6qoURQqjkM9GQtyqWHyV8KV1l8IcD3QYKsIm2QPGbtCjXWrlUiAu6ydGr0hjdve_6vfYEjEBiNmQBpVGNxirVz9o8FaVO_H00qA5SZJHMGsucNfjXjx6N_z7pAdoriSX2Ckk4RBsiPkK7a-0Gj9HCKwL-GX6N8TCZfy5EqrVAjUW4L_PyPsJ3gT2WJSmTafJ-mizwk8rwwMPKJ5_hPMErf7xEGLeAd87KeT_ZA_ZwEW84QWO_PXrsaOW4BY3LcfMaYW4YUp2HpiGAxoSRzW3uAmFyjVDYDLhRRBw-tbhDbU6IMIXdpLYBF2EG5XbzFNXiJBZnCDuMglnD-JQ5wMemESMWNSPatASRpdtuHRkVCgEve5HLkRjzQNkkuhso5AKJXFAiV0d3q3feik4cf-4-kais7SwAOf_l-Q3a7oz6vaD3PHi5QDvyU0Um2SWq5elSXAH1yNm1ErhvV1vTQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Polymer-Based+Microwave+Absorbers%E2%80%94From+Design+Principles+to+Technological+Breakthroughs%3A+A+Review&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Ray%2C+Shovan&rft.au=Panwar%2C+Ravi&rft.date=2024-09-01&rft.issn=2768-167X&rft.eissn=2768-167X&rft.volume=3&rft.issue=9&rft.spage=401&rft.epage=417&rft_id=info:doi/10.1109%2FJFLEX.2024.3432103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JFLEX_2024_3432103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon