Face Recognition in Machine Learning: A Framework for Dimensionality Reduction Algorithms

A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dim...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced networking and applications Vol. 14; no. 2; pp. 5396 - 5407
Main Author Kabanda, Gabriel
Format Journal Article
LanguageEnglish
Published Eswar Publications 01.09.2022
Subjects
Online AccessGet full text
ISSN0975-0282
0975-0290
0975-0282
DOI10.35444/IJANA.2022.14211

Cover

Abstract A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dimensional data and these images are represented with a lower-dimensional space. The purpose of the research paper is to evaluate the performance of Dimensionality Reduction algorithms for face recognition using different approaches of Machine Learning (ML). The research uses the Interpretivist Paradigm characterised by a subjectivist epistemology, relativist ontology, naturalist methodology, and a balanced axiology. The quantitative methodology with an experimental research design was used. The results of the experiment show that only selecting the top M eigenfaces reduces the dimensionality of the data, and that too few eigenfaces results in too much information loss, and hence less discrimination between faces. With increasing dimensionality, the amount of training instances needed rises exponentially (i.e., kd). The performance of the Dimensionality Reduction Algorithm is benchmarked against the Clustering, Bayesian, Genetic, Reinforcement Q-Learning and Reinforcement A3C Algorithms. The outcome of the research makes significant value-adding contributions to the future of advances in Big Data Analytics and ML.
AbstractList A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to algorithmic performance and detection accuracy. Dimensionality reduction is a type of unsupervised learning for which input is images of higher-dimensional data and these images are represented with a lower-dimensional space. The purpose of the research paper is to evaluate the performance of Dimensionality Reduction algorithms for face recognition using different approaches of Machine Learning (ML). The research uses the Interpretivist Paradigm characterised by a subjectivist epistemology, relativist ontology, naturalist methodology, and a balanced axiology. The quantitative methodology with an experimental research design was used. The results of the experiment show that only selecting the top M eigenfaces reduces the dimensionality of the data, and that too few eigenfaces results in too much information loss, and hence less discrimination between faces. With increasing dimensionality, the amount of training instances needed rises exponentially (i.e., kd). The performance of the Dimensionality Reduction Algorithm is benchmarked against the Clustering, Bayesian, Genetic, Reinforcement Q-Learning and Reinforcement A3C Algorithms. The outcome of the research makes significant value-adding contributions to the future of advances in Big Data Analytics and ML.
Author Kabanda, Gabriel
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Kabanda
  fullname: Kabanda, Gabriel
BookMark eNpNkLFOwzAQhi0EEqX0AdgsMaf4bCeO2aJCoaiAhGBgioxrty6NXexUqG9PSBm45b_h-0-n7wwd--ANQhdAxiznnF_NHqqnakwJpWPgFOAIDYgUeUZoSY__7adolNKadFMIUkoYoPep0ga_GB2W3rUueOw8flR65bzBc6Oid355jSs8jaox3yF-YhsivnGN8anD1ca1-66_2Om-XW2WIbp21aRzdGLVJpnRXw7R2_T2dXKfzZ_vZpNqnmkABhnX8iPnC2JVrgqljDbACyDCckWJ4aoEwqkUYI20Nte2JJQozhkUoCyTjA3R5eHuNoavnUltvQ672D2WaioYFyCFkB0FB0rHkFI0tt5G16i4r4HUvcS6l1j_Sqx7iewHFFJlvQ
ContentType Journal Article
Copyright 2022. This work is published under http://www.ijana.in/index.php (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://www.ijana.in/index.php (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.35444/IJANA.2022.14211
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0975-0282
EndPage 5407
ExternalDocumentID 10_35444_IJANA_2022_14211
GroupedDBID 8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
KQ8
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c1131-4c9b54d0fa5a6aaece146107f4a20e4a81042971fe9ff5cf8020a443161af3933
IEDL.DBID 8FG
ISSN 0975-0282
0975-0290
IngestDate Fri Jul 25 07:49:17 EDT 2025
Tue Jul 01 02:46:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1131-4c9b54d0fa5a6aaece146107f4a20e4a81042971fe9ff5cf8020a443161af3933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2734719779?pq-origsite=%requestingapplication%
PQID 2734719779
PQPubID 886380
PageCount 12
ParticipantIDs proquest_journals_2734719779
crossref_primary_10_35444_IJANA_2022_14211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 20220901
  day: 01
PublicationDecade 2020
PublicationTitle International journal of advanced networking and applications
PublicationYear 2022
Publisher Eswar Publications
Publisher_xml – name: Eswar Publications
SSID ssj0000670891
ssib006862993
Score 2.1934686
Snippet A facial recognition system matches a human face from a digital image or a video frame against an authentic repository of faces or Eigenfaces subject to...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 5396
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Big Data
Classification
Clustering
Cybersecurity
Data analysis
Data mining
Digital imaging
Epistemology
Face recognition
Facial recognition technology
Feature selection
Internet of Things
Localization
Machine learning
Object recognition
Performance evaluation
Principal components analysis
Reduction
Scientific papers
Software
Title Face Recognition in Machine Learning: A Framework for Dimensionality Reduction Algorithms
URI https://www.proquest.com/docview/2734719779
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gu8AB8SkGY8qBE1K1pknbhQsqsDImbUITk8apcttkIEE32Pj_OG2qwYVz1R6eXfs5dp4JucQMGQjQmSN4qB2hPXAgd6WjtUx94FJB2cEfjYPBVAxn_sweuK3sWGUdE8tAnS8yc0beNTIsIUO2Im-Wn47ZGmW6q3aFxjZpMsw0xs978cPGn5CuS-t_NjK7domeDM3FZGkbndwXQnQfh9E4wpLR8zB-eIz9TVV_I3WZfuJ9smd5I40qQx-QLVUckt1faoJH5CWGTNFJPRG0KOhbQUflsKSiVkd1fk0jGtcDWRQZK703-v6VNgcycnw_rwRlafQ-RwDWrx-rYzKN-893A8duTnAyxjgWhRkiLXJXgw8BgMqUWd_thlqA5yoBPWbyUMi0klr7me4haQRhbsUz0FxyfkIaxaJQp4SC5DkGUwDPS0WeqjRIez4wiUSGZxCmLXJVg5QsK4GMBAuLEtGkRDQxiCYloi3SrmFM7L-ySjaWPfv_8TnZMZ-qJrzapLH--lYXSAnWaae0e4c0b_vjp8kPshuzfg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5UB7QEBblWd9gEuliNhxkjVShdLCap9RtQKJntJJYtNKkAV2UcWf4jd2nDgCLtw4R4miL1_m4Zn5BmCfPGQk0RSeDGLjSSPQw9JXnjEqDzFQGusK_iSN-udyeBFeLMFjOwtj2ypbm1gb6nJW2DPyQyvDEnOKVtTxza1nt0bZ6mq7QqOhxUg__KOUbf5tcELf90CI3unZj77ntgp4BecBJUwFvYUsfYMhRoi60Ha1tR8bicLXErvc2uiYG62MCQvTpYAKpZ0Y52gCZQ9AyeQvSzvR2oHl76fpz-kTgylBUI7xzhf4bm2fiu0otHKl1SCUUh4OhkmaUJIqBFkswflL5_jSN9QOr7cGqy5SZUlDrXVY0tUGvH-mX_gBfvWw0Gza9iDNKva3YpO6PVMzp9x6ecQS1mtbwBjFyOzEbhRo1EAoB6D7y0bCliVXlwT54s_1_COcvwmqn6BTzSr9GRiqoCTzjShELstc51HeDZErCp2CAuN8E762IGU3jSRHRqlMjWhWI5pZRLMa0U3YaWHM3N85z564tPX65S-w0j-bjLPxIB1twzv72Ka_bAc6i7t7vUsBySLfcyxg8PutifcfT8HvOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6KguhBfOKj6h70IoRmN5umK4gEa2zVFhEFPcVJsquCptVWxL_mr3M22VC9ePMcEsKXLzPz7bwI2UUP2RSgU0d4gXaE5uBA5kpHa5n44EkFRQa_1292bsTZrX9bI19VL4wpq6xsYmGos0FqzsgbZgxLwDBakQ1tyyIu29HR8NUxG6RMprVap1FS5Fx9fqB8Gx122_it9ziPTq6PO47dMOCkjHkonlJ8I5G5GnxoAqhUmTXXbqAFcFcJaDFjrwOmldTaT3ULgysQpnucgfakOQxF8z8deIE0wq8VnU64jFJBWu5br-DaBX4yME3R0iZZPV8I0eiehf0Q5SrnaLs4Y7_d5G8vUbi-aIHM25iVhiXJFklN5Utk7sckw2VyF0Gq6FVVjTTI6VNOe0WhpqJ2huvDAQ1pVBWDUYyWadvsFijngqAawPuzcpgtDZ8fEPDx48tohdz8C6arZCof5GqNUJBehoYcgPNEZIlKmknLByYxiPJSCJJ1sl-BFA_L4RwxipoC0bhANDaIxgWi66RewRjb_3QUT1i18fflHTKDdIsvuv3zTTJrnloWmtXJ1PjtXW1hZDJOtgsKUHL_35z7Bikf8gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+Recognition+in+Machine+Learning%3A+A+Framework+for+Dimensionality+Reduction+Algorithms&rft.jtitle=International+journal+of+advanced+networking+and+applications&rft.au=Kabanda%2C+Gabriel&rft.date=2022-09-01&rft.issn=0975-0282&rft.eissn=0975-0282&rft.volume=14&rft.issue=2&rft.spage=5396&rft.epage=5407&rft_id=info:doi/10.35444%2FIJANA.2022.14211&rft.externalDBID=n%2Fa&rft.externalDocID=10_35444_IJANA_2022_14211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-0282&client=summon