Face Recognition in Machine Learning: A Framework for Dimensionality Reduction Algorithms
A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dim...
Saved in:
Published in | International journal of advanced networking and applications Vol. 14; no. 2; pp. 5396 - 5407 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Eswar Publications
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0975-0282 0975-0290 0975-0282 |
DOI | 10.35444/IJANA.2022.14211 |
Cover
Abstract | A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dimensional data and these images are represented with a lower-dimensional space. The purpose of the research paper is to evaluate the performance of Dimensionality Reduction algorithms for face recognition using different approaches of Machine Learning (ML). The research uses the Interpretivist Paradigm characterised by a subjectivist epistemology, relativist ontology, naturalist methodology, and a balanced axiology. The quantitative methodology with an experimental research design was used. The results of the experiment show that only selecting the top M eigenfaces reduces the dimensionality of the data, and that too few eigenfaces results in too much information loss, and hence less discrimination between faces. With increasing dimensionality, the amount of training instances needed rises exponentially (i.e., kd). The performance of the Dimensionality Reduction Algorithm is benchmarked against the Clustering, Bayesian, Genetic, Reinforcement Q-Learning and Reinforcement A3C Algorithms. The outcome of the research makes significant value-adding contributions to the future of advances in Big Data Analytics and ML. |
---|---|
AbstractList | A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dimensional data and these images are represented with a lower-dimensional space. The purpose of the research paper is to evaluate the performance of Dimensionality Reduction algorithms for face recognition using different approaches of Machine Learning (ML). The research uses the Interpretivist Paradigm characterised by a subjectivist epistemology, relativist ontology, naturalist methodology, and a balanced axiology. The quantitative methodology with an experimental research design was used. The results of the experiment show that only selecting the top M eigenfaces reduces the dimensionality of the data, and that too few eigenfaces results in too much information loss, and hence less discrimination between faces. With increasing dimensionality, the amount of training instances needed rises exponentially (i.e., kd). The performance of the Dimensionality Reduction Algorithm is benchmarked against the Clustering, Bayesian, Genetic, Reinforcement Q-Learning and Reinforcement A3C Algorithms. The outcome of the research makes significant value-adding contributions to the future of advances in Big Data Analytics and ML. |
Author | Kabanda, Gabriel |
Author_xml | – sequence: 1 givenname: Gabriel surname: Kabanda fullname: Kabanda, Gabriel |
BookMark | eNpNkLFOwzAQhi0EEqX0AdgsMaf4bCeO2aJCoaiAhGBgioxrty6NXexUqG9PSBm45b_h-0-n7wwd--ANQhdAxiznnF_NHqqnakwJpWPgFOAIDYgUeUZoSY__7adolNKadFMIUkoYoPep0ga_GB2W3rUueOw8flR65bzBc6Oid355jSs8jaox3yF-YhsivnGN8anD1ca1-66_2Om-XW2WIbp21aRzdGLVJpnRXw7R2_T2dXKfzZ_vZpNqnmkABhnX8iPnC2JVrgqljDbACyDCckWJ4aoEwqkUYI20Nte2JJQozhkUoCyTjA3R5eHuNoavnUltvQ672D2WaioYFyCFkB0FB0rHkFI0tt5G16i4r4HUvcS6l1j_Sqx7iewHFFJlvQ |
ContentType | Journal Article |
Copyright | 2022. This work is published under http://www.ijana.in/index.php (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://www.ijana.in/index.php (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.35444/IJANA.2022.14211 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 0975-0282 |
EndPage | 5407 |
ExternalDocumentID | 10_35444_IJANA_2022_14211 |
GroupedDBID | 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- KQ8 OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c1131-4c9b54d0fa5a6aaece146107f4a20e4a81042971fe9ff5cf8020a443161af3933 |
IEDL.DBID | 8FG |
ISSN | 0975-0282 0975-0290 |
IngestDate | Fri Jul 25 07:49:17 EDT 2025 Tue Jul 01 02:46:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1131-4c9b54d0fa5a6aaece146107f4a20e4a81042971fe9ff5cf8020a443161af3933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2734719779?pq-origsite=%requestingapplication% |
PQID | 2734719779 |
PQPubID | 886380 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2734719779 crossref_primary_10_35444_IJANA_2022_14211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220901 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of advanced networking and applications |
PublicationYear | 2022 |
Publisher | Eswar Publications |
Publisher_xml | – name: Eswar Publications |
SSID | ssj0000670891 ssib006862993 |
Score | 2.1934686 |
Snippet | A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 5396 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Big Data Classification Clustering Cybersecurity Data analysis Data mining Digital imaging Epistemology Face recognition Facial recognition technology Feature selection Internet of Things Localization Machine learning Object recognition Performance evaluation Principal components analysis Reduction Scientific papers Software |
Title | Face Recognition in Machine Learning: A Framework for Dimensionality Reduction Algorithms |
URI | https://www.proquest.com/docview/2734719779 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gu8AB8SkGY8qBE1K1pknbhQsqsDImbUITk8apcttkIEE32Pj_OG2qwYVz1R6eXfs5dp4JucQMGQjQmSN4qB2hPXAgd6WjtUx94FJB2cEfjYPBVAxn_sweuK3sWGUdE8tAnS8yc0beNTIsIUO2Im-Wn47ZGmW6q3aFxjZpMsw0xs978cPGn5CuS-t_NjK7domeDM3FZGkbndwXQnQfh9E4wpLR8zB-eIz9TVV_I3WZfuJ9smd5I40qQx-QLVUckt1faoJH5CWGTNFJPRG0KOhbQUflsKSiVkd1fk0jGtcDWRQZK703-v6VNgcycnw_rwRlafQ-RwDWrx-rYzKN-893A8duTnAyxjgWhRkiLXJXgw8BgMqUWd_thlqA5yoBPWbyUMi0klr7me4haQRhbsUz0FxyfkIaxaJQp4SC5DkGUwDPS0WeqjRIez4wiUSGZxCmLXJVg5QsK4GMBAuLEtGkRDQxiCYloi3SrmFM7L-ySjaWPfv_8TnZMZ-qJrzapLH--lYXSAnWaae0e4c0b_vjp8kPshuzfg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5UB7QEBblWd9gEuliNhxkjVShdLCap9RtQKJntJJYtNKkAV2UcWf4jd2nDgCLtw4R4miL1_m4Zn5BmCfPGQk0RSeDGLjSSPQw9JXnjEqDzFQGusK_iSN-udyeBFeLMFjOwtj2ypbm1gb6nJW2DPyQyvDEnOKVtTxza1nt0bZ6mq7QqOhxUg__KOUbf5tcELf90CI3unZj77ntgp4BecBJUwFvYUsfYMhRoi60Ha1tR8bicLXErvc2uiYG62MCQvTpYAKpZ0Y52gCZQ9AyeQvSzvR2oHl76fpz-kTgylBUI7xzhf4bm2fiu0otHKl1SCUUh4OhkmaUJIqBFkswflL5_jSN9QOr7cGqy5SZUlDrXVY0tUGvH-mX_gBfvWw0Gza9iDNKva3YpO6PVMzp9x6ecQS1mtbwBjFyOzEbhRo1EAoB6D7y0bCliVXlwT54s_1_COcvwmqn6BTzSr9GRiqoCTzjShELstc51HeDZErCp2CAuN8E762IGU3jSRHRqlMjWhWI5pZRLMa0U3YaWHM3N85z564tPX65S-w0j-bjLPxIB1twzv72Ka_bAc6i7t7vUsBySLfcyxg8PutifcfT8HvOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6KguhBfOKj6h70IoRmN5umK4gEa2zVFhEFPcVJsquCptVWxL_mr3M22VC9ePMcEsKXLzPz7bwI2UUP2RSgU0d4gXaE5uBA5kpHa5n44EkFRQa_1292bsTZrX9bI19VL4wpq6xsYmGos0FqzsgbZgxLwDBakQ1tyyIu29HR8NUxG6RMprVap1FS5Fx9fqB8Gx122_it9ziPTq6PO47dMOCkjHkonlJ8I5G5GnxoAqhUmTXXbqAFcFcJaDFjrwOmldTaT3ULgysQpnucgfakOQxF8z8deIE0wq8VnU64jFJBWu5br-DaBX4yME3R0iZZPV8I0eiehf0Q5SrnaLs4Y7_d5G8vUbi-aIHM25iVhiXJFklN5Utk7sckw2VyF0Gq6FVVjTTI6VNOe0WhpqJ2huvDAQ1pVBWDUYyWadvsFijngqAawPuzcpgtDZ8fEPDx48tohdz8C6arZCof5GqNUJBehoYcgPNEZIlKmknLByYxiPJSCJJ1sl-BFA_L4RwxipoC0bhANDaIxgWi66RewRjb_3QUT1i18fflHTKDdIsvuv3zTTJrnloWmtXJ1PjtXW1hZDJOtgsKUHL_35z7Bikf8gk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+Recognition+in+Machine+Learning%3A+A+Framework+for+Dimensionality+Reduction+Algorithms&rft.jtitle=International+journal+of+advanced+networking+and+applications&rft.au=Kabanda%2C+Gabriel&rft.date=2022-09-01&rft.issn=0975-0282&rft.eissn=0975-0282&rft.volume=14&rft.issue=2&rft.spage=5396&rft.epage=5407&rft_id=info:doi/10.35444%2FIJANA.2022.14211&rft.externalDBID=n%2Fa&rft.externalDocID=10_35444_IJANA_2022_14211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-0282&client=summon |