Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS 2 -based nanoconjugates
Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone marrow and blood. Systemic chemotherapy is considered the primary treatment strategy; unfortunately, healthy cells are also affected to a la...
Saved in:
Published in | Biomedical materials (Bristol) Vol. 16; no. 5; p. 55009 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1748-6041 1748-605X |
DOI | 10.1088/1748-605X/ac15b1 |
Cover
Loading…
Abstract | Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone marrow and blood. Systemic chemotherapy is considered the primary treatment strategy; unfortunately, healthy cells are also affected to a large extent, leading to severe side effects of this treatment. Targeted drug therapies are becoming increasingly popular in modern medicine, as they bypass normal tissues and cells. Two-dimensional MoS
-based nanomaterials have attracted attention in the biomedical field as promising agents for cancer diagnosis and therapy. Cancer cells typically (over)express distinctive cytoplasmic membrane-anchored or -spanning protein-based structures (e.g., receptors, enzymes) that distinguish them from healthy, non-cancerous cells. Targeting cancer cells via tumor-specific markers using MoS
-based nanocarriers loaded with labels or drugs can significantly improve specificity and reduce side effects of such treatment. SKM-1 is an established AML cell line that has been employed in various bio-research applications. However, to date, it has not been used as the subject of studies on selective cancer targeting by inorganic nanomaterials. Here, we demonstrate an efficient targeting of AML cells using MoS
nanoflakes prepared by a facile exfoliation route and functionalized with anti-CD33 antibody that binds to CD33 receptors expressed by SKM-1 cells. Microscopic analyses by confocal laser scanning microscopy supplemented by label-free confocal Raman microscopy proved that (anti-CD33)-MoS
conjugates were present on the cell surface and within SKM-1 cells, presumably having been internalized via CD33-mediated endocytosis. Furthermore, the cellular uptake of SKM-1 specific (anti-CD33)-MoS
conjugates assessed by flow cytometry analysis was significantly higher compared with the cellular uptake of SKM-1 nonspecific (anti-GPC3)-MoS
conjugates. Our results indicate the importance of appropriate functionalization of MoS
nanomaterials by tumor-recognizing elements that significantly increase their specificity and hence suggest the utilization of MoS
-based nanomaterials in the diagnosis and therapy of AML. |
---|---|
AbstractList | Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone marrow and blood. Systemic chemotherapy is considered the primary treatment strategy; unfortunately, healthy cells are also affected to a large extent, leading to severe side effects of this treatment. Targeted drug therapies are becoming increasingly popular in modern medicine, as they bypass normal tissues and cells. Two-dimensional MoS
-based nanomaterials have attracted attention in the biomedical field as promising agents for cancer diagnosis and therapy. Cancer cells typically (over)express distinctive cytoplasmic membrane-anchored or -spanning protein-based structures (e.g., receptors, enzymes) that distinguish them from healthy, non-cancerous cells. Targeting cancer cells via tumor-specific markers using MoS
-based nanocarriers loaded with labels or drugs can significantly improve specificity and reduce side effects of such treatment. SKM-1 is an established AML cell line that has been employed in various bio-research applications. However, to date, it has not been used as the subject of studies on selective cancer targeting by inorganic nanomaterials. Here, we demonstrate an efficient targeting of AML cells using MoS
nanoflakes prepared by a facile exfoliation route and functionalized with anti-CD33 antibody that binds to CD33 receptors expressed by SKM-1 cells. Microscopic analyses by confocal laser scanning microscopy supplemented by label-free confocal Raman microscopy proved that (anti-CD33)-MoS
conjugates were present on the cell surface and within SKM-1 cells, presumably having been internalized via CD33-mediated endocytosis. Furthermore, the cellular uptake of SKM-1 specific (anti-CD33)-MoS
conjugates assessed by flow cytometry analysis was significantly higher compared with the cellular uptake of SKM-1 nonspecific (anti-GPC3)-MoS
conjugates. Our results indicate the importance of appropriate functionalization of MoS
nanomaterials by tumor-recognizing elements that significantly increase their specificity and hence suggest the utilization of MoS
-based nanomaterials in the diagnosis and therapy of AML. |
Author | Kálosi, Anna Hofbauerová, Monika Šiffalovič, Peter Čepcová, Lucia Lakatoš, Boris Štefík, Pavol Jergel, Matej Annušová, Adriana Elefantová, Katarína Majková, Eva |
Author_xml | – sequence: 1 givenname: Pavol orcidid: 0000-0003-4644-5657 surname: Štefík fullname: Štefík, Pavol – sequence: 2 givenname: Adriana orcidid: 0000-0002-3769-9287 surname: Annušová fullname: Annušová, Adriana – sequence: 3 givenname: Boris orcidid: 0000-0003-0107-9999 surname: Lakatoš fullname: Lakatoš, Boris – sequence: 4 givenname: Katarína surname: Elefantová fullname: Elefantová, Katarína – sequence: 5 givenname: Lucia orcidid: 0000-0002-8567-3794 surname: Čepcová fullname: Čepcová, Lucia – sequence: 6 givenname: Monika orcidid: 0000-0003-3309-128X surname: Hofbauerová fullname: Hofbauerová, Monika – sequence: 7 givenname: Anna orcidid: 0000-0002-6329-3782 surname: Kálosi fullname: Kálosi, Anna – sequence: 8 givenname: Matej orcidid: 0000-0002-4482-7881 surname: Jergel fullname: Jergel, Matej – sequence: 9 givenname: Eva orcidid: 0000-0001-9597-9247 surname: Majková fullname: Majková, Eva – sequence: 10 givenname: Peter orcidid: 0000-0002-9807-0810 surname: Šiffalovič fullname: Šiffalovič, Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34280914$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtKAzEUhoNU7EX3riQvMDbXuSylWhUqLqzgQhiSzJmSOjMZksyib29LtQvB1fk5fP-B803RqHMdIHRNyS0leT6nmciTlMiPuTJUanqGJqfV6JQFHaNpCFtCZCF5cYHGXLCcFFRM0Oda-Q1E222wMkME3O6gcbbCDQxf0FqFDTRNwHqHF_ecYw8G-uh8EnowtrYGv7g3zHCiVYAKd6pzxnXbYaMihEt0XqsmwNXPnKH35cN68ZSsXh-fF3erxFBKRQJcy4zqXFBOFZOVZilongFhJuNGANMZpLk0klQapBSFYjzXDKQitWSV5DN0c7zbD7qFquy9bZXflb9v7gFyBIx3IXioTwgl5cFkeVBVHrSVR5P7SvqnYmxU0bouemWb_4vfPZx3tA |
CitedBy_id | crossref_primary_10_32604_or_2023_043026 crossref_primary_10_1002_adma_202310999 crossref_primary_10_1002_INMD_20240131 crossref_primary_10_1021_acsomega_3c01934 |
Cites_doi | 10.1002/adfm.201603758 10.1002/smll.201803706 10.1016/j.nano.2013.04.012 10.1038/srep01866 10.1002/chem.201803066 10.1016/j.bbmt.2014.11.007 10.1039/C9CP01951K 10.1111/j.1365-2141.1993.tb03334.x 10.1002/jrs.1250261103 10.3892/ol.2019.9976 10.1016/j.biomaterials.2017.09.017 10.1038/srep29726 10.1016/j.colsurfb.2018.09.048 10.1186/s13045-020-00863-9 10.3892/or.2017.5387 10.1186/1471-2164-16-S1-S5 10.1039/C9TA10130F 10.1002/chem.201500435 10.1039/C6CS00636A 10.1016/j.clml.2020.02.005 10.1016/j.matchemphys.2004.05.010 10.1039/C9BM01975H 10.1155/2017/4302320 10.1016/j.flatc.2017.06.007 10.1002/bip.10246 10.1016/j.jphs.2019.10.003 10.1002/smll.201602660 10.1186/s40580-019-0193-2 10.1016/j.materresbull.2014.04.025 10.1007/s10719-019-09903-0 10.1016/j.tiv.2015.05.011 10.1002/adma.201505345 10.1016/j.apmt.2018.09.003 10.1021/nn5020819 10.1016/j.ajps.2016.12.001 10.1002/adfm.201102111 10.7150/ntno.27308 10.1073/pnas.0502848102 10.7150/jca.28394 10.7534/j.issn.1009-2137.2015.06.022 10.1016/j.jcis.2017.08.062 10.1016/j.leukres.2016.05.021 10.1016/j.saa.2010.12.079 10.1021/ac0505730 10.1200/JCO.1985.3.12.1583 10.1038/s41578-018-0038-3 10.1021/acs.jpcc.6b02753 10.3109/10428199509056841 10.1117/1.1854682 10.3892/ol.2020.11607 10.1002/jrs.882 10.1016/j.cbi.2014.03.011 10.1364/AOP.9.000315 10.1529/biophysj.103.038604 10.1046/j.1432-1327.2000.01491.x 10.1021/nl301164v 10.1021/cm000517+ 10.1002/adfm.201605176 10.1186/s12943-016-0571-x 10.1016/j.cej.2018.06.100 10.1042/bj20031253 10.1021/mp5008212 10.1002/cpt.1962 10.1021/acsami.5b09722 10.1182/blood-2016-08-733196 10.1038/nrc.2016.108 10.1016/j.cell.2017.04.031 10.1016/j.biopha.2016.08.023 10.1038/srep14646 10.3892/mmr.2015.4353 10.1016/j.leukres.2010.01.015 10.1016/j.jconrel.2017.12.015 10.1038/leu.2014.15 10.1002/jrs.1734 10.1046/j.1523-1747.1998.00430.x 10.1063/1.436940 10.1002/jrs.1107 10.1016/j.apsusc.2015.10.089 10.1200/JCO.2017.77.6112 10.1021/acs.bioconjchem.6b00741 10.1016/j.biopha.2019.109736 10.1021/cm5044864 10.1002/1097-4555(200005)31:5<373::AID-JRS519>3.0.CO;2-H 10.1039/C4NR03753G 10.1002/1521-4095(200102)13:4<283::AID-ADMA283>3.0.CO;2-H 10.1177/1559325819887048 10.1016/j.flatc.2020.100161 10.1007/s11912-020-00964-1 10.2147/IJN.S24078 10.1016/j.nano.2020.102280 10.1016/j.exphem.2011.04.001 10.1126/science.1194975 10.1039/c2jm30587a 10.1021/acsami.7b17506 10.1088/0957-4484/27/11/115705 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1088/1748-605X/ac15b1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-605X |
ExternalDocumentID | 34280914 10_1088_1748_605X_ac15b1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 1JI 23N 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RNS RO9 ROL RPA S3P SY9 W28 CGR CUY CVF ECM EIF HAK NPM UCJ |
ID | FETCH-LOGICAL-c1114-e3b571b84131a25db26eb37e02c73c4e2b7e685c50dbe5549a238b2e5a0f52d53 |
ISSN | 1748-6041 |
IngestDate | Thu Jan 02 22:54:38 EST 2025 Tue Jul 01 03:54:21 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | label-free Raman imaging biotin–avidin MoS2 nanoflake conjugate acute myeloid leukemia receptor-specific targeting SKM-1 |
Language | English |
License | 2021 IOP Publishing Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1114-e3b571b84131a25db26eb37e02c73c4e2b7e685c50dbe5549a238b2e5a0f52d53 |
ORCID | 0000-0002-6329-3782 0000-0003-4644-5657 0000-0002-4482-7881 0000-0003-0107-9999 0000-0002-8567-3794 0000-0003-3309-128X 0000-0002-3769-9287 0000-0001-9597-9247 0000-0002-9807-0810 |
PMID | 34280914 |
ParticipantIDs | pubmed_primary_34280914 crossref_primary_10_1088_1748_605X_ac15b1 crossref_citationtrail_10_1088_1748_605X_ac15b1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biomedical materials (Bristol) |
PublicationTitleAlternate | Biomed Mater |
PublicationYear | 2021 |
References | Ahmadi (bmmac15b1bib31) 2020; 8 Chen (bmmac15b1bib48) 2016; 28 Lim (bmmac15b1bib8) 2010; 34 Anbazhagan (bmmac15b1bib56) 2016; 8 Wang (bmmac15b1bib67) 2020; 123 Zhang (bmmac15b1bib62) 2020; 20 Messingerova (bmmac15b1bib71) 2015; 29 Li (bmmac15b1bib107) 2015; 12 Marques (bmmac15b1bib103) 2017; 169 Fagnano (bmmac15b1bib93) 1995; 26 Rejman (bmmac15b1bib101) 2004; 377 bmmac15b1bib15 bmmac15b1bib16 bmmac15b1bib17 bmmac15b1bib18 bmmac15b1bib19 Chandran (bmmac15b1bib106) 2013; 9 Kurapati (bmmac15b1bib84) 2017; 27 Khanal (bmmac15b1bib4) 2020; 108 Liu (bmmac15b1bib55) 2014; 6 Kálosi (bmmac15b1bib75) 2020; 8 Vancsó (bmmac15b1bib78) 2016; 6 Li (bmmac15b1bib32) 2017; 13 (bmmac15b1bib12) 2002 Ariyasu (bmmac15b1bib53) 2017; 28 Lu (bmmac15b1bib72) 2015; 12 Ilyas (bmmac15b1bib2) 2015; 16 Lancet (bmmac15b1bib10) 2018; 36 Ruiz-Chica (bmmac15b1bib97) 2004; 35 Kim (bmmac15b1bib9) 2011; 39 Pallarès (bmmac15b1bib73) 2020; 13 Tan (bmmac15b1bib35) 2015; 21 Madzharova (bmmac15b1bib98) 2016; 120 Zhao (bmmac15b1bib68) 2020; 37 Bejanyan (bmmac15b1bib13) 2015; 21 Wang (bmmac15b1bib63) 2014; 219 Dong (bmmac15b1bib80) 2015; 5 Eikje (bmmac15b1bib90) 2005; 10 Yao (bmmac15b1bib39) 2012; 22 Xia (bmmac15b1bib34) 2017; 4 Kimura (bmmac15b1bib64) 2012; 32 Castellanos-Gomez (bmmac15b1bib79) 2016; 27 Moskovits (bmmac15b1bib86) 1978; 69 Itonaga (bmmac15b1bib82) 2014; 28 Huang (bmmac15b1bib50) 2017; 508 Novoselov (bmmac15b1bib36) 2005; 102 Coculova (bmmac15b1bib69) 2016; 48 Zhou (bmmac15b1bib26) 2018; 270 Chen (bmmac15b1bib43) 2001; 13 Behzadi (bmmac15b1bib102) 2017; 46 Abdallah (bmmac15b1bib5) 2020; 22 Li (bmmac15b1bib92) 2012; 22 Yadav (bmmac15b1bib22) 2019; 15 Yang (bmmac15b1bib51) 2018; 351 Castellanos-Gomez (bmmac15b1bib37) 2012; 12 Tian (bmmac15b1bib44) 2004; 87 Büchner (bmmac15b1bib7) 1985; 3 Gonciar (bmmac15b1bib24) 2019; 10 Stone (bmmac15b1bib96) 2002; 33 Furtmüller (bmmac15b1bib83) 2000; 267 Shi (bmmac15b1bib25) 2017; 17 Singh (bmmac15b1bib30) 2018; 13 Huang (bmmac15b1bib29) 2019; 17 Song (bmmac15b1bib23) 2017; 148 Burnett (bmmac15b1bib14) 2020; 20 de Gelder (bmmac15b1bib99) 2007; 38 Navya (bmmac15b1bib27) 2019; 6 Zhou (bmmac15b1bib65) 2019; 141 Uzunbajakava (bmmac15b1bib100) 2003; 72 Varrla (bmmac15b1bib40) 2015; 27 Stergiou (bmmac15b1bib49) 2018; 24 Chen (bmmac15b1bib59) 2016; 26 Zhang (bmmac15b1bib46) 2014; 8 Dong (bmmac15b1bib58) 2018; 10 Yu (bmmac15b1bib45) 2013; 3 Short (bmmac15b1bib89) 2005; 88 Howlader (bmmac15b1bib3) 2019 Nakagawa (bmmac15b1bib60) 1993; 85 Bodík (bmmac15b1bib77) 2019; 21 Shibui (bmmac15b1bib105) 2019; 17 Xiong (bmmac15b1bib33) 2020; 21 Zhu (bmmac15b1bib95) 2011; 78 Nath (bmmac15b1bib42) 2001; 13 Du (bmmac15b1bib28) 2018; 3 Liu (bmmac15b1bib66) 2016; 83 (bmmac15b1bib11) 2002 Wang (bmmac15b1bib85) 2015; 23 Clarkson (bmmac15b1bib94) 2000; 31 Döhner (bmmac15b1bib6) 2017; 129 Szatrowski (bmmac15b1bib81) 1991; 51 Shi (bmmac15b1bib57) 2017; 12 Zeng (bmmac15b1bib70) 2017; 2017 Montalbano (bmmac15b1bib104) 2017; 37 Xia (bmmac15b1bib74) 2011; 6 Siveen (bmmac15b1bib1) 2017; 16 Gniadecka (bmmac15b1bib87) 1998; 111 Ye (bmmac15b1bib47) 2014; 55 Shipp (bmmac15b1bib88) 2017; 9 Yin (bmmac15b1bib54) 2018; 2 Zhang (bmmac15b1bib52) 2019; 173 bmmac15b1bib20 bmmac15b1bib21 Santos (bmmac15b1bib91) 2005; 77 Nakagawa (bmmac15b1bib61) 1995; 17 Qiao (bmmac15b1bib41) 2015; 359 Coleman (bmmac15b1bib38) 2011; 331 Bugárová (bmmac15b1bib76) 2020; 30 |
