Multistep optimization for the electrodeposited mixed perovskite FA 1−y Cs y PbBr x I 3−x solar cells
The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite F...
Saved in:
Published in | Nanotechnology Vol. 35; no. 1; p. 15706 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI 3 -based solar cells. Herein, we fabricated the mixed perovskite FA 1− y Cs y PbBr x I 3− x solar cells by an optimized electrodeposition method, in which the electrodeposited PbO 2 reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO 2 and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future. |
---|---|
AbstractList | The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI
-based solar cells. Herein, we fabricated the mixed perovskite FA
Cs
PbBr
I
solar cells by an optimized electrodeposition method, in which the electrodeposited PbO
reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO
and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future. The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI 3 -based solar cells. Herein, we fabricated the mixed perovskite FA 1− y Cs y PbBr x I 3− x solar cells by an optimized electrodeposition method, in which the electrodeposited PbO 2 reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO 2 and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future. |
Author | Li, Chunhe Zheng, Ren Ren, Kuankuan Fang, Zebo Shi, Biyun Xiang, Yanhong Liu, Shiyan Ye, Qiufeng |
Author_xml | – sequence: 1 givenname: Yanhong surname: Xiang fullname: Xiang, Yanhong – sequence: 2 givenname: Ren surname: Zheng fullname: Zheng, Ren – sequence: 3 givenname: Chunhe surname: Li fullname: Li, Chunhe – sequence: 4 givenname: Kuankuan orcidid: 0000-0003-4180-7348 surname: Ren fullname: Ren, Kuankuan – sequence: 5 givenname: Qiufeng surname: Ye fullname: Ye, Qiufeng – sequence: 6 givenname: Biyun surname: Shi fullname: Shi, Biyun – sequence: 7 givenname: Shiyan surname: Liu fullname: Liu, Shiyan – sequence: 8 givenname: Zebo surname: Fang fullname: Fang, Zebo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37788663$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1OwzAQhS0Eoj-wZ4V8gVA7TmxnWSoKlYpgAevITsbCkNaR7aKWE7DmiJyElEIXSGxmRk_vjfS-ATpcuiUgdEbJBSVSjijjNOF5KkeqMkaIA9TfS4eoT4pcJFkmsx4ahPBMCKUypceox4SQknPWR_Z21UQbIrTYtdEu7JuK1i2xcR7HJ8DQQBW9q6F1wUao8cKuu9mCd6_hpVPwdIzp5_vHBk8C3uB7fenxGs8w67Q1Dq5RHlfQNOEEHRnVBDj92UP0OL16mNwk87vr2WQ8TypKKUukVgyIyAouNU2BK17ngheG1lplEqAyuakUaM0p04UWRjHGpGaphLzoTjZE57u_7UovoC5bbxfKb8rfzp2B7AyVdyF4MHsLJeUWa7llWG4ZljusXYT_iVQ2foOKXtnm_-AXQPh_Qg |
CitedBy_id | crossref_primary_10_1088_1361_6528_ad3251 crossref_primary_10_1016_j_jallcom_2024_177648 |
Cites_doi | 10.1002/adfm.201606156 10.1016/j.solener.2020.07.020 10.1021/acs.jpcc.0c11259 10.1016/j.jallcom.2023.169104 10.1016/j.solener.2022.01.064 10.1021/acs.chemmater.1c04021 10.1039/D0EE00385A 10.1002/solr.202100993 10.1016/j.mtadv.2022.100232 10.1016/j.jpowsour.2017.12.075 10.1021/acs.energyfuels.2c04035 10.1021/acs.chemmater.5b03169 10.1038/s41586-022-05346-0 10.1002/solr.202000455 10.1021/acsami.0c09485 10.1038/s41578-023-00582-w 10.1039/d0cs01272f 10.1038/srep15889 10.1002/solr.202200345 10.1039/C9CS00711C 10.1002/solr.202101035 10.1002/solr.202200777 10.1002/smll.202300374 10.1016/j.cej.2021.128460 10.1016/j.ccr.2020.213633 10.1021/acsami.5b07222 10.1021/acs.chemrev.8b00318 10.1038/nmat4014 10.1038/s41598-018-20296-2 10.1039/C9TA12032G 10.1021/acsaem.1c04063 10.1016/j.electacta.2017.06.104 10.1021/acs.chemrev.8b00539 10.1021/acs.chemmater.5b04524 10.1016/j.nanoen.2015.04.025 10.1021/acsomega.6b00351 10.1016/j.mtener.2020.100449 10.1007/s10854-019-02438-y 10.1002/gch2.201900050 10.1021/acs.jpcc.8b05008 |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd. |
Copyright_xml | – notice: 2023 IOP Publishing Ltd. |
DBID | AAYXX CITATION NPM |
DOI | 10.1088/1361-6528/acff77 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6528 |
ExternalDocumentID | 37788663 10_1088_1361_6528_acff77 |
Genre | Journal Article |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT NPM |
ID | FETCH-LOGICAL-c1113-8ba3e074968b12e6a6d5769f1dba48eecf5fcaebb613b9b7fa3338b328e593333 |
ISSN | 0957-4484 |
IngestDate | Sun Jun 15 01:31:09 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Thu Jul 03 08:39:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | mixed perovskite solar cells FA1−y Cs y PbBr x I3−x electrodeposition |
Language | English |
License | 2023 IOP Publishing Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1113-8ba3e074968b12e6a6d5769f1dba48eecf5fcaebb613b9b7fa3338b328e593333 |
ORCID | 0000-0003-4180-7348 |
PMID | 37788663 |
ParticipantIDs | pubmed_primary_37788663 crossref_primary_10_1088_1361_6528_acff77 crossref_citationtrail_10_1088_1361_6528_acff77 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanotechnology |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2024 |
References | Bae (nanoacff77bib13) 2022; 14 Li (nanoacff77bib7) 2023; 19 Li (nanoacff77bib10) 2020; 12 Koza (nanoacff77bib23) 2015; 28 Heydari (nanoacff77bib29) 2019; 31 Razera (nanoacff77bib6) 2020; 8 Tu (nanoacff77bib8) 2023; 942 Lv (nanoacff77bib20) 2020; 207 Raiford (nanoacff77bib14) 2020; 13 Chen (nanoacff77bib11) 2022; 612 Popov (nanoacff77bib27) 2016; 1 Dunlap-Shohl (nanoacff77bib36) 2019; 119 Pham (nanoacff77bib38) 2022; 6 Li (nanoacff77bib31) 2022; 233 Al Katrib (nanoacff77bib17) 2022; 6 Du (nanoacff77bib34) 2020; 4 Liu (nanoacff77bib37) 2020; 49 Kour (nanoacff77bib41) 2019; 3 Sanchez (nanoacff77bib35) 2021; 50 Mahajan (nanoacff77bib5) 2021; 429 Adnan (nanoacff77bib12) 2018; 8 Kosta (nanoacff77bib24) 2017; 246 Gozalzadeh (nanoacff77bib25) 2021; 411 Nair (nanoacff77bib4) 2020; 17 Wang (nanoacff77bib21) 2021; 125 Zhou (nanoacff77bib26) 2017; 27 Wang (nanoacff77bib33) 2015; 27 Al Katrib (nanoacff77bib18) 2022; 5 Di Girolamo (nanoacff77bib16) 2022; 6 Hill (nanoacff77bib28) 2015; 7 Yang (nanoacff77bib40) 2018; 122 Huang (nanoacff77bib30) 2015; 5 Jena (nanoacff77bib3) 2019; 119 Chen (nanoacff77bib22) 2015; 15 NREL (nanoacff77bib1) 2023 Jeon (nanoacff77bib39) 2014; 13 Chou (nanoacff77bib9) 2022; 6 Zhu (nanoacff77bib2) 2023; 8 Al Katrib (nanoacff77bib19) 2022; 34 Li (nanoacff77bib32) 2022; 37 Charles (nanoacff77bib15) 2018; 378 |
References_xml | – volume: 27 year: 2017 ident: nanoacff77bib26 article-title: Fast and controllable electric-field-assisted reactive deposited stable and annealing-free perovskite toward applicable high-performance solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606156 – volume: 207 start-page: 618 year: 2020 ident: nanoacff77bib20 article-title: The preparation of all-inorganic CsPbI2−x Br1+x perovskite solar cells based on electrodeposited PbO2 film publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.020 – volume: 125 start-page: 2875 year: 2021 ident: nanoacff77bib21 article-title: Controllable electrochemical deposition and theoretical understanding of conformal perovskite on textured silicon towards efficient perovskite/silicon tandem solar cells publication-title: J. Phys. Chem. doi: 10.1021/acs.jpcc.0c11259 – volume: 942 year: 2023 ident: nanoacff77bib8 article-title: Slot-die coating fabrication of perovskite solar cells toward commercialization publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169104 – volume: 233 start-page: 515 year: 2022 ident: nanoacff77bib31 article-title: Electrodeposition of lead dioxide induces the fabrication of perovskite FAPbI3 film and electron-transport-layer-free solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2022.01.064 – volume: 34 start-page: 2218 year: 2022 ident: nanoacff77bib19 article-title: Effect of chlorine addition on the performance and stability of electrodeposited mixed perovskite solar cells publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c04021 – volume: 13 start-page: 1997 year: 2020 ident: nanoacff77bib14 article-title: Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00385A – volume: 6 year: 2022 ident: nanoacff77bib16 article-title: Electrodeposition as a versatile preparative tool for perovskite photovoltaics: aspects of metallization and selective contacts/active layer formation publication-title: Sol. RRL doi: 10.1002/solr.202100993 – volume: 14 year: 2022 ident: nanoacff77bib13 article-title: Recent progress of perovskite devices fabricated using thermal evaporation method: perspective and outlook publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2022.100232 – volume: 378 start-page: 717 year: 2018 ident: nanoacff77bib15 article-title: Electrodeposition of organic–inorganic tri-halide perovskites solar cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.075 – volume: 37 start-page: 791 year: 2022 ident: nanoacff77bib32 article-title: Improvement in efficiency and reproducibility for FAPbI3 solar cells with rapid crystallization publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c04035 – volume: 27 start-page: 7149 year: 2015 ident: nanoacff77bib33 article-title: Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03169 – volume: 612 start-page: 266 year: 2022 ident: nanoacff77bib11 article-title: Perovskite solar cells based on screen-printed thin films publication-title: Nature doi: 10.1038/s41586-022-05346-0 – volume: 4 year: 2020 ident: nanoacff77bib34 article-title: Crystallization control of methylammonium-free perovskite in two-step deposited printable triple-mesoscopic solar cells publication-title: Sol. RRL doi: 10.1002/solr.202000455 – volume: 12 start-page: 39082 year: 2020 ident: nanoacff77bib10 article-title: Ink engineering of inkjet printing perovskite publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09485 – volume: 8 start-page: 569 year: 2023 ident: nanoacff77bib2 article-title: Long-term operating stability in perovskite photovoltaics publication-title: Nat. Revi. Mater. doi: 10.1038/s41578-023-00582-w – volume: 50 start-page: 7108 year: 2021 ident: nanoacff77bib35 article-title: Rapid hybrid perovskite film crystallization from solution publication-title: Chem. Soc. Rev. doi: 10.1039/d0cs01272f – volume: 5 year: 2015 ident: nanoacff77bib30 article-title: Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells publication-title: Sci. Rep. doi: 10.1038/srep15889 – volume: 6 year: 2022 ident: nanoacff77bib38 article-title: Impact of halide anions in CsX (X = I, Br, Cl) on the microstructure and photovoltaic performance of FAPbI3-based perovskite solar cells publication-title: Sol. RRL doi: 10.1002/solr.202200345 – volume: 49 start-page: 1653 year: 2020 ident: nanoacff77bib37 article-title: Understanding of perovskite crystal growth and film formation in scalable deposition processes publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00711C – volume: 6 year: 2022 ident: nanoacff77bib9 article-title: Progress in spray coated perovskite films for solar cell applications publication-title: Sol. RRL doi: 10.1002/solr.202101035 – volume: 6 year: 2022 ident: nanoacff77bib17 article-title: A way to reach 10% efficiency with carbon-based electrodeposited mixed perovskite solar cells publication-title: Sol. RRL doi: 10.1002/solr.202200777 – volume: 19 year: 2023 ident: nanoacff77bib7 article-title: Constructing additives synergy strategy to doctor-blade efficient CH(3) NH(3) PbI(3) perovskite solar cells under a wide range of humidity from 45% to 82% publication-title: Small doi: 10.1002/smll.202300374 – volume: 411 year: 2021 ident: nanoacff77bib25 article-title: Dimethylformamide-free synthesis and fabrication of lead halide perovskite solar cells from electrodeposited PbS precursor films publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128460 – volume: 429 year: 2021 ident: nanoacff77bib5 article-title: Recent progress, fabrication challenges and stability issues of lead-free tin-based perovskite thin films in the field of photovoltaics publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213633 – volume: 7 start-page: 26012 year: 2015 ident: nanoacff77bib28 article-title: Electrodeposition of epitaxial lead iodide and conversion to textured methylammonium lead iodide perovskite publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07222 – volume: 119 start-page: 3193 year: 2019 ident: nanoacff77bib36 article-title: Synthetic approaches for halide perovskite thin films publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00318 – volume: 13 start-page: 897 year: 2014 ident: nanoacff77bib39 article-title: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 8 start-page: 2168 year: 2018 ident: nanoacff77bib12 article-title: All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells publication-title: Sci. Rep. doi: 10.1038/s41598-018-20296-2 – volume: 8 start-page: 242 year: 2020 ident: nanoacff77bib6 article-title: Instability of p–i–n perovskite solar cells under reverse bias publication-title: J. Mater. Chem. doi: 10.1039/C9TA12032G – volume: 5 start-page: 4461 year: 2022 ident: nanoacff77bib18 article-title: Optimizing perovskite solar cell architecture in multistep routes including electrodeposition publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c04063 – volume: 246 start-page: 1193 year: 2017 ident: nanoacff77bib24 article-title: Dimethylformamide-free processing of halide perovskite solar cells from electrodeposited PbI2 precursor films publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.104 – volume: 119 start-page: 3036 year: 2019 ident: nanoacff77bib3 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00539 – volume: 28 start-page: 399 year: 2015 ident: nanoacff77bib23 article-title: Epitaxial electrodeposition of methylammonium lead iodide perovskites publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04524 – volume: 15 start-page: 216 year: 2015 ident: nanoacff77bib22 article-title: A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.025 – volume: 1 start-page: 1296 year: 2016 ident: nanoacff77bib27 article-title: Scalable route to the fabrication of CH(3)NH(3)PbI(3) perovskite thin films by electrodeposition and vapor conversion publication-title: ACS Omega doi: 10.1021/acsomega.6b00351 – volume: 17 year: 2020 ident: nanoacff77bib4 article-title: Recent trends in efficiency-stability improvement in perovskite solar cells publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100449 – volume: 31 start-page: 154 year: 2019 ident: nanoacff77bib29 article-title: A novel approach for preparation of CH3NH3PbBr3 via direct transformation of electrodeposited PbO2 for photodetector application publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-019-02438-y – volume: 3 year: 2019 ident: nanoacff77bib41 article-title: Potential substitutes for replacement of lead in perovskite solar cells: a review publication-title: Glob Chall doi: 10.1002/gch2.201900050 – volume: 122 start-page: 17088 year: 2018 ident: nanoacff77bib40 article-title: High bending durability of efficient flexible perovskite solar cells using metal oxide electron transport layer publication-title: J. Phys. Chem. doi: 10.1021/acs.jpcc.8b05008 – year: 2023 ident: nanoacff77bib1 |
SSID | ssj0011821 |
Score | 2.4291482 |
Snippet | The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 15706 |
Title | Multistep optimization for the electrodeposited mixed perovskite FA 1−y Cs y PbBr x I 3−x solar cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37788663 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCDQeJhhfY4D8wAuKTHGcOM5jN1GtfE7TJpWnyHYdVkHTamlR4a_f-SNpygABL07kxLHk3y_nu7PPh9BzoAU10kiSSa5IIqgk0ghOKLcRPmVMZW5jh99_4EdnyZtROlpnRXXRJQv1Uv_4ZVzJ_6AKdYCrjZL9B2Tbj0IF3AO-UALCUP4Vxi56FmCaRzP486chpLLdORhS3IyN25kFmuV0soLSHg3-rbZe22jQjyiJQCrUUByrg4toFQ0jRuBSW5s3sn79uqvAgjSeLa6440eT4Hb-JKvzWZgMnTva-PqTdcTZu4lf5l9W5y2pTrzwe7uU1Zdl4GtwRcRJxxVhvPhknBKehnDvIF_9cSRdHl0R2yDqrAehaW3nJ12WPr9LB8f51AHJMrDbeZCLm4dlN4-uoxsx2A02pcXw43G7rATGFA1r1dBlr-2w57vbRreaD2yoKRsGh1M8Tu-gnWAx4L6H_y66ZqpddLtzjuQuuun28er6HvrcUgJ3KYGBEhgogX-mBHaUwGtK4EEfU4K_48MaCksJvMJDzAhcHCWwo8R9dDZ4fXp4REIuDaJhNmNEKMkMqIs5F4rGhks-BkszL-lYyUQYo8u01NIoBeqdylVWSsaYUCwWJs3hlj1AW9WsMo8QFtlYKJWl0EQkWnKwsK3jTGWC61cmL_dQrxm6QoeD5m2-k6-F2_AgRGHHvbDjXvhx30Mv2hZzf8jKH9596NFo32wge_zbJ_toe03XJ2hrcbE0T0GXXKhnjh-XYaFx4A |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistep+optimization+for+the+electrodeposited+mixed+perovskite+FA+1-+y+Cs+y+PbBr+x+I+3-+x+solar+cells&rft.jtitle=Nanotechnology&rft.au=Xiang%2C+Yanhong&rft.au=Zheng%2C+Ren&rft.au=Li%2C+Chunhe&rft.au=Ren%2C+Kuankuan&rft.date=2024-01-01&rft.eissn=1361-6528&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1088%2F1361-6528%2Facff77&rft_id=info%3Apmid%2F37788663&rft.externalDocID=37788663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |