Increasing Face Recognition Rates Using Novel Classification Algorithms
This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive weighted average, reverse weighted average and exponential weighted average. ssentially, the algorithms are extensions to the basic classific...
Saved in:
Published in | International journal of computers, communications & control Vol. 11; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oradea
Agora University of Oradea
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive weighted average, reverse weighted average and exponential weighted average. ssentially, the algorithms are extensions to the basic classification algorithm sed in most face recognition research. Whereas the basic classification algorithm elects the subject with the shortest associated distance, the algorithms presented in his paper manipulate and extract information from the set of distances between a est image and the training image set in order to obtain more accurate classifications. he base system to which the algorithms are applied uses the eigenfaces technique or recognition with an adapted Viola and Jones algorithm for face extraction. Most f the algorithms proposed show a consistent improvement over the baseline test. |
---|---|
AbstractList | This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive weighted average, reverse weighted average and exponential weighted average. ssentially, the algorithms are extensions to the basic classification algorithm sed in most face recognition research. Whereas the basic classification algorithm elects the subject with the shortest associated distance, the algorithms presented in his paper manipulate and extract information from the set of distances between a est image and the training image set in order to obtain more accurate classifications. he base system to which the algorithms are applied uses the eigenfaces technique or recognition with an adapted Viola and Jones algorithm for face extraction. Most f the algorithms proposed show a consistent improvement over the baseline test. |
Author | Viriri, Serestina Lagerwall, Brett |
Author_xml | – sequence: 1 givenname: Serestina surname: Viriri fullname: Viriri, Serestina – sequence: 2 givenname: Brett surname: Lagerwall fullname: Lagerwall, Brett |
BookMark | eNo9T01Lw0AUXKSCtfYHeAt4Tszbl_3IsRRbC0Wh2HPZvGzihrir2dTfb6jiXGZghvdmbtnMB28Zu4c8A6FRPbqOiDKeg8wwEwqu2Bx0AWmpi2L2r1HesGWMXT4Buc6VmLPtztNgTXS-TTaGbHKwFFrvRhd8cjCjjcnxYr6Eb9sn697E6BpH5hJY9W0Y3Pj-Ee_YdWP6aJd_vGDHzdPb-jndv25369U-JQCElGqDQtW6pNxKqpSpp_4157JCjpYMQFmCVSgbEAIbgaS0RW0q4rWomgoX7OH37ucQvs42jqcunAc_vTxxAdNELqXCHx6JUXk |
ContentType | Journal Article |
Copyright | 2016. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.15837/ijccc.2016.3.571 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1841-9844 |
GroupedDBID | .4S .DC 29J 2WC 5GY 8FE 8FG AAKPC ABUWG ACIPV ADBBV AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO E3Z EDO EOJEC GNUQQ GROUPED_DOAJ HCIFZ ITG ITH JQ2 K7- MK~ ML~ M~E OBODZ OK1 OVT P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS TR2 TUS |
ID | FETCH-LOGICAL-c1131-cda357d89c0e6cb7ad583d226b323eca11991e736f1553f53c78e38abc2d5bfb3 |
IEDL.DBID | BENPR |
ISSN | 1841-9836 |
IngestDate | Fri Jul 25 19:51:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1131-cda357d89c0e6cb7ad583d226b323eca11991e736f1553f53c78e38abc2d5bfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2518362667?pq-origsite=%requestingapplication% |
PQID | 2518362667 |
PQPubID | 5045567 |
ParticipantIDs | proquest_journals_2518362667 |
PublicationCentury | 2000 |
PublicationDate | 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 20160601 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oradea |
PublicationPlace_xml | – name: Oradea |
PublicationTitle | International journal of computers, communications & control |
PublicationYear | 2016 |
Publisher | Agora University of Oradea |
Publisher_xml | – name: Agora University of Oradea |
SSID | ssj0000328075 ssib032305687 |
Score | 2.0010781 |
Snippet | This paper describes and discusses a set of algorithms which can improve ace recognition rates. These algorithms include adaptive K-Nearest Neighbour, daptive... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Adaptive algorithms Algorithms Classification Face recognition |
Title | Increasing Face Recognition Rates Using Novel Classification Algorithms |
URI | https://www.proquest.com/docview/2518362667 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZou7DwRjxK5YE1LbYbx5lQQU0rJCpUUalbFT_CQyUBWvj93LmOGJBYvMTL-ey77-wv9xFyyYTlJmc86svCwaBllFr8wQeghdMxM7nv3Xk_keNZ_24ez8OF2yrQKuuY6AO1rQzekfcgDytsnSKT6_ePCFWj8HU1SGg0SAtCsILiq3UznDxM6x0lOCLkAEB8bBY8dN-FyoZFqRIyPHXGUKn1Xl6Nwb6GTHZFN07YnwDts062R3YCXKSDjX_3yZYrD8huLcVAw8k8JCM450gvh0REs9w4Oq2JQVVJp4gnqScH0En17ZbUS2EiScj7hQ6WT2Dq-vltdURm2fDxdhwFjYTIMCZYZGwu4sSq1Fw5aXSSWzDEAqbSYLsDLyC1ySVCFigQVMTCJMoJlWvDbawLLY5Js6xKd0JoAeBDFSnj3Jm-TnGKg3oDBUlSnrjilLTrxViEjb5a_Lrl7P_P52Qb13XDsmqT5vrzy11APl_rDmmobNQJruv4qvgHEE2ftw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKGWDhjXgU8ABjWmwnjjMgVAFpSx9D1UrdSuw4PFQSoAXEn-I3cnYTMSCxdcmSl3U-3322P9-H0ClhMVURoY7LEw0XyZ0gNgd8AFpo6REV2dqd3R5vDt3bkTcqoe_iLIyhVRYx0QbqOFNmjbwGeViY0incv3x5dYxqlNldLSQ05m7R1l-fMGWbXrSuoX_PKA1vBldNJ1cVcBQhjDgqjpjnxyJQ55or6UexJ6DBlEtGmYZ2GzKQ9hlPjKRO4jHlC81EJBWNPZlIBt9dQssuY4EZUSJsFP4L7wOcyOGOzQSM5rV-YR5FnEAwnm-swi_92uOTUqaKIuFVVvV88icd2BwXbqC1HJzi-tybNlFJp1tovRB-wHkc2EYNiCqGzA5pD4eR0rhf0JCyFPcNesWWioB72YeeYCu8aShJ1gtwfXIPhp09PE930HAhtttF5TRL9R7CCUAdkQSEUq1cGZhHNMxujPxJQH2d7KNKYYxxPqym418nOPj_9glaaQ66nXGn1WsfolVj4zm_q4LKs7d3fQRIYiaPbfdhdLdof_kBQ7HZrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+Face+Recognition+Rates+Using+Novel+Classification+Algorithms&rft.jtitle=International+journal+of+computers%2C+communications+%26+control&rft.au=Viriri%2C+Serestina&rft.au=Lagerwall%2C+Brett&rft.date=2016-06-01&rft.pub=Agora+University+of+Oradea&rft.issn=1841-9836&rft.eissn=1841-9844&rft.volume=11&rft.issue=3&rft_id=info:doi/10.15837%2Fijccc.2016.3.571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1841-9836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1841-9836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1841-9836&client=summon |