References_xml | – volume: 26 start-page: 8715 year: 2016 ident: bmmac15b1bib59 article-title: Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603758 – year: 2002 ident: bmmac15b1bib11 article-title: PDQ pediatric treatment editorial board childhood acute myeloid leukemia/other myeloid malignancies treatment (PDQ®): patient version publication-title: PDQ Cancer Inf. Summ. – ident: bmmac15b1bib15 – volume: 15 year: 2019 ident: bmmac15b1bib22 article-title: 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications publication-title: Small doi: 10.1002/smll.201803706 – volume: 9 start-page: 1317 year: 2013 ident: bmmac15b1bib106 article-title: Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2013.04.012 – volume: 3 start-page: 1866 year: 2013 ident: bmmac15b1bib45 article-title: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films publication-title: Sci. Rep. doi: 10.1038/srep01866 – volume: 24 start-page: 18246 year: 2018 ident: bmmac15b1bib49 article-title: Molecular functionalization of two-dimensional MoS2 nanosheets publication-title: Chem.—A: Eur. J. doi: 10.1002/chem.201803066 – volume: 21 start-page: 454 year: 2015 ident: bmmac15b1bib13 article-title: Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study publication-title: Biol. Blood Marrow Transplant. doi: 10.1016/j.bbmt.2014.11.007 – volume: 21 start-page: 12396 year: 2019 ident: bmmac15b1bib77 article-title: An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoO: X nanoparticles publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP01951K – ident: bmmac15b1bib21 – volume: 85 start-page: 469 year: 1993 ident: bmmac15b1bib60 article-title: Establishment of a leukaemic cell line from a patient with acquisition of chromosomal abnormalities during disease progression in myelodysplastic syndrome publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.1993.tb03334.x – volume: 26 start-page: 991 year: 1995 ident: bmmac15b1bib93 article-title: Raman spectroscopic study of the avidin–biotin complex publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1250261103 – volume: 17 start-page: 3523 year: 2019 ident: bmmac15b1bib105 article-title: Glypican-3 expression in malignant small round cell tumors publication-title: Oncol. Lett. doi: 10.3892/ol.2019.9976 – volume: 148 start-page: 16 year: 2017 ident: bmmac15b1bib23 article-title: Nanomaterials for cancer immunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.09.017 – ident: bmmac15b1bib18 – year: 2002 ident: bmmac15b1bib12 article-title: PDQ adult treatment editorial board adult acute myeloid leukemia treatment (PDQ®): patient version publication-title: PDQ Cancer Inf. Summ. – volume: 6 year: 2016 ident: bmmac15b1bib78 article-title: The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy publication-title: Sci. Rep. doi: 10.1038/srep29726 – volume: 173 start-page: 101 year: 2019 ident: bmmac15b1bib52 article-title: Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2018.09.048 – volume: 13 start-page: 36 year: 2020 ident: bmmac15b1bib73 article-title: An auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-020-00863-9 – volume: 37 start-page: 1291 year: 2017 ident: bmmac15b1bib104 article-title: Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (review) publication-title: Oncol. Rep. doi: 10.3892/or.2017.5387 – volume: 16 start-page: S5 year: 2015 ident: bmmac15b1bib2 article-title: Next generation sequencing of acute myeloid leukemia: influencing prognosis publication-title: BMC Genomics doi: 10.1186/1471-2164-16-S1-S5 – volume: 8 start-page: 845 year: 2020 ident: bmmac15b1bib31 article-title: 2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10130F – volume: 32 start-page: 795 year: 2012 ident: bmmac15b1bib64 article-title: Antiproliferative and antitumor effects of azacitidine against the human myelodysplastic syndrome cell line SKM-1 publication-title: Anticancer Res. – volume: 21 start-page: 7170 year: 2015 ident: bmmac15b1bib35 article-title: Pristine basal- and edge-plane-oriented molybdenite MoS2 exhibiting highly anisotropic properties publication-title: Chem.—A Eur. J. doi: 10.1002/chem.201500435 – volume: 46 start-page: 4218 year: 2017 ident: bmmac15b1bib102 article-title: Cellular uptake of nanoparticles: journey inside the cell publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00636A – volume: 20 start-page: 341 year: 2020 ident: bmmac15b1bib14 article-title: AML: new drugs but new challenges publication-title: Clin. Lymphoma, Myeloma Leuk. doi: 10.1016/j.clml.2020.02.005 – volume: 87 start-page: 87 year: 2004 ident: bmmac15b1bib44 article-title: Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2004.05.010 – volume: 8 start-page: 1973 year: 2020 ident: bmmac15b1bib75 article-title: A bioconjugated MoS2 based nanoplatform with increased binding efficiency to cancer cells publication-title: Biomater. Sci. doi: 10.1039/C9BM01975H – ident: bmmac15b1bib17 – volume: 2017 year: 2017 ident: bmmac15b1bib70 article-title: Decitabine-induced changes in human myelodysplastic syndrome cell line SKM-1 are mediated by FOXO3A activation publication-title: J. Immunol. Res. doi: 10.1155/2017/4302320 – volume: 4 start-page: 1 year: 2017 ident: bmmac15b1bib34 article-title: Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking publication-title: FlatChem doi: 10.1016/j.flatc.2017.06.007 – volume: 72 start-page: 1 year: 2003 ident: bmmac15b1bib100 article-title: Nonresonant Raman imaging of protein distribution in single human cells publication-title: Biopolym.