Increasing Face Recognition Rates Using Novel Classification Algorithms

This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive weighted average, reverse weighted average and exponential weighted average. ssentially, the algorithms are extensions to the basic classific...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computers, communications & control Vol. 11; no. 3
Main Authors Viriri, Serestina, Lagerwall, Brett
Format Journal Article
LanguageEnglish
Published Oradea Agora University of Oradea 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive weighted average, reverse weighted average and exponential weighted average. ssentially, the algorithms are extensions to the basic classification algorithm sed in most face recognition research. Whereas the basic classification algorithm elects the subject with the shortest associated distance, the algorithms presented in his paper manipulate and extract information from the set of distances between a est image and the training image set in order to obtain more accurate classifications. he base system to which the algorithms are applied uses the eigenfaces technique or recognition with an adapted Viola and Jones algorithm for face extraction. Most f the algorithms proposed show a consistent improvement over the baseline test.
AbstractList This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive weighted average, reverse weighted average and exponential weighted average. ssentially, the algorithms are extensions to the basic classification algorithm sed in most face recognition research. Whereas the basic classification algorithm elects the subject with the shortest associated distance, the algorithms presented in his paper manipulate and extract information from the set of distances between a est image and the training image set in order to obtain more accurate classifications. he base system to which the algorithms are applied uses the eigenfaces technique or recognition with an adapted Viola and Jones algorithm for face extraction. Most f the algorithms proposed show a consistent improvement over the baseline test.
Author Viriri, Serestina
Lagerwall, Brett
Author_xml – sequence: 1
  givenname: Serestina
  surname: Viriri
  fullname: Viriri, Serestina
– sequence: 2
  givenname: Brett
  surname: Lagerwall
  fullname: Lagerwall, Brett
BookMark eNo9T01Lw0AUXKSCtfYHeAt4Tszbl_3IsRRbC0Wh2HPZvGzihrir2dTfb6jiXGZghvdmbtnMB28Zu4c8A6FRPbqOiDKeg8wwEwqu2Bx0AWmpi2L2r1HesGWMXT4Buc6VmLPtztNgTXS-TTaGbHKwFFrvRhd8cjCjjcnxYr6Eb9sn697E6BpH5hJY9W0Y3Pj-Ee_YdWP6aJd_vGDHzdPb-jndv25369U-JQCElGqDQtW6pNxKqpSpp_4157JCjpYMQFmCVSgbEAIbgaS0RW0q4rWomgoX7OH37ucQvs42jqcunAc_vTxxAdNELqXCHx6JUXk
ContentType Journal Article
Copyright 2016. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.15837/ijccc.2016.3.571
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1841-9844
GroupedDBID .4S
.DC
29J
2WC
5GY
8FE
8FG
AAKPC
ABUWG
ACIPV
ADBBV
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
E3Z
EDO
EOJEC
GNUQQ
GROUPED_DOAJ
HCIFZ
ITG
ITH
JQ2
K7-
MK~
ML~
M~E
OBODZ
OK1
OVT
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
TR2
TUS
ID FETCH-LOGICAL-c1131-cda357d89c0e6cb7ad583d226b323eca11991e736f1553f53c78e38abc2d5bfb3
IEDL.DBID BENPR
ISSN 1841-9836
IngestDate Fri Jul 25 19:51:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1131-cda357d89c0e6cb7ad583d226b323eca11991e736f1553f53c78e38abc2d5bfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2518362667?pq-origsite=%requestingapplication%
PQID 2518362667
PQPubID 5045567
ParticipantIDs proquest_journals_2518362667
PublicationCentury 2000
PublicationDate 20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 20160601
  day: 01
PublicationDecade 2010
PublicationPlace Oradea
PublicationPlace_xml – name: Oradea
PublicationTitle International journal of computers, communications & control
PublicationYear 2016
Publisher Agora University of Oradea
Publisher_xml – name: Agora University of Oradea
SSID ssj0000328075
ssib032305687
Score 2.0010781
Snippet This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Adaptive algorithms
Algorithms
Classification
Face recognition
Title Increasing Face Recognition Rates Using Novel Classification Algorithms
URI https://www.proquest.com/docview/2518362667
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZou7DwRjxK5YE1LbYbx5lQQU0rJCpUUalbFT_CQyUBWvj93LmOGJBYvMTL-ey77-wv9xFyyYTlJmc86svCwaBllFr8wQeghdMxM7nv3Xk_keNZ_24ez8OF2yrQKuuY6AO1rQzekfcgDytsnSKT6_ePCFWj8HU1SGg0SAtCsILiq3UznDxM6x0lOCLkAEB8bBY8dN-FyoZFqRIyPHXGUKn1Xl6Nwb6GTHZFN07YnwDts062R3YCXKSDjX_3yZYrD8huLcVAw8k8JCM450gvh0REs9w4Oq2JQVVJp4gnqScH0En17ZbUS2EiScj7hQ6WT2Dq-vltdURm2fDxdhwFjYTIMCZYZGwu4sSq1Fw5aXSSWzDEAqbSYLsDLyC1ySVCFigQVMTCJMoJlWvDbawLLY5Js6xKd0JoAeBDFSnj3Jm-TnGKg3oDBUlSnrjilLTrxViEjb5a_Lrl7P_P52Qb13XDsmqT5vrzy11APl_rDmmobNQJruv4qvgHEE2ftw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKGWDhjXgU8ABjWmwnjjMgVAFpSx9D1UrdSuw4PFQSoAXEn-I3cnYTMSCxdcmSl3U-3322P9-H0ClhMVURoY7LEw0XyZ0gNgd8AFpo6REV2dqd3R5vDt3bkTcqoe_iLIyhVRYx0QbqOFNmjbwGeViY0incv3x5dYxqlNldLSQ05m7R1l-fMGWbXrSuoX_PKA1vBldNJ1cVcBQhjDgqjpjnxyJQ55or6UexJ6DBlEtGmYZ2GzKQ9hlPjKRO4jHlC81EJBWNPZlIBt9dQssuY4EZUSJsFP4L7wOcyOGOzQSM5rV-YR5FnEAwnm-swi_92uOTUqaKIuFVVvV88icd2BwXbqC1HJzi-tybNlFJp1tovRB-wHkc2EYNiCqGzA5pD4eR0rhf0JCyFPcNesWWioB72YeeYCu8aShJ1gtwfXIPhp09PE930HAhtttF5TRL9R7CCUAdkQSEUq1cGZhHNMxujPxJQH2d7KNKYYxxPqym418nOPj_9glaaQ66nXGn1WsfolVj4zm_q4LKs7d3fQRIYiaPbfdhdLdof_kBQ7HZrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+Face+Recognition+Rates+Using+Novel+Classification+Algorithms&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Viriri%2C+Serestina&rft.au=Lagerwall%2C+Brett&rft.date=2016-06-01&rft.pub=Agora+University+of+Oradea&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=11&rft.issue=3&rft_id=info:doi/10.15837%2Fijccc.2016.3.571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon