Low 114 cm−3 free carrier concentration in epitaxial β-Ga2O3 grown by MOCVD
We report on record low free carrier concentration values in metalorganic chemical vapor deposition (MOCVD) grown β-Ga2O3 by using N2O for oxidation. Contrary to the pure oxygen, the N2O oxidant produced β-Ga2O3 thin films co-doped with nitrogen and hydrogen, but the incorporation efficiency of both...
Saved in:
Published in | APL materials Vol. 8; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | We report on record low free carrier concentration values in metalorganic chemical vapor deposition (MOCVD) grown β-Ga2O3 by using N2O for oxidation. Contrary to the pure oxygen, the N2O oxidant produced β-Ga2O3 thin films co-doped with nitrogen and hydrogen, but the incorporation efficiency of both impurities is strongly dependent on key MOCVD growth parameters. An array of growth conditions resulted in β-Ga2O3 thin films with N and H concentrations ranging as high as ∼2 × 1019 cm−3 and ∼7 × 1018 cm−3, respectively, to films with no SIMS detectable N and H was identified. Films grown without detectable N and H concentrations showed a room temperature electron mobility of 153 cm2/V s with the corresponding free carrier concentration of 2.4 × 1014 cm−3. This is the lowest room temperature carrier concentration reported for MOCVD grown β-Ga2O3 with excellent electron mobility. A thin β-Ga2O3 buffer layer grown using N2O reduced the net background concentration in an oxygen grown film and is attributed to the compensation of Si at the film/substrate interface by N, which acts as a deep acceptor. The results show that the use of the N2O oxidant can lead to low background concentration and high electron mobility, which paves the road for the demonstration of high-performance power electronic devices with high breakdown voltages and low on-resistances. |
---|---|
AbstractList | We report on record low free carrier concentration values in metalorganic chemical vapor deposition (MOCVD) grown β-Ga2O3 by using N2O for oxidation. Contrary to the pure oxygen, the N2O oxidant produced β-Ga2O3 thin films co-doped with nitrogen and hydrogen, but the incorporation efficiency of both impurities is strongly dependent on key MOCVD growth parameters. An array of growth conditions resulted in β-Ga2O3 thin films with N and H concentrations ranging as high as ∼2 × 1019 cm−3 and ∼7 × 1018 cm−3, respectively, to films with no SIMS detectable N and H was identified. Films grown without detectable N and H concentrations showed a room temperature electron mobility of 153 cm2/V s with the corresponding free carrier concentration of 2.4 × 1014 cm−3. This is the lowest room temperature carrier concentration reported for MOCVD grown β-Ga2O3 with excellent electron mobility. A thin β-Ga2O3 buffer layer grown using N2O reduced the net background concentration in an oxygen grown film and is attributed to the compensation of Si at the film/substrate interface by N, which acts as a deep acceptor. The results show that the use of the N2O oxidant can lead to low background concentration and high electron mobility, which paves the road for the demonstration of high-performance power electronic devices with high breakdown voltages and low on-resistances. |
Author | Alema, Fikadu Speck, James S. Zhang, Yuewei Orishchin, Nazar Osinsky, Andrei Valente, Nicholas Mauze, Akhil |
Author_xml | – sequence: 1 givenname: Fikadu orcidid: 0000-0002-1007-7613 surname: Alema fullname: Alema, Fikadu – sequence: 2 givenname: Yuewei orcidid: 0000-0002-4192-1442 surname: Zhang fullname: Zhang, Yuewei – sequence: 3 givenname: Andrei surname: Osinsky fullname: Osinsky, Andrei – sequence: 4 givenname: Nazar surname: Orishchin fullname: Orishchin, Nazar – sequence: 5 givenname: Nicholas orcidid: 0000-0002-0830-3116 surname: Valente fullname: Valente, Nicholas – sequence: 6 givenname: Akhil surname: Mauze fullname: Mauze, Akhil – sequence: 7 givenname: James S. surname: Speck fullname: Speck, James S. |
BookMark | eNpNkL1OwzAURi1UJErpwBt4ZUi5144TZ0QBClJQBn7EFjnuNQpqncqJVLoxlpVH4UF4iD4JRXRA-qTvTGc4x2zgW0-MnSJMEBJ5jhOFUqRKHLChwCSJlBTPg398xMZd9woACFLqLBmy-6JdccR4-_6xm11sN5-Su0DErQmhocBt6y35Ppi-aT1vPKdl05u3xsz591c0NaKU_CW0K8_rNb8r86fLE3bozLyj8f5H7PH66iG_iYpyeptfFJFFyERkncz0DCBN6pgExs5ArbVLCTSgUS7VGc7qxKFCpVJnSCqhdhQjKCQgOWJnf14b2q4L5KplaBYmrCuE6jdIhdU-iPwBlIlUhw |
CitedBy_id | crossref_primary_10_1103_PhysRevB_105_155201 crossref_primary_10_1063_5_0027870 crossref_primary_10_1002_pssa_202200616 crossref_primary_10_1021_acsnano_2c01957 crossref_primary_10_1021_acsami_1c08506 crossref_primary_10_1093_oxfmat_itac004 crossref_primary_10_1063_5_0025970 crossref_primary_10_1021_acs_cgd_2c00290 crossref_primary_10_1557_s43578_021_00371_7 crossref_primary_10_1109_LED_2022_3200862 crossref_primary_10_1063_5_0096245 crossref_primary_10_1002_pssr_202000145 crossref_primary_10_1063_5_0031267 crossref_primary_10_1063_5_0060327 crossref_primary_10_1007_s43673_021_00033_0 crossref_primary_10_1063_5_0011910 crossref_primary_10_1063_5_0189793 crossref_primary_10_3390_ma17112727 crossref_primary_10_35848_1347_4065_abcf05 crossref_primary_10_1016_j_heliyon_2023_e23157 crossref_primary_10_1088_2631_8695_acc00c crossref_primary_10_1016_j_mssp_2020_105572 crossref_primary_10_1103_PhysRevB_107_024109 crossref_primary_10_1063_5_0208744 crossref_primary_10_1109_TED_2024_3360016 crossref_primary_10_1557_s43578_021_00458_1 crossref_primary_10_35848_1347_4065_acbeb8 crossref_primary_10_1063_5_0104010 crossref_primary_10_1063_5_0147787 crossref_primary_10_1109_JSEN_2024_3373252 crossref_primary_10_1063_5_0149248 crossref_primary_10_1016_j_fmre_2021_11_002 crossref_primary_10_1063_5_0160541 crossref_primary_10_1116_6_0000619 crossref_primary_10_1063_5_0188773 crossref_primary_10_1063_5_0047821 crossref_primary_10_1002_admi_202400122 crossref_primary_10_1116_6_0002594 crossref_primary_10_1063_5_0153626 crossref_primary_10_1002_aelm_202300844 crossref_primary_10_3390_ma15238362 crossref_primary_10_1063_5_0031484 crossref_primary_10_1063_5_0072611 crossref_primary_10_1063_5_0031562 crossref_primary_10_1063_5_0059657 crossref_primary_10_1116_6_0001307 crossref_primary_10_1021_acs_cgd_3c00815 crossref_primary_10_1149_2162_8777_ac1652 crossref_primary_10_1063_5_0145659 crossref_primary_10_1088_2515_7639_ad218b crossref_primary_10_1016_j_scriptamat_2022_114623 crossref_primary_10_1063_5_0027884 crossref_primary_10_1063_5_0155622 crossref_primary_10_1039_D2TC01128J crossref_primary_10_35848_1347_4065_ac8bbc crossref_primary_10_1116_6_0002884 crossref_primary_10_1088_1361_6463_abbc96 crossref_primary_10_1063_5_0130654 crossref_primary_10_1088_1361_6463_ac8490 crossref_primary_10_1063_5_0122886 crossref_primary_10_1088_1361_6463_aba313 crossref_primary_10_1016_j_apsusc_2021_152335 crossref_primary_10_1063_5_0142671 |
Cites_doi | 10.1116/1.4922340 10.7567/apex.10.035701 10.1109/led.2016.2568139 10.1063/1.3499306 10.7567/jjap.55.1202a2 10.1063/1.111452 10.1117/12.2260824 10.1063/1.5058059 10.1002/pssc.200674884 10.1088/1361-6641/aaba98 10.1063/1.4968550 10.7567/jjap.55.1202b9 10.1143/jjap.47.8506 10.1149/2.0341907jss 10.1016/s0022-0248(02)01866-3 10.1063/1.5034474 10.1063/1.4977857 10.1007/bf02665851 10.1016/j.jcrysgro.2019.01.018 10.7567/apex.8.015503 10.1016/j.jallcom.2017.04.020 10.1063/1.1330559 10.1063/1.5050040 10.1016/j.jcrysgro.2014.02.002 10.7567/1882-0786/ab08ad 10.1063/1.5109678 10.7567/apex.10.071101 10.1063/1.4922814 10.1063/1.3674287 10.1063/1.5132954 10.1063/1.5063807 10.1002/pssa.201330092 10.1109/led.2017.2697359 10.1063/1.4821858 10.1149/2.0081702jss 10.1063/1.3309694 10.1016/j.jcrysgro.2004.06.027 10.1063/1.4983814 10.1143/apex.5.035502 10.1002/crat.201000341 10.1002/pssa.201600688 10.1016/j.tsf.2018.09.006 10.1039/c5ce01106j 10.1063/1.4945267 10.1088/0953-8984/23/33/334212 10.1109/led.2012.2215004 10.1016/j.ccr.2019.02.005 10.1016/j.jcrysgro.2017.06.001 10.1109/tsm.2018.2873488 10.1063/1.5045601 10.1063/1.331646 10.1063/1.5108790 10.7567/apex.10.041102 10.1063/1.5064471 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1063/1.5132752 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2166-532X |
ExternalDocumentID | 10_1063_1_5132752 |
GroupedDBID | 5VS AAFWJ AAYXX ABFTF ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AJDQP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BCNDV CITATION EBS FRP GROUPED_DOAJ KQ8 M~E O-B OK1 RIP RNS RQS |
ID | FETCH-LOGICAL-c1092-cf398d0076b4e214fa0b88f7e0801a5f7891db6f151557fae352555741051e0e3 |
ISSN | 2166-532X |
IngestDate | Fri Aug 23 02:49:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1092-cf398d0076b4e214fa0b88f7e0801a5f7891db6f151557fae352555741051e0e3 |
ORCID | 0000-0002-0830-3116 0000-0002-1007-7613 0000-0002-4192-1442 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.5132752 |
ParticipantIDs | crossref_primary_10_1063_1_5132752 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | APL materials |
PublicationYear | 2020 |
References | (2023062319090806200_c43) 1994; 64 (2023062319090806200_c57) 2015; 106 (2023062319090806200_c35) 2018 (2023062319090806200_c38) 2019; 510 (2023062319090806200_c7) 2016; 55 (2023062319090806200_c17) 2016; 37 (2023062319090806200_c24) 2017; 475 (2023062319090806200_c55) 2019; 115 (2023062319090806200_c5) 2004; 270 (2023062319090806200_c14) 2017; 110 (2023062319090806200_c28) 2017; 214 2023062319090806200_c33 2023062319090806200_c32 (2023062319090806200_c40) 2014; 392 (2023062319090806200_c41) 2015; 17 (2023062319090806200_c30) 2015; 8 (2023062319090806200_c26) 2018; 31 (2023062319090806200_c6) 2010; 45 (2023062319090806200_c15) 2019; 12 (2023062319090806200_c45) 2018; 33 (2023062319090806200_c9) 2007; 4 (2023062319090806200_c27) 2019; 114 (2023062319090806200_c50) 2017; 10 (2023062319090806200_c12) 2019; 7 (2023062319090806200_c16) 2016; 55 (2023062319090806200_c11) 2016; 108 (2023062319090806200_c37) 2003; 248 (2023062319090806200_c39) 2019; 387 (2023062319090806200_c13) 2017; 10105 (2023062319090806200_c58) 2016; 109 (2023062319090806200_c53) 2010; 97 (2023062319090806200_c36) 2001; 30 (2023062319090806200_c56) 2017; 110 (2023062319090806200_c18) 2017; 38 (2023062319090806200_c31) 2018; 13 (2023062319090806200_c54) 2011; 23 (2023062319090806200_c23) 2014; 211 (2023062319090806200_c46) 2017; 712 (2023062319090806200_c34) 2019; 7 (2023062319090806200_c42) 2013; 103 (2023062319090806200_c25) 2019; 7 2023062319090806200_c59 (2023062319090806200_c19) 1982; 53 (2023062319090806200_c47) 2018; 113 (2023062319090806200_c49) 2017; 10 (2023062319090806200_c52) 2010; 96 (2023062319090806200_c29) 2018; 666 2023062319090806200_c60 (2023062319090806200_c4) 2008; 47 (2023062319090806200_c10) 2017; 10 (2023062319090806200_c22) 2015; 33 (2023062319090806200_c51) 2018; 113 (2023062319090806200_c44) 2019; 7 (2023062319090806200_c3) 2012; 5 (2023062319090806200_c2) 2012; 100 (2023062319090806200_c20) 2012; 33 (2023062319090806200_c21) 2019; 8 (2023062319090806200_c48) 2018; 113 (2023062319090806200_c1) 2000; 77 (2023062319090806200_c8) 2016; 6 |
References_xml | – volume: 33 start-page: 041508 issue: 4 year: 2015 ident: 2023062319090806200_c22 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.4922340 – volume: 13 start-page: 76 year: 2018 ident: 2023062319090806200_c31 publication-title: Semicond. Today Compd. Adv. Silicon – volume: 10 start-page: 035701 issue: 3 year: 2017 ident: 2023062319090806200_c50 publication-title: Appl. Phys. Express doi: 10.7567/apex.10.035701 – volume: 37 start-page: 902 issue: 7 year: 2016 ident: 2023062319090806200_c17 publication-title: IEEE Electron Device Lett. doi: 10.1109/led.2016.2568139 – volume: 97 start-page: 142106 issue: 14 year: 2010 ident: 2023062319090806200_c53 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3499306 – volume: 55 start-page: 1202A2 issue: 12 year: 2016 ident: 2023062319090806200_c7 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/jjap.55.1202a2 – volume: 64 start-page: 2715 year: 1994 ident: 2023062319090806200_c43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.111452 – ident: 2023062319090806200_c60 – volume: 10105 start-page: 101051M year: 2017 ident: 2023062319090806200_c13 publication-title: Proc. SPIE doi: 10.1117/12.2260824 – volume: 7 start-page: 022506 year: 2019 ident: 2023062319090806200_c25 publication-title: APL Mater. doi: 10.1063/1.5058059 – volume: 4 start-page: 2310 issue: 7 year: 2007 ident: 2023062319090806200_c9 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200674884 – volume: 33 start-page: 05lt02 issue: 5 year: 2018 ident: 2023062319090806200_c45 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aaba98 – volume: 109 start-page: 212101 issue: 21 year: 2016 ident: 2023062319090806200_c58 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4968550 – volume: 55 start-page: 1202b9 issue: 12 year: 2016 ident: 2023062319090806200_c16 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/jjap.55.1202b9 – volume: 47 start-page: 8506 issue: 11R year: 2008 ident: 2023062319090806200_c4 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/jjap.47.8506 – volume: 8 start-page: Q3187 issue: 7 year: 2019 ident: 2023062319090806200_c21 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0341907jss – volume: 248 start-page: 20 year: 2003 ident: 2023062319090806200_c37 publication-title: J. Cryst. Growth doi: 10.1016/s0022-0248(02)01866-3 – volume: 113 start-page: 062101 issue: 6 year: 2018 ident: 2023062319090806200_c51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5034474 – ident: 2023062319090806200_c59 – volume: 110 start-page: 103506 issue: 10 year: 2017 ident: 2023062319090806200_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4977857 – volume: 30 start-page: 659 issue: 6 year: 2001 ident: 2023062319090806200_c36 publication-title: J. Electron. Mater. doi: 10.1007/bf02665851 – volume: 510 start-page: 76 year: 2019 ident: 2023062319090806200_c38 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2019.01.018 – volume: 8 start-page: 015503 issue: 1 year: 2015 ident: 2023062319090806200_c30 publication-title: Appl. Phys. Express doi: 10.7567/apex.8.015503 – volume: 712 start-page: 379 year: 2017 ident: 2023062319090806200_c46 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.04.020 – volume: 77 start-page: 4166 issue: 25 year: 2000 ident: 2023062319090806200_c1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1330559 – volume: 113 start-page: 102103 issue: 10 year: 2018 ident: 2023062319090806200_c47 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5050040 – volume: 392 start-page: 30 year: 2014 ident: 2023062319090806200_c40 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.02.002 – volume: 12 start-page: 044005 issue: 4 year: 2019 ident: 2023062319090806200_c15 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab08ad – volume: 114 start-page: 250601 issue: 25 year: 2019 ident: 2023062319090806200_c27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5109678 – volume: 10 start-page: 071101 issue: 7 year: 2017 ident: 2023062319090806200_c49 publication-title: Appl. Phys. Express doi: 10.7567/apex.10.071101 – ident: 2023062319090806200_c33 – volume: 106 start-page: 242103 year: 2015 ident: 2023062319090806200_c57 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922814 – volume: 100 start-page: 013504 issue: 1 year: 2012 ident: 2023062319090806200_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3674287 – volume: 7 start-page: 121110 issue: 12 year: 2019 ident: 2023062319090806200_c34 publication-title: APL Mater. doi: 10.1063/1.5132954 – volume: 7 start-page: 022519 issue: 2 year: 2019 ident: 2023062319090806200_c44 publication-title: APL Mater. doi: 10.1063/1.5063807 – volume: 211 start-page: 27 issue: 1 year: 2014 ident: 2023062319090806200_c23 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201330092 – volume: 38 start-page: 775 issue: 6 year: 2017 ident: 2023062319090806200_c18 publication-title: IEEE Electron Device Lett. doi: 10.1109/led.2017.2697359 – volume: 103 start-page: 123511 issue: 12 year: 2013 ident: 2023062319090806200_c42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4821858 – volume: 6 start-page: Q3040 issue: 2 year: 2016 ident: 2023062319090806200_c8 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0081702jss – volume: 96 start-page: 062110 issue: 6 year: 2010 ident: 2023062319090806200_c52 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3309694 – volume: 270 start-page: 420 issue: 3-4 year: 2004 ident: 2023062319090806200_c5 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.06.027 – volume: 110 start-page: 202104 issue: 20 year: 2017 ident: 2023062319090806200_c56 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4983814 – volume: 5 start-page: 035502 issue: 3 year: 2012 ident: 2023062319090806200_c3 publication-title: Appl. Phys. Express doi: 10.1143/apex.5.035502 – volume: 45 start-page: 1229 issue: 12 year: 2010 ident: 2023062319090806200_c6 publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201000341 – volume: 214 start-page: 1600688 year: 2017 ident: 2023062319090806200_c28 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201600688 – volume: 666 start-page: 182 year: 2018 ident: 2023062319090806200_c29 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.09.006 – volume: 17 start-page: 6744 issue: 35 year: 2015 ident: 2023062319090806200_c41 publication-title: CrystEngComm doi: 10.1039/c5ce01106j – volume: 108 start-page: 133503 issue: 13 year: 2016 ident: 2023062319090806200_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4945267 – ident: 2023062319090806200_c32 – volume: 23 start-page: 334212 issue: 33 year: 2011 ident: 2023062319090806200_c54 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/23/33/334212 – volume: 33 start-page: 1598 issue: 11 year: 2012 ident: 2023062319090806200_c20 publication-title: IEEE Electron Device Lett. doi: 10.1109/led.2012.2215004 – volume: 387 start-page: 436 year: 2019 ident: 2023062319090806200_c39 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.005 – volume: 475 start-page: 77 year: 2017 ident: 2023062319090806200_c24 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2017.06.001 – volume: 31 start-page: 467 issue: 4 year: 2018 ident: 2023062319090806200_c26 publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/tsm.2018.2873488 – volume: 113 start-page: 192102 issue: 19 year: 2018 ident: 2023062319090806200_c48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5045601 – volume: 53 start-page: 1759 issue: 3 year: 1982 ident: 2023062319090806200_c19 publication-title: J. Appl. Phys. doi: 10.1063/1.331646 – year: 2018 ident: 2023062319090806200_c35 article-title: Device Quality β-Ga2O3 and β-(AlxGa1-x)2O3 heterostructures-Control of doping and impurity incorporation in MOCVD Process – volume: 115 start-page: 032101 issue: 3 year: 2019 ident: 2023062319090806200_c55 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5108790 – volume: 10 start-page: 041102 issue: 4 year: 2017 ident: 2023062319090806200_c10 publication-title: Appl. Phys. Express doi: 10.7567/apex.10.041102 – volume: 7 start-page: 022527 issue: 2 year: 2019 ident: 2023062319090806200_c12 publication-title: APL Mater. doi: 10.1063/1.5064471 |
SSID | ssj0001033896 |
Score | 2.2088797 |
Snippet | We report on record low free carrier concentration values in metalorganic chemical vapor deposition (MOCVD) grown β-Ga2O3 by using N2O for oxidation. Contrary... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Low 114 cm−3 free carrier concentration in epitaxial β-Ga2O3 grown by MOCVD |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELagXOCAoICgQGVV5BS5-Gd_vMcSWqr-UBAtKqfI3vWiqGSLQqLSnnosVx6FB-Eh-iTMeLfOluZQkKKV5SSbZL8v429mxzOEvIC_jHTKFUw5I1lkpWJWR4rByqVtUYAmLTCgv_02Wd-LNvbj_Wmuqt9dMrbL-cnMfSX_gyrMAa64S_YfkA0nhQkYA75wBITheC2Mtw6PuuBpNAkLOguDfOiHugPCqluOHCZ3jXxvuhy3KVZNrVxfLwTbhnzHuHmnt9p5JdkbI3dU9zO656hNt3d6H1-3JezKu60uyNz69wW-fHFDL0PXBgemmFwJR3-auCM3CBHdb9gv-zgkVE6fwH73mN1ZG_4TM2pHJcAF5SHDwxsvKZKExcq3Sod1ZsZcY311i2Rypk0HEYXhheUYHOe0Lnd7uW72X-tZyDL099cT1Rf95q03yS0J9ggN4eZ7PQ3FcfDTfSe38A0valAl6mX44JZyaUmQ3XvkbuM70JWaCPfJDVfNkzutipIPyAegBAVKnJ_-gEc-PD_7qSgSgDYEoJcIQAcVDQSgv3_V4FMPPrXH1IP_kOytre721lnTN4PlgmeS5aXKdIH3WG3kpIhKw63WZerAOxAmLlOdCdx9iVo2TkvjsCQujDDjVzju1CMyVx1W7jGh4A2btBDSxoWOTGatSXgueSkSnvFcmSdk6eKa9L_W5VH6Vy77wnVe9JTcnvLoGZkbjybuOei9sV30cZJFj9kfsNlP5Q |
link.rule.ids | 315,783,787,867,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+114%E2%80%89%E2%80%89cm%E2%88%923+free+carrier+concentration+in+epitaxial+%CE%B2-Ga2O3+grown+by+MOCVD&rft.jtitle=APL+materials&rft.au=Alema%2C+Fikadu&rft.au=Zhang%2C+Yuewei&rft.au=Osinsky%2C+Andrei&rft.au=Orishchin%2C+Nazar&rft.date=2020-02-01&rft.issn=2166-532X&rft.eissn=2166-532X&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1063%2F1.5132752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5132752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-532X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-532X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-532X&client=summon |