—Biospectroscopy Sect. doi: 10.1002/bip.10246 – volume: 141 start-page: 146 year: 2019 ident: bmmac15b1bib65 article-title: Metformin inhibits cell proliferation in SKM-1 cells via AMPK-mediated cell cycle arrest publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2019.10.003 – volume: 13 year: 2017 ident: bmmac15b1bib32 article-title: Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets publication-title: Small doi: 10.1002/smll.201602660 – volume: 6 start-page: 23 year: 2019 ident: bmmac15b1bib27 article-title: Current trends and challenges in cancer management and therapy using designer nanomaterials publication-title: Nano Converg. doi: 10.1186/s40580-019-0193-2 – volume: 55 start-page: 221 year: 2014 ident: bmmac15b1bib47 article-title: Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2014.04.025 – volume: 37 start-page: 151 year: 2020 ident: bmmac15b1bib68 article-title: Changes in heparan sulfate sulfotransferases and cell-surface heparan sulfate during SKM-1 cells granulocytic differentiation and A549 cells epithelial-mesenchymal transition publication-title: Glycoconj. J. doi: 10.1007/s10719-019-09903-0 – volume: 29 start-page: 1405 year: 2015 ident: bmmac15b1bib71 article-title: Acute myeloid leukemia cells MOLM-13 and SKM-1 established for resistance by azacytidine are crossresistant to P-glycoprotein substrates publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2015.05.011 – volume: 28 start-page: 5738 year: 2016 ident: bmmac15b1bib48 article-title: Functionalization of two-dimensional transition-metal dichalcogenides publication-title: Adv. Mater. doi: 10.1002/adma.201505345 – volume: 13 start-page: 242 year: 2018 ident: bmmac15b1bib30 article-title: 2D layered transition metal dichalcogenides (MoS2: synthesis, applications and theoretical aspects publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.09.003 – volume: 8 start-page: 6024 year: 2014 ident: bmmac15b1bib46 article-title: Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes publication-title: ACS Nano doi: 10.1021/nn5020819 – volume: 12 start-page: 235 year: 2017 ident: bmmac15b1bib57 article-title: Nanoplatform for efficacy tumor theranostic applications publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2016.12.001 – volume: 22 start-page: 1385 year: 2012 ident: bmmac15b1bib92 article-title: From bulk to monolayer MoS2: evolution of Raman scattering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102111 – volume: 2 start-page: 371 year: 2018 ident: bmmac15b1bib54 article-title: Functionalized MoS2 nanosheets as multi-gene delivery vehicles for in vivo pancreatic cancer therapy publication-title: Nanotheranostics doi: 10.7150/ntno.27308 – volume: 102 start-page: 10451 year: 2005 ident: bmmac15b1bib36 article-title: Two-dimensional atomic crystals publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0502848102 – volume: 10 start-page: 1358 year: 2019 ident: bmmac15b1bib24 article-title: Nanotechnology in metastatic cancer treatment: current achievements and future research trends publication-title: J. Cancer doi: 10.7150/jca.28394 – volume: 23 start-page: 1647 year: 2015 ident: bmmac15b1bib85 article-title: Magnetic nanoparticles of Fe3O4 enhance artesunate-inducing apoptosis of SKM-1 cells publication-title: Zhongguo Shi Yan Xue Ye Xue Za Zhi doi: 10.7534/j.issn.1009-2137.2015.06.022 – volume: 508 start-page: 214 year: 2017 ident: bmmac15b1bib50 article-title: Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS2 nanosheets with hyperbranched polyglycerol for photothermal therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.08.062 – volume: 48 start-page: 32 year: 2016 ident: bmmac15b1bib69 article-title: The expression of P-glycoprotein in leukemia cells is associated with the upregulated expression of nestin, a class 6 filament protein publication-title: Leuk. Res. doi: 10.1016/j.leukres.2016.05.021 – volume: 78 start-page: 1187 year: 2011 ident: bmmac15b1bib95 article-title: Raman spectra of amino acids and their aqueous solutions publication-title: Spectrochim. Acta—A: Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2010.12.079 – volume: 77 start-page: 6747 year: 2005 ident: bmmac15b1bib91 article-title: Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region publication-title: Anal. Chem. doi: 10.1021/ac0505730 – volume: 3 start-page: 1583 year: 1985 ident: bmmac15b1bib7 article-title: Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): two multicenter studies of the German AML cooperative group publication-title: J. Clin. Oncol. doi: 10.1200/JCO.1985.3.12.1583 – ident: bmmac15b1bib19 – volume: 3 start-page: 358 year: 2018 ident: bmmac15b1bib28 article-title: Transport and interactions of nanoparticles in the kidneys publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0038-3 – volume: 120 start-page: 15415 year: 2016 ident: bmmac15b1bib98 article-title: Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine, and uracil publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b02753 – volume: 17 start-page: 335 year: 1995 ident: bmmac15b1bib61 article-title: The SKM-1 leukemic cell line established from a patient with progression to myelomonocytic leukemia in myelodysplastic syndrome (MDS)-contribution to better understanding of MDS publication-title: Leuk. Lymphoma doi: 10.3109/10428199509056841 – volume: 10 year: 2005 ident: bmmac15b1bib90 article-title: Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema publication-title: J. Biomed. Opt. doi: 10.1117/1.1854682 – volume: 20 start-page: 551 year: 2020 ident: bmmac15b1bib62 article-title: SPAG6 silencing induces autophagic cell death in SKM-1 cells via the AMPK/MTOR/ULK1 signaling pathway publication-title: Oncol. Lett. doi: 10.3892/ol.2020.11607 – volume: 33 start-page: 564 year: 2002 ident: bmmac15b1bib96 article-title: Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.882 – volume: 219 start-page: 28 year: 2014 ident: bmmac15b1bib63 article-title: Artesunate induces apoptosis through caspase-dependent and -independent mitochondrial pathways in human myelodysplastic syndrome SKM-1 cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2014.03.011 – volume: 9 start-page: 315 year: 2017 ident: bmmac15b1bib88 article-title: Raman spectroscopy: techniques and applications in the life sciences publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.9.000315 – volume: 88 start-page: 4274 year: 2005 ident: bmmac15b1bib89 article-title: Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures publication-title: Biophys. J. doi: 10.1529/biophysj.103.038604 – volume: 267 start-page: 5858 year: 2000 ident: bmmac15b1bib83 article-title: Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2000.01491.x – volume: 12 start-page: 3187 year: 2012 ident: bmmac15b1bib37 article-title: Laser-thinning of MoS2: on demand generation of a single-layer semiconductor publication-title: Nano Lett. doi: 10.1021/nl301164v – volume: 13 start-page: 802 year: 2001 ident: bmmac15b1bib43 article-title: Low-temperature hydrothermal synthesis of transition metal dichalcogenides publication-title: Chem. Mater. doi: 10.1021/cm000517+ – volume: 27 year: 2017 ident: bmmac15b1bib84 article-title: Enzymatic biodegradability of pristine and functionalized transition metal dichalcogenide MoS2 nanosheets publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605176 – volume: 16 start-page: 13 year: 2017 ident: bmmac15b1bib1 article-title: Targeting acute myeloid leukemia stem cell signaling by natural products publication-title: Mol. Cancer doi: 10.1186/s12943-016-0571-x – volume: 351 start-page: 548 year: 2018 ident: bmmac15b1bib51 article-title: Facile synthesis of colloidal stable MoS2 nanoparticles for combined tumor therapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.100 – volume: 377 start-page: 159 year: 2004 ident: bmmac15b1bib101 article-title: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis publication-title: Biochem. J. doi: 10.1042/bj20031253 – volume: 12 start-page: 2010 year: 2015 ident: bmmac15b1bib107 article-title: CD33-targeted lipid nanoparticles (ACD33LNs) for therapeutic delivery of GTI-2040 to acute myelogenous leukemia publication-title: Mol. Pharm. doi: 10.1021/mp5008212 – volume: 108 start-page: 506 year: 2020 ident: bmmac15b1bib4 article-title: Novel treatment paradigms in acute myeloid leukemia publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1962 – volume: 8 start-page: 1827 year: 2016 ident: bmmac15b1bib56 article-title: MoS2-Gd chelate magnetic nanomaterials with core–shell structure used as contrast agents in in vivo magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09722 – volume: 129 start-page: 424 year: 2017 ident: bmmac15b1bib6 article-title: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel publication-title: Blood doi: 10.1182/blood-2016-08-733196 – volume: 17 start-page: 20 year: 2017 ident: bmmac15b1bib25 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.108 – volume: 169 start-page: 766 year: 2017 ident: bmmac15b1bib103 article-title: SnapShot: macropinocytosis publication-title: Cell doi: 10.1016/j.cell.2017.04.031 – volume: 83 start-page: 1032 year: 2016 ident: bmmac15b1bib66 article-title: A novel histone deacetylase inhibitor chidamide induces G0/G1 arrest and apoptosis in myelodysplastic syndromes publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.08.023 – volume: 5 year: 2015 ident: bmmac15b1bib80 article-title: Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets publication-title: Sci. Rep. doi: 10.1038/srep14646 – volume: 12 start-page: 7285 year: 2015 ident: bmmac15b1bib72 article-title: Wogonin inhibits the proliferation of myelodysplastic syndrome cells through the induction of cell cycle arrest and apoptosis publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4353 – volume: 34 start-page: 1214 year: 2010 ident: bmmac15b1bib8 article-title: Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine: daunorubicin formulation, in bone marrow xenografts publication-title: Leuk. Res. doi: 10.1016/j.leukres.2010.01.015 – ident: bmmac15b1bib20 – volume: 51 start-page: 794 year: 1991 ident: bmmac15b1bib81 article-title: Production of large amounts of hydrogen peroxide by human tumor cells publication-title: Cancer Res. – volume: 270 start-page: 290 year: 2018 ident: bmmac15b1bib26 article-title: Crossing the blood–brain barrier with nanoparticles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.12.015 – volume: 28 start-page: 1459 year: 2014 ident: bmmac15b1bib82 article-title: Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B publication-title: Leukemia doi: 10.1038/leu.2014.15 – volume: 38 start-page: 1133 year: 2007 ident: bmmac15b1bib99 article-title: Reference database of Raman spectra of biological molecules publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1734 – volume: 111 start-page: 1129 year: 1998 ident: bmmac15b1bib87 article-title: Water and protein structure in photoaged and chronically aged skin publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.1998.00430.x – volume: 69 start-page: 2306 year: 1978 ident: bmmac15b1bib86 article-title: A reinvestigation of the Raman spectrum of water publication-title: J. Chem. Phys. doi: 10.1063/1.436940 – volume: 35 start-page: 93 year: 2004 ident: bmmac15b1bib97 article-title: Characterization by Raman spectroscopy of conformational changes on guanine–cytosine and adenine–thymine oligonucleotides induced by aminooxy analogues of spermidine publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1107 – volume: 359 start-page: 130 year: 2015 ident: bmmac15b1bib41 article-title: Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.10.089 – volume: 36 start-page: 2684 year: 2018 ident: bmmac15b1bib10 article-title: CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.77.6112 – volume: 28 start-page: 1059 year: 2017 ident: bmmac15b1bib53 article-title: Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00741 – volume: 123 year: 2020 ident: bmmac15b1bib67 article-title: 4-amino-2-trifluoromethyl-phenyl retinate induced differentiation of human myelodysplastic syndromes SKM-1 cell lines by up-regulating DDX23 publication-title: Biomed. Pharmacother doi: 10.1016/j.biopha.2019.109736 – volume: 27 start-page: 1129 year: 2015 ident: bmmac15b1bib40 article-title: Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation publication-title: Chem. Mater. doi: 10.1021/cm5044864 – volume: 31 start-page: 373 year: 2000 ident: bmmac15b1bib94 article-title: Ultraviolet resonance Raman study of the avidin biotin complex publication-title: J. Raman Spectrosc. doi: 10.1002/1097-4555(200005)31:5<373::AID-JRS519>3.0.CO;2-H – ident: bmmac15b1bib16 – volume: 6 start-page: 11219 year: 2014 ident: bmmac15b1bib55 article-title: Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets publication-title: Nanoscale doi: 10.1039/C4NR03753G – volume: 13 start-page: 283 year: 2001 ident: bmmac15b1bib42 article-title: Simple synthesis of MoS2 and WS2 nanotubes publication-title: Adv. Mater. doi: 10.1002/1521-4095(200102)13:4<283::AID-ADMA283>3.0.CO;2-H – volume: 17 year: 2019 ident: bmmac15b1bib29 article-title: Targeting approaches of nanomedicines in acute myeloid leukemia publication-title: Dose-Response doi: 10.1177/1559325819887048 – volume: 21 year: 2020 ident: bmmac15b1bib33 article-title: Research progress on the preparations, characterizations and applications of large scale 2D transition metal dichalcogenides films publication-title: FlatChem doi: 10.1016/j.flatc.2020.100161 – volume: 22 start-page: 103 year: 2020 ident: bmmac15b1bib5 article-title: Management of acute myeloid leukemia (AML) in older patients publication-title: Curr. Oncol. Rep. doi: 10.1007/s11912-020-00964-1 – volume: 6 start-page: 1921 year: 2011 ident: bmmac15b1bib74 article-title: Effect of magnetic Fe3O4 nanoparticles with 2-methoxyestradiol on the cell-cycle progression and apoptosis of myelodysplastic syndrome cells publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S24078 – volume: 30 year: 2020 ident: bmmac15b1bib76 article-title: Molecular targeting of bioconjugated graphene oxide nanocarriers revealed at a cellular level using label-free Raman imaging publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2020.102280 – volume: 39 start-page: 741 year: 2011 ident: bmmac15b1bib9 article-title: Liposomal encapsulation of a synergistic molar ratio of cytarabine and daunorubicin enhances selective toxicity for acute myeloid leukemia progenitors as compared to analogous normal hematopoietic cells publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2011.04.001 – year: 2019 ident: bmmac15b1bib3 article-title: SEER cancer statistics review, 1975–2016 publication-title: Natl Cancer Inst. – volume: 331 start-page: 568 year: 2011 ident: bmmac15b1bib38 article-title: Two-dimensional nanosheets produced by liquid exfoliation of layered materials publication-title: Science doi: 10.1126/science.1194975 – volume: 22 start-page: 13494 year: 2012 ident: bmmac15b1bib39 article-title: Large-scale production of two-dimensional nanosheets publication-title: J. Mater. Chem. doi: 10.1039/c2jm30587a – volume: 10 start-page: 4271 year: 2018 ident: bmmac15b1bib58 article-title: Intelligent MoS2 nanotheranostic for targeted and enzyme-/PH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17506 – volume: 27 year: 2016 ident: bmmac15b1bib79 article-title: Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging publication-title: Nanotechnology doi: 10.1088/0957-4484/27/11/115705 |
SSID | ssj0059539 |
Score | 2.2670393 |
Snippet | Acute myeloid leukemia (AML) is a highly aggressive type of cancer caused by the uncontrolled proliferation of undifferentiated myeloblasts, affecting the bone... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 55009 |
SubjectTerms | Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacokinetics Cell Line, Tumor Disulfides - chemistry Drug Delivery Systems - methods Humans Leukemia, Myeloid, Acute - metabolism Molybdenum - chemistry Nanoconjugates - chemistry Nonlinear Optical Microscopy Sialic Acid Binding Ig-like Lectin 3 - immunology Sialic Acid Binding Ig-like Lectin 3 - metabolism |
Title | Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS 2 -based nanoconjugates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34280914 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4t3ykg_0gKK0iRNnnWPZBZU3Eq20B6SV7UykpdukancrlV_Gz2PGTrJZCohyiSLLGW0y33q-8TzM2HOBRgntmg5TyCGkHlKhLjId5pFJVFSUOpdU4PzhY7Z_mL6dyMlg8KOXtbRcmB37_bd1Jf-jVRxDvVKV7BU02wnFAbxH_eIVNYzXf9OxS-N2ZYaW4v3HFzCvZ0Uwh-URHM90QNvyZ8QwR-MkCXBxgxP0sUMqr6QUIfxHfwlEEJIpK4JKVzV6x9-WtLN2thbtdTX6Tp1IcP2bETV96RoTzHu7Cdsjub0XLaB0AfjxkSep53WXx0H9_N2kuD53c2K3OhUos-osxHtNZU1-mgNgfTpbcf85lHTyce_xd3qhfch_3Ahp9jFE3CVqtUvvMFVhFvk2WDvQH5OTtfU66-FS9hZfdLZcq4XLZgGXUtqhaKWR_bOxNPHKCLaB_19sY5ex6GL1Sk1JxpRkTL2Ea-y6QAeFTMKbT59bDiBz6c6w696pCZCjhN3uV-x6CWuEaM21cRTn4Da71fgmfM8D7Q4bQHWX3ex1rLzHvnaQ4w5yvIEcbyHHHeS4ueAEOX4JchwhxwX3kOPrkLvPDl-_Ohjth80BHaFFE5mGkBg5jI1CIhRrIQsjMjDJECJhh4lNQZghZEpaGRUGkLfmGgmiESB1VEpRyOQB26jqCjYZTzJpE5AqUrlKVWm1VTmS-QjiuCzzFLbYbvuVprbpXk-HqMynf9LMFnvRPXHiO7f8Ze5D_-G7mQm65Uil00dXkPKY3VgB-wnbWJwu4SlS1oV55tDxEzKbjWU |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+acute+myeloid+leukemia+cells+by+CD33+receptor-specific+MoS+2+-based+nanoconjugates&rft.jtitle=Biomedical+materials+%28Bristol%29&rft.au=%C5%A0tef%C3%ADk%2C+Pavol&rft.au=Annu%C5%A1ov%C3%A1%2C+Adriana&rft.au=Lakato%C5%A1%2C+Boris&rft.au=Elefantov%C3%A1%2C+Katar%C3%ADna&rft.date=2021-09-01&rft.issn=1748-6041&rft.eissn=1748-605X&rft.volume=16&rft.issue=5&rft.spage=55009&rft_id=info:doi/10.1088%2F1748-605X%2Fac15b1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_605X_ac15b1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-6041&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-6041&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-6041&client=summon |