Charge‐Rearrangement Averaged Dye Design for Precise, Real‐Time, and Portable Monitoring of Complex Solvent Environments

Although solvatochromic materials provide visual function to differentiate solvents, they fail to precisely monitor complex solvent environments where solvent composition varies dynamically, because of an insensitive absorptional shift in these environments. Relatively, their fluorescence signal cha...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition
Main Authors Li, Zhongyu, Sahoo, Smruti R., Shen, Shen, Sun, Hao, Ågren, Hans, Zhang, Man, Baryshnikov, Gleb, Zhu, Liangliang
Format Journal Article
LanguageEnglish
Published 22.08.2025
Online AccessGet full text

Cover

Loading…
Abstract Although solvatochromic materials provide visual function to differentiate solvents, they fail to precisely monitor complex solvent environments where solvent composition varies dynamically, because of an insensitive absorptional shift in these environments. Relatively, their fluorescence signal change, which should be more sensitive, has always been inefficient, resulting from inherent challenges in excited‐state dynamics. Here, we present a charge‐rearrangement averaged dye design, instead of traditional donor‐acceptor structures, to enable a high locally excited or twisted intramolecular charge transfer emission efficiency. A ratiometric dual‐fluorescence behavior can be observed along with a solvent‐dependent emission trade‐off rather than complete quenching. In this case, the dyes can not only precisely visualize various mixed solvents but also enable heterogeneous detection with over hundreds of reuse cycles after being integrated into a crosslinked polymer. The leading portable material achieves a self‐calibrated visual tracking of ethanol content (error<0.2%) with a robust working curve ( R 2  = 0.9992) while applied to E10 ethanol gasoline, operable via user‐friendly software analysis through mobile phone photography.
AbstractList Although solvatochromic materials provide visual function to differentiate solvents, they fail to precisely monitor complex solvent environments where solvent composition varies dynamically, because of an insensitive absorptional shift in these environments. Relatively, their fluorescence signal change, which should be more sensitive, has always been inefficient, resulting from inherent challenges in excited‐state dynamics. Here, we present a charge‐rearrangement averaged dye design, instead of traditional donor‐acceptor structures, to enable a high locally excited or twisted intramolecular charge transfer emission efficiency. A ratiometric dual‐fluorescence behavior can be observed along with a solvent‐dependent emission trade‐off rather than complete quenching. In this case, the dyes can not only precisely visualize various mixed solvents but also enable heterogeneous detection with over hundreds of reuse cycles after being integrated into a crosslinked polymer. The leading portable material achieves a self‐calibrated visual tracking of ethanol content (error<0.2%) with a robust working curve ( R 2  = 0.9992) while applied to E10 ethanol gasoline, operable via user‐friendly software analysis through mobile phone photography.
Author Li, Zhongyu
Shen, Shen
Sahoo, Smruti R.
Zhang, Man
Ågren, Hans
Baryshnikov, Gleb
Zhu, Liangliang
Sun, Hao
Author_xml – sequence: 1
  givenname: Zhongyu
  surname: Li
  fullname: Li, Zhongyu
  organization: State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
– sequence: 2
  givenname: Smruti R.
  surname: Sahoo
  fullname: Sahoo, Smruti R.
  organization: Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 60174 Sweden, Department of Physics and Astronomy Uppsala University Box 516 Uppsala SE‐751 20 Sweden
– sequence: 3
  givenname: Shen
  surname: Shen
  fullname: Shen, Shen
  organization: State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
– sequence: 4
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
– sequence: 5
  givenname: Hans
  surname: Ågren
  fullname: Ågren, Hans
  organization: Department of Physics and Astronomy Uppsala University Box 516 Uppsala SE‐751 20 Sweden
– sequence: 6
  givenname: Man
  surname: Zhang
  fullname: Zhang, Man
  organization: State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
– sequence: 7
  givenname: Gleb
  surname: Baryshnikov
  fullname: Baryshnikov, Gleb
  organization: Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 60174 Sweden
– sequence: 8
  givenname: Liangliang
  orcidid: 0000-0001-6268-3351
  surname: Zhu
  fullname: Zhu, Liangliang
  organization: State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
BookMark eNo9kE1OwzAQhS1UJNrClrUPQErsSRxnWaXlRyqigrKOnGQSjBK7sqOKSiw4AmfkJCQCsZo30pv3NN-MTIw1SMglCxcsDPm1MhoXPOQxA4jSEzJlMWcBJAlMBh0BBImM2RmZef82-KUMxZR8ZK_KNfj9-fWEyjllGuzQ9HR5QKcarOjqiHSFXjeG1tbRrcNSe7yig70drna6GxZlKrq1rldFi_TBGt1bp01DbU0z2-1bfKfPtj2MwWtz0M6ascSfk9NatR4v_uacvNysd9ldsHm8vc-Wm6BkjPVBxTmUxfBBrCBVaZIyIZMaIxFVYVUWMgEuVRGBiIRImZKyFBFCzFIogRc1hzlZ_OaWznrvsM73TnfKHXMW5iO7fGSX_7ODHx3tZug
Cites_doi 10.1021/cr5001157
10.1039/D1CS00310K
10.1021/acs.chemrev.5b00188
10.1021/ma100628y
10.1126/science.abm8797
10.1038/s41592-021-01116-4
10.1038/s41560-018-0175-3
10.1039/b922550a
10.1016/j.chempr.2019.07.015
10.1038/s41467-020-14792-1
10.1039/D3SC06459J
10.1002/ceat.201900110
10.1016/j.molliq.2023.123135
10.1002/adom.201800956
10.1038/s41586-023-06039-y
10.1039/b819539k
10.1039/C2CS35346F
10.1039/C4CS00444B
10.1002/adfm.202311404
10.1039/D1CS00239B
10.1038/s41467-021-21253-w
10.1039/D3CS00251A
10.1038/s41557-019-0314-x
10.1021/jacs.4c05538
10.3390/en15217933
10.1039/D2SC06710B
10.3390/s140917817
10.1016/j.fuel.2005.12.023
10.1016/j.chempr.2023.12.024
10.1021/acs.chemmater.4c00482
10.1039/C8TC04818E
10.1021/je060441j
10.1002/jcc.24902
10.1038/s41467-022-30850-2
10.1016/j.chempr.2024.05.009
10.1016/j.matt.2022.07.010
10.1021/acsami.2c05677
10.1002/adma.202106797
10.1039/C6RA01881E
10.1002/adom.202102146
10.1016/j.fuel.2010.03.018
10.1021/acsami.1c24194
10.1016/j.fuel.2017.10.039
10.1007/s11705-014-1432-z
10.1021/cr940745l
10.1021/jacs.3c07082
10.1002/jssc.200800258
10.1039/D2SC00908K
10.1080/15422119.2014.918884
10.1021/cr00032a005
10.1038/s41467-017-00041-5
10.1016/j.optcom.2009.06.034
10.1016/j.combustflame.2008.10.011
10.1039/C8SM01282B
10.1016/j.fuel.2022.126669
10.1002/anie.202111623
10.1038/s41560-018-0264-3
10.1002/app.42106
10.1002/anie.201916357
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/anie.202513349
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
ExternalDocumentID 10_1002_anie_202513349
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
ID FETCH-LOGICAL-c111t-d223cb1435a39a9791687fe464d0dcb87328ab43646691a88c64e35193c32bf23
ISSN 1433-7851
IngestDate Wed Aug 27 16:23:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c111t-d223cb1435a39a9791687fe464d0dcb87328ab43646691a88c64e35193c32bf23
ORCID 0000-0001-6268-3351
ParticipantIDs crossref_primary_10_1002_anie_202513349
PublicationCentury 2000
PublicationDate 2025-08-22
PublicationDateYYYYMMDD 2025-08-22
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-22
  day: 22
PublicationDecade 2020
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2025
References Buonomenna M. G. (e_1_2_7_5_1) 2015; 44
Howard J. R. (e_1_2_7_33_1) 2024; 10
Park C. (e_1_2_7_11_1) 2010; 89
Avila L. M. (e_1_2_7_15_1) 2018; 212
Wu S. (e_1_2_7_58_1) 2018; 14
Daly B. (e_1_2_7_38_1) 2014; 8
Wang C. (e_1_2_7_51_1) 2020; 59
Parag S. (e_1_2_7_10_1) 2009; 156
Rai R. (e_1_2_7_3_1) 2022; 61
Li Z. (e_1_2_7_54_1) 2021; 12
Rotkiewicz K. (e_1_2_7_37_1) 2003; 103
Wu P. (e_1_2_7_27_1) 2013; 42
Jouyban A. (e_1_2_7_6_1) 2023; 390
Feng X. (e_1_2_7_30_1) 2023; 52
Hu W. (e_1_2_7_34_1) 2024; 15
Saielli G. (e_1_2_7_59_1) 2010; 12
Nguyen V.‐N. (e_1_2_7_40_1) 2024; 36
Ramirez Camargo L. (e_1_2_7_9_1) 2022; 13
Zhang Y. (e_1_2_7_50_1) 2018; 6
Li A. (e_1_2_7_55_1) 2022; 10
Chan C. W. (e_1_2_7_43_1) 2023; 15
Rodriguez A. J. (e_1_2_7_21_1) 2014; 14
Fortune J. F. (e_1_2_7_13_1) 2023; 334
Ojapah M. M. (e_1_2_7_12_1) 2016; 17
Huang H. (e_1_2_7_19_1) 2015; 132
Schnoor J.‐K. (e_1_2_7_4_1) 2019; 42
Salvo A. (e_1_2_7_61_1) 2017; 8
Wang C. (e_1_2_7_31_1) 2021; 50
Li W. (e_1_2_7_17_1) 2016; 6
Xing Y. (e_1_2_7_56_1) 2022; 13
Huse C. (e_1_2_7_7_1) 2018; 3
Budag R. (e_1_2_7_24_1) 2006; 85
Qi J. (e_1_2_7_47_1) 2019; 5
Bordbar M. M. (e_1_2_7_18_1) 2022; 14
Wu Y. (e_1_2_7_35_1) 2013; 42
Pakulski P. (e_1_2_7_48_1) 2024; 10
Seeley J. V. (e_1_2_7_14_1) 2008; 31
Kijevcˇanin M. L. (e_1_2_7_60_1) 2007; 52
Wu S. (e_1_2_7_57_1) 2010; 43
Ye Q. (e_1_2_7_20_1) 2009; 282
Perez de Souza L. (e_1_2_7_1_1) 2021; 18
Barta K. (e_1_2_7_8_1) 2018; 3
Zhang W. (e_1_2_7_53_1) 2023; 34
He G. (e_1_2_7_41_1) 2023; 145
Kannan M. (e_1_2_7_45_1) 2022; 378
Dorchies F. (e_1_2_7_2_1) 2024; 146
Wang C. (e_1_2_7_52_1) 2023; 14
Xi D. (e_1_2_7_44_1) 2022; 34
Wurthner F. (e_1_2_7_39_1) 2016; 116
Gu L. (e_1_2_7_46_1) 2020; 11
Reichardt C. (e_1_2_7_22_1) 1994; 94
Liang J. (e_1_2_7_28_1) 2015; 44
Yoon B. (e_1_2_7_36_1) 2009; 38
Xu C. (e_1_2_7_42_1) 2023; 617
Parker D. (e_1_2_7_29_1) 2021; 50
Al‐Rawashdeh H. (e_1_2_7_16_1) 2022; 15
Machado V. G. (e_1_2_7_26_1) 2014; 114
Gotor R. (e_1_2_7_25_1) 2019; 7
Sun X. (e_1_2_7_32_1) 2019; 11
Tanaka Y. (e_1_2_7_23_1) 2017; 38
Zhang X. (e_1_2_7_49_1) 2022; 5
References_xml – volume: 114
  start-page: 10429
  year: 2014
  ident: e_1_2_7_26_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr5001157
– volume: 50
  start-page: 8193
  year: 2021
  ident: e_1_2_7_29_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00310K
– volume: 116
  start-page: 962
  year: 2016
  ident: e_1_2_7_39_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00188
– volume: 43
  start-page: 6142
  year: 2010
  ident: e_1_2_7_57_1
  publication-title: Macromolecules.
  doi: 10.1021/ma100628y
– volume: 378
  year: 2022
  ident: e_1_2_7_45_1
  publication-title: Science.
  doi: 10.1126/science.abm8797
– volume: 18
  start-page: 733
  year: 2021
  ident: e_1_2_7_1_1
  publication-title: Nat. Methods.
  doi: 10.1038/s41592-021-01116-4
– volume: 3
  start-page: 582
  year: 2018
  ident: e_1_2_7_7_1
  publication-title: Nat. Energy.
  doi: 10.1038/s41560-018-0175-3
– volume: 12
  start-page: 2981
  year: 2010
  ident: e_1_2_7_59_1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b922550a
– volume: 5
  start-page: 2657
  year: 2019
  ident: e_1_2_7_47_1
  publication-title: Chem.
  doi: 10.1016/j.chempr.2019.07.015
– volume: 11
  start-page: 944
  year: 2020
  ident: e_1_2_7_46_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14792-1
– volume: 15
  start-page: 6028
  year: 2024
  ident: e_1_2_7_34_1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC06459J
– volume: 42
  start-page: 2187
  year: 2019
  ident: e_1_2_7_4_1
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201900110
– volume: 390
  year: 2023
  ident: e_1_2_7_6_1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2023.123135
– volume: 6
  year: 2018
  ident: e_1_2_7_50_1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800956
– volume: 617
  start-page: 798
  year: 2023
  ident: e_1_2_7_42_1
  publication-title: Nature.
  doi: 10.1038/s41586-023-06039-y
– volume: 38
  start-page: 1958
  year: 2009
  ident: e_1_2_7_36_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b819539k
– volume: 42
  start-page: 2039
  year: 2013
  ident: e_1_2_7_35_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35346F
– volume: 44
  start-page: 2798
  year: 2015
  ident: e_1_2_7_28_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00444B
– volume: 34
  year: 2023
  ident: e_1_2_7_53_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202311404
– volume: 50
  start-page: 12656
  year: 2021
  ident: e_1_2_7_31_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00239B
– volume: 12
  start-page: 908
  year: 2021
  ident: e_1_2_7_54_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21253-w
– volume: 52
  start-page: 6715
  year: 2023
  ident: e_1_2_7_30_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00251A
– volume: 11
  start-page: 768
  year: 2019
  ident: e_1_2_7_32_1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0314-x
– volume: 42
  start-page: 5849
  year: 2013
  ident: e_1_2_7_27_1
  publication-title: Chem. Soc. Rev.
– volume: 146
  start-page: 17495
  year: 2024
  ident: e_1_2_7_2_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c05538
– volume: 15
  start-page: 7933
  year: 2022
  ident: e_1_2_7_16_1
  publication-title: Energies.
  doi: 10.3390/en15217933
– volume: 14
  start-page: 4786
  year: 2023
  ident: e_1_2_7_52_1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC06710B
– volume: 14
  start-page: 17817
  year: 2014
  ident: e_1_2_7_21_1
  publication-title: Sensors (Basel).
  doi: 10.3390/s140917817
– volume: 85
  start-page: 1494
  year: 2006
  ident: e_1_2_7_24_1
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2005.12.023
– volume: 10
  start-page: 971
  year: 2024
  ident: e_1_2_7_48_1
  publication-title: Chem.
  doi: 10.1016/j.chempr.2023.12.024
– volume: 36
  start-page: 5534
  year: 2024
  ident: e_1_2_7_40_1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.4c00482
– volume: 7
  start-page: 2250
  year: 2019
  ident: e_1_2_7_25_1
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C8TC04818E
– volume: 52
  start-page: 1136
  year: 2007
  ident: e_1_2_7_60_1
  publication-title: J. Chem. Eng. Data.
  doi: 10.1021/je060441j
– volume: 38
  start-page: 2411
  year: 2017
  ident: e_1_2_7_23_1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24902
– volume: 13
  start-page: 3157
  year: 2022
  ident: e_1_2_7_9_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30850-2
– volume: 10
  start-page: 2074
  year: 2024
  ident: e_1_2_7_33_1
  publication-title: Chem.
  doi: 10.1016/j.chempr.2024.05.009
– volume: 5
  start-page: 3499
  year: 2022
  ident: e_1_2_7_49_1
  publication-title: Matter.
  doi: 10.1016/j.matt.2022.07.010
– volume: 15
  start-page: 25122
  year: 2023
  ident: e_1_2_7_43_1
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.2c05677
– volume: 34
  year: 2022
  ident: e_1_2_7_44_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106797
– volume: 6
  start-page: 20258
  year: 2016
  ident: e_1_2_7_17_1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01881E
– volume: 10
  year: 2022
  ident: e_1_2_7_55_1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202102146
– volume: 89
  start-page: 2118
  year: 2010
  ident: e_1_2_7_11_1
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2010.03.018
– volume: 14
  start-page: 8333
  year: 2022
  ident: e_1_2_7_18_1
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.1c24194
– volume: 212
  start-page: 236
  year: 2018
  ident: e_1_2_7_15_1
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2017.10.039
– volume: 8
  start-page: 240
  year: 2014
  ident: e_1_2_7_38_1
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-014-1432-z
– volume: 103
  start-page: 3899
  year: 2003
  ident: e_1_2_7_37_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr940745l
– volume: 145
  start-page: 22058
  year: 2023
  ident: e_1_2_7_41_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c07082
– volume: 31
  start-page: 3337
  year: 2008
  ident: e_1_2_7_14_1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.200800258
– volume: 13
  start-page: 6067
  year: 2022
  ident: e_1_2_7_56_1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC00908K
– volume: 44
  start-page: 157
  year: 2015
  ident: e_1_2_7_5_1
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2014.918884
– volume: 94
  start-page: 2319
  year: 1994
  ident: e_1_2_7_22_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00032a005
– volume: 8
  start-page: 77
  year: 2017
  ident: e_1_2_7_61_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00041-5
– volume: 282
  start-page: 3785
  year: 2009
  ident: e_1_2_7_20_1
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2009.06.034
– volume: 156
  start-page: 997
  year: 2009
  ident: e_1_2_7_10_1
  publication-title: Combust. Flame.
  doi: 10.1016/j.combustflame.2008.10.011
– volume: 14
  start-page: 6929
  year: 2018
  ident: e_1_2_7_58_1
  publication-title: Soft Matter.
  doi: 10.1039/C8SM01282B
– volume: 334
  year: 2023
  ident: e_1_2_7_13_1
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2022.126669
– volume: 61
  year: 2022
  ident: e_1_2_7_3_1
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202111623
– volume: 17
  start-page: 998
  year: 2016
  ident: e_1_2_7_12_1
  publication-title: Int. J. Eng. Res.
– volume: 3
  start-page: 917
  year: 2018
  ident: e_1_2_7_8_1
  publication-title: Nat. Energy.
  doi: 10.1038/s41560-018-0264-3
– volume: 132
  year: 2015
  ident: e_1_2_7_19_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.42106
– volume: 59
  start-page: 10160
  year: 2020
  ident: e_1_2_7_51_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916357
SSID ssj0028806
Score 2.485497
Snippet Although solvatochromic materials provide visual function to differentiate solvents, they fail to precisely monitor complex solvent environments where solvent...
SourceID crossref
SourceType Index Database
Title Charge‐Rearrangement Averaged Dye Design for Precise, Real‐Time, and Portable Monitoring of Complex Solvent Environments
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKOMBlAjYE44d8mMQhS2lsJ02O1ehUTQNN3SZNXCo7djak0qCqFQxx4MaVv5G_hPdsJ3W3HQaXtHLrJM37-vze8_feI2RXMlGZSqcxLL0yFqVI4jwpVWwqqY0olDS2HdD7D9noTByep-edzq-AtbRcqG75_da8kv-RKoyBXDFL9h8k254UBuA9yBeOIGE43knGuFd-YVq-whh5t5gsYDf4B_BzQFno6N0VcoOQqGE5hcdYz8K1U4QJ03Y2JoM0XE7LL8WcKveXn3tqNCqPqfkWndRTpElGwyBLLrRyB3APXyUmCkS2IIG5Fngc6k_h_v-RZRR8vKxnF1fLNuQjL2sbxj35PIdHGI277Sc-oQRfV3tadmgk6zCMwVKMy7Igsgl2G4_7ua8-a7w2ZgloQNfr5Iaud7VjMRG_iycEZ9sVP10vqn1tsWspiK5cM5vg_Ek7_x65z8DfsL75uK1DxkDJuTQ1f49N9c8ee7t-_cC6CcyU00dk0_sXdODA8ph0zOwJebDftPXbIj8caP78_L0GF9rAhQJcqIMLBbhQD5c9imCBWQiTPQrCpQ1I6AoktK6oBwn1IKEhSLbJ2cHwdH8U-xYccQmL4CLWYD2WCm1qyQtZ9MGZyPuVEZnQPV2qHEs9SSV4JrKsSGSel5kw2PORl5ypivGnZGNWz8wzQjU42uBeZ0nWU6LiRlWqr4pUp1pyDsvMc_KmeXSTL67SyuR2Ie3c-ZsvyMMV1l6SjcV8aV6BEblQr62A_wJwmXMj
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge%E2%80%90Rearrangement+Averaged+Dye+Design+for+Precise%2C+Real%E2%80%90Time%2C+and+Portable+Monitoring+of+Complex+Solvent+Environments&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Zhongyu&rft.au=Sahoo%2C+Smruti+R.&rft.au=Shen%2C+Shen&rft.au=Sun%2C+Hao&rft.date=2025-08-22&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202513349&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202513349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon