Model Reference Adaptive Control of 2 \times 2 Coupled Linear Hyperbolic PDEs
We solve a model reference adaptive control problem for a class of linear <inline-formula><tex-math notation="LaTeX"> 2 \times 2</tex-math></inline-formula> hyperbolic partial differential equations (PDEs) with uncertain system parameters subject to harmonic disturb...
Saved in:
Published in | IEEE transactions on automatic control Vol. 63; no. 8; pp. 2405 - 2420 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2017.2767378 |
Cover
Loading…
Abstract | We solve a model reference adaptive control problem for a class of linear <inline-formula><tex-math notation="LaTeX"> 2 \times 2</tex-math></inline-formula> hyperbolic partial differential equations (PDEs) with uncertain system parameters subject to harmonic disturbances, from a single boundary measurement anticollocated with the actuation. This is done by transforming the system into a canonical form, from which filters are designed so that the states can be expressed as linear combinations of the filters and uncertain parameters, a representation facilitating for the design of adaptive laws. A stabilizing controller is then combined with the adaptive laws to make the measured signal asymptotically track the output of a reference model. The reference model is taken as a simple transport PDE. Moreover, pointwise boundedness of all variables in the closed loop is proved, provided the reference signal is bounded. The theory is demonstrated in a simulation. |
---|---|
AbstractList | We solve a model reference adaptive control problem for a class of linear <inline-formula><tex-math notation="LaTeX"> 2 \times 2</tex-math></inline-formula> hyperbolic partial differential equations (PDEs) with uncertain system parameters subject to harmonic disturbances, from a single boundary measurement anticollocated with the actuation. This is done by transforming the system into a canonical form, from which filters are designed so that the states can be expressed as linear combinations of the filters and uncertain parameters, a representation facilitating for the design of adaptive laws. A stabilizing controller is then combined with the adaptive laws to make the measured signal asymptotically track the output of a reference model. The reference model is taken as a simple transport PDE. Moreover, pointwise boundedness of all variables in the closed loop is proved, provided the reference signal is bounded. The theory is demonstrated in a simulation. |
Author | Aamo, Ole Morten Anfinsen, Henrik |
Author_xml | – sequence: 1 givenname: Henrik orcidid: 0000-0002-8234-8830 surname: Anfinsen fullname: Anfinsen, Henrik email: henrik.anfinsen@ntnu.no organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 2 givenname: Ole Morten surname: Aamo fullname: Aamo, Ole Morten email: aamo@ntnu.no organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway |
BookMark | eNp9kE1Lw0AQhhepYFu9C172D6TudzbHEqsVWhSpNyFsdmdhJc2GTRT6701p8eDB08zAPMM7zwxN2tgCQreULCglxf1uWS4YofmC5Srnub5AUyqlzphkfIKmhFCdFUyrKzTr-89xVELQKdpuo4MGv4GHBK0FvHSmG8I34DK2Q4oNjh4z_DGEPfRjU8avrgGHN6EFk_D60EGqYxMsfn1Y9dfo0pumh5tznaP3x9WuXGebl6fncrnJLCWaZWNe7ThwK2tOclbnkhNBasOUNswLRZwQTFjBuSqMJ-MLUnvPc-ckK4S1fI7U6a5Nse8T-MqGwQzhGNmEpqKkOkqpRinVUUp1ljKC5A_YpbA36fAfcndCAgD8rmuiFVWM_wDfXmxI |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_automatica_2020_109295 crossref_primary_10_1016_j_ifacol_2023_10_104 crossref_primary_10_1016_j_automatica_2024_111713 crossref_primary_10_1080_00207179_2023_2254869 crossref_primary_10_1109_TCSI_2020_2983570 crossref_primary_10_1002_acs_3516 crossref_primary_10_1002_asjc_2399 crossref_primary_10_1109_TCYB_2022_3223168 crossref_primary_10_1109_TSMC_2023_3321379 crossref_primary_10_1080_03081079_2019_1609955 crossref_primary_10_1002_acs_3279 crossref_primary_10_1007_s12555_019_0743_8 crossref_primary_10_1016_j_automatica_2020_109078 crossref_primary_10_1109_TNNLS_2022_3224245 crossref_primary_10_1002_acs_3740 crossref_primary_10_3934_math_2024148 crossref_primary_10_1002_rnc_6295 crossref_primary_10_1109_TAC_2023_3241830 crossref_primary_10_1109_LCSYS_2023_3244999 crossref_primary_10_1109_TAC_2024_3422891 crossref_primary_10_1016_j_sysconle_2017_08_006 crossref_primary_10_1002_rnc_6791 crossref_primary_10_1016_j_asoc_2021_107300 |
Cites_doi | 10.1016/j.automatica.2017.06.026 10.1016/j.automatica.2016.02.007 10.1109/TAC.2014.2335374 10.1016/0270-0255(86)90061-8 10.1016/j.sysconle.2015.09.009 10.1016/j.automatica.2016.05.030 10.1016/j.automatica.2007.02.014 10.1109/TAC.2013.2274723 10.1016/j.sysconle.2008.02.005 10.1002/0471459100 10.1109/TAC.2012.2228035 10.1109/CDC.2011.6160338 10.1109/TCST.2012.2204751 10.1007/978-0-8176-4877-0 10.1016/j.automatica.2016.09.020 10.1109/TAC.2006.887903 10.1016/j.ifacol.2016.07.438 10.1002/rnc.3331 10.1109/TAC.2016.2530624 10.1109/TCST.2016.2631511 10.1109/9.975513 10.1515/9781400835362 10.1016/j.automatica.2007.02.015 10.1109/TAC.2015.2398882 10.1016/0022-0396(84)90135-9 10.1109/CDC.2014.7039701 10.1016/j.automatica.2016.10.027 10.1016/j.mcm.2006.01.016 10.1016/j.ifacol.2016.07.447 10.1016/j.sysconle.2017.03.008 10.1109/TAC.2015.2512847 10.1109/TAC.2014.2322435 10.1016/j.automatica.2014.09.001 10.1109/TAC.2008.927798 10.1109/CDC.2006.377703 10.23919/ACC.2017.7963000 10.1016/S0294-1449(02)00004-5 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TAC.2017.2767378 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 2420 |
ExternalDocumentID | 10_1109_TAC_2017_2767378 8086162 |
Genre | orig-research |
GrantInformation_xml | – fundername: VISTA—A basic research program in collaboration between Norwegian Academy of Science and Letters, and Statoil |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c1082-1098d3e3c5b3072b753040ba268a2f460d4424c43369af025258ff37dd5294cc3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Tue Jul 01 03:36:21 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Wed Aug 27 02:47:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1082-1098d3e3c5b3072b753040ba268a2f460d4424c43369af025258ff37dd5294cc3 |
ORCID | 0000-0002-8234-8830 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2017_2767378 crossref_primary_10_1109_TAC_2017_2767378 ieee_primary_8086162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Aug. 2018-8-00 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 anfinsen (ref24) 2016 ref2 anfinsen (ref34) 2017 ref1 ref39 ref17 ref38 ref16 ref19 ref18 anfinsen (ref23) 2016 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 krsti? (ref40) 1995 |
References_xml | – ident: ref38 doi: 10.1016/j.automatica.2017.06.026 – ident: ref16 doi: 10.1016/j.automatica.2016.02.007 – start-page: 93 year: 2016 ident: ref23 article-title: Stabilization of linear $ 2 \times 2$ hyperbolic systems with uncertain coupling coefficients-Part I: Identifier-based design publication-title: Proc Australian Control Conf – ident: ref8 doi: 10.1109/TAC.2014.2335374 – ident: ref4 doi: 10.1016/0270-0255(86)90061-8 – ident: ref35 doi: 10.1016/j.sysconle.2015.09.009 – start-page: 99 year: 2016 ident: ref24 article-title: Stabilization of linear $ 2 \times 2$ hyperbolic systems with uncertain coupling coefficients-Part II: Swapping design publication-title: Proc Australian Control Conf – ident: ref14 doi: 10.1016/j.automatica.2016.05.030 – ident: ref18 doi: 10.1016/j.automatica.2007.02.014 – year: 1995 ident: ref40 publication-title: Nonlinear and Adaptive Control Design – ident: ref12 doi: 10.1109/TAC.2013.2274723 – ident: ref10 doi: 10.1016/j.sysconle.2008.02.005 – ident: ref41 doi: 10.1002/0471459100 – ident: ref28 doi: 10.1109/TAC.2012.2228035 – ident: ref11 doi: 10.1109/CDC.2011.6160338 – ident: ref2 doi: 10.1109/TCST.2012.2204751 – ident: ref39 doi: 10.1007/978-0-8176-4877-0 – ident: ref37 doi: 10.1016/j.automatica.2016.09.020 – year: 2017 ident: ref34 article-title: Adaptive disturbance rejection in $ 2 \times 2$ linear hyperbolic PDEs publication-title: Proc 56th Conf Decis Control – ident: ref6 doi: 10.1109/TAC.2006.887903 – ident: ref31 doi: 10.1016/j.ifacol.2016.07.438 – ident: ref22 doi: 10.1002/rnc.3331 – ident: ref25 doi: 10.1109/TAC.2016.2530624 – ident: ref33 doi: 10.1109/TCST.2016.2631511 – ident: ref9 doi: 10.1109/9.975513 – ident: ref20 doi: 10.1515/9781400835362 – ident: ref19 doi: 10.1016/j.automatica.2007.02.015 – ident: ref15 doi: 10.1109/TAC.2015.2398882 – ident: ref5 doi: 10.1016/0022-0396(84)90135-9 – ident: ref30 doi: 10.1109/CDC.2014.7039701 – ident: ref32 doi: 10.1016/j.automatica.2016.10.027 – ident: ref3 doi: 10.1016/j.mcm.2006.01.016 – ident: ref36 doi: 10.1016/j.ifacol.2016.07.447 – ident: ref26 doi: 10.1016/j.sysconle.2017.03.008 – ident: ref13 doi: 10.1109/TAC.2015.2512847 – ident: ref29 doi: 10.1109/TAC.2014.2322435 – ident: ref21 doi: 10.1016/j.automatica.2014.09.001 – ident: ref17 doi: 10.1109/TAC.2008.927798 – ident: ref7 doi: 10.1109/CDC.2006.377703 – ident: ref27 doi: 10.23919/ACC.2017.7963000 – ident: ref1 doi: 10.1016/S0294-1449(02)00004-5 |
SSID | ssj0016441 |
Score | 2.261494 |
Snippet | We solve a model reference adaptive control problem for a class of linear <inline-formula><tex-math notation="LaTeX"> 2 \times 2</tex-math></inline-formula>... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2405 |
SubjectTerms | Adaptation models Adaptive control Backstepping distributed parameter systems Harmonic analysis linear systems Mathematical model Observers Sensors |
Title | Model Reference Adaptive Control of 2 \times 2 Coupled Linear Hyperbolic PDEs |
URI | https://ieeexplore.ieee.org/document/8086162 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcX5RQ5eBNu1adqmx1E3hjDxsMEOQsnnxbGOuV78631Ju6Ii4i2UFML7fnkv74fQnS0lJUYaTzBCPSpSC_OibCDHAxEHIU_dPeT0OZnM6dMiXnTQQ_sWRmvtms-0b5eulq9KWdmrsgGD-Du0BncPErf6rVZbMbB-vba6oMCEtSXJIBvMhrnt4Up9klpUFvbNBX3BVHEuZXyEprvD1J0kb361Fb78-DGn8b-nPUaHTWyJh7UwnKCOXp2igy8TB3toarHPlrgdL4uHiq-txcN53bOOS4MJfnWQ87DIy2q91ApDygoqgSeQtW6EHSWMXx5H72doPh7N8onXICp4MgRfDzY3YyrSkYwF6DYRkKuAEgtOEsaJoUmgKCVU0ihKMm4gHCIxMyZKlYpJRqWMzlF3Va70BcJaGQrZoVTMhFRxknEquExZQiGAVJz20WBH5EI248Yt6sWycGlHkBXAlsKypWjY0kf37R_retTGH3t7luDtvobWl79_vkL7xMqF69u7Rt3tptI3EEtsxa0Tok8FJcJB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG8IHtSDLzTiswcvJm6Mrtu6I5kQVCAeIOFgsvR5kTCCcPGvt982FjTGeGuWLmm-fs9-jx9Cd5BKCo00jmCEOlREAPOiwJHjngi8No_yd8jhKOxP6PM0mNbQQ9ULo7XOi8-0C8s8l68yuYanshaz_ncbFO5OAM24RbdWlTMAy17oXSvChFVJSS9ujTsJVHFFLokAl4V9M0JbqCq5UekdouHmOEUtybu7XglXfv6Y1Pjf8x6hg9K7xJ2CHY5RTc9P0P7WzMEGGgL62QxXA2ZxR_EF6DycFFXrODOY4LccdN4ukmy9mGmFbdBqhQL3bdy6FDBMGL8-dj9O0aTXHSd9p8RUcGTbWnurdWOmfO3LQFjpJsJGK1aMBSch48TQ0FOUEiqp74cxN9YhIgEzxo-UCkhMpfTPUH2ezfU5wloZauNDqZhpU8VJzKngMmIhtS6k4rSJWhsip7IcOA64F7M0Dzy8OLXXksK1pOW1NNF99ceiGLbxx94GELzaV9L64vfPt2i3Px4O0sHT6OUS7RHgkbyK7wrVV8u1vraexUrc5Az1BVZKxYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Reference+Adaptive+Control+of+%24+2+%5Ctimes+2%24+Coupled+Linear+Hyperbolic+PDEs&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Anfinsen%2C+Henrik&rft.au=Aamo%2C+Ole+Morten&rft.date=2018-08-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=63&rft.issue=8&rft.spage=2405&rft.epage=2420&rft_id=info:doi/10.1109%2FTAC.2017.2767378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2017_2767378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |