Viewport-Aware Deep Reinforcement Learning Approach for 360 ^\circ Video Caching
360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive experience to the users. However, 360<inline-formula><tex-math notation="LaTeX">^{\c...
Saved in:
Published in | IEEE transactions on multimedia Vol. 24; pp. 386 - 399 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-9210 1941-0077 |
DOI | 10.1109/TMM.2021.3052339 |
Cover
Abstract | 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive experience to the users. However, 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is associated with high bandwidth requirements. The required bandwidth can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene and that users request viewports that overlap with each other. Motivated by the findings of our recent works where the benefits of caching video tiles at edge servers instead of caching entire 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos were shown, in this paper, we introduce the concept of virtual viewports that have the same number of tiles with the original viewports. The tiles forming these viewports are the most popular ones for each video and are determined by the users' requests. Then, we propose a reactive caching scheme that assumes unknown videos' and viewports' popularity. Our scheme determines which videos to cache as well as which is the optimal virtual viewport per video. Virtual viewports permit to lower the dimensionality of the cache optimization problem. To solve the problem, we first formulate the content placement of 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos in edge cache networks as a Markov Decision Process (MDP), and then we determine the optimal caching placement using the Deep Q-Network (DQN) algorithm. The proposed solution aims at maximizing the overall quality of the 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos delivered to the end-users by caching the most popular 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos at base quality along with a virtual viewport in high quality. We extensively evaluate the performance of the proposed system and compare it with that of known systems such as Least Frequently Used (LFU), Least Recently Used (LRU), First In First Out (FIFO), over both synthetic and real 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video traces. The results reveal the large benefits coming from reactive caching of virtual viewports instead of the original ones in terms of the overall quality of the rendered viewports, the cache hit ratio, and the servicing cost. |
---|---|
AbstractList | 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive experience to the users. However, 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is associated with high bandwidth requirements. The required bandwidth can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene and that users request viewports that overlap with each other. Motivated by the findings of our recent works where the benefits of caching video tiles at edge servers instead of caching entire 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos were shown, in this paper, we introduce the concept of virtual viewports that have the same number of tiles with the original viewports. The tiles forming these viewports are the most popular ones for each video and are determined by the users' requests. Then, we propose a reactive caching scheme that assumes unknown videos' and viewports' popularity. Our scheme determines which videos to cache as well as which is the optimal virtual viewport per video. Virtual viewports permit to lower the dimensionality of the cache optimization problem. To solve the problem, we first formulate the content placement of 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos in edge cache networks as a Markov Decision Process (MDP), and then we determine the optimal caching placement using the Deep Q-Network (DQN) algorithm. The proposed solution aims at maximizing the overall quality of the 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos delivered to the end-users by caching the most popular 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos at base quality along with a virtual viewport in high quality. We extensively evaluate the performance of the proposed system and compare it with that of known systems such as Least Frequently Used (LFU), Least Recently Used (LRU), First In First Out (FIFO), over both synthetic and real 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video traces. The results reveal the large benefits coming from reactive caching of virtual viewports instead of the original ones in terms of the overall quality of the rendered viewports, the cache hit ratio, and the servicing cost. |
Author | Maniotis, Pantelis Thomos, Nikolaos |
Author_xml | – sequence: 1 givenname: Pantelis orcidid: 0000-0001-9432-0440 surname: Maniotis fullname: Maniotis, Pantelis email: p.maniotis@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, U.K – sequence: 2 givenname: Nikolaos orcidid: 0000-0001-7266-2642 surname: Thomos fullname: Thomos, Nikolaos email: nthomos@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, U.K |
BookMark | eNp9kE1LAzEQhoNUsK3eBS_5A1snyWazOZb6CVsUqT2JSzY7q5F2s2QXiv_elBYPHjzNwPs-w_BMyKj1LRJyyWDGGOjr1XI548DZTIDkQugTMmY6ZQmAUqO4Sw6J5gzOyKTvvwBYKkGNyfPa4a7zYUjmOxOQ3iB29AVd2_hgcYvtQAs0oXXtB513XfDGftKYUZEBfX-zLli6djV6uohJbJ2T08Zserw4zil5vbtdLR6S4un-cTEvEssgh0RBbUHFXyvWyNRIyUBlKYLiOq-1qdIaIZe1qKw2VsqGoxXMaKGzHAEqFFOSHe7a4Ps-YFNaN5jB-XYIxm1KBuXeSxm9lHsv5dFLBOEP2AW3NeH7P-TqgDhE_K1rwXPBQPwAXP5ugQ |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_JSAC_2022_3145813 crossref_primary_10_1007_s11036_024_02291_2 crossref_primary_10_1109_JIOT_2024_3405493 crossref_primary_10_1007_s44196_023_00377_5 crossref_primary_10_1007_s10922_022_09649_5 crossref_primary_10_1109_TSC_2024_3451237 crossref_primary_10_1016_j_sysarc_2025_103401 crossref_primary_10_1109_ACCESS_2023_3297280 crossref_primary_10_3390_electronics13214200 crossref_primary_10_1109_TMM_2022_3172550 crossref_primary_10_1109_TMM_2023_3321439 crossref_primary_10_1109_JIOT_2023_3263885 crossref_primary_10_1109_TSC_2023_3347741 crossref_primary_10_1109_OJCOMS_2024_3426098 crossref_primary_10_1109_TWC_2021_3121584 crossref_primary_10_3390_s22030819 crossref_primary_10_1109_ACCESS_2022_3194512 crossref_primary_10_3390_s21082867 crossref_primary_10_1109_JIOT_2022_3197798 crossref_primary_10_1109_JIOT_2023_3287187 crossref_primary_10_3390_app12157581 crossref_primary_10_1109_JSYST_2023_3262255 crossref_primary_10_1016_j_jnca_2022_103342 crossref_primary_10_1109_JSAC_2023_3345418 crossref_primary_10_1109_TBC_2024_3374119 crossref_primary_10_11834_jig_230025 |
Cites_doi | 10.1109/JETCAS.2019.2898877 10.1109/JSAC.2018.2844983 10.1109/JSAC.2019.2933887 10.1038/nature16961 10.1109/JSAC.2018.2845000 10.1109/ISM.2016.0089 10.1109/ICCAD.2017.8203866 10.1109/ICC.2017.7996611 10.1093/teamat/17.4.155 10.1109/APNOMS.2017.8094203 10.1109/ICCW.2018.8403711 10.1109/TWC.2016.2636139 10.1109/IC3D.2017.8251913 10.1109/TNN.1998.712192 10.1109/MMSP.2017.8122230 10.1109/INFOCOM.2014.6848038 10.1145/3241539.3241565 10.1145/3083187.3083219 10.1109/TWC.2018.2803816 10.1109/CISS.2018.8362276 10.1109/TMM.2019.2957993 10.1109/ISIT.2014.6874793 10.1109/VCIP47243.2019.8965938 10.1109/MCOM.2016.7565183 10.1109/ACCESS.2018.2809490 10.1109/TMM.2017.2733338 10.1109/ICCVW.2017.275 10.1145/3123266.3123339 10.1145/3323679.3326515 10.1109/COMST.2019.2916583 10.1109/ICME.2018.8486537 10.1109/TMM.2017.2757761 10.1109/MMSP.2019.8901727 10.1109/TVT.2017.2724547 10.1109/VR.2017.7892357 10.1109/ICNP.2016.7784458 10.1016/j.comnet.2008.09.022 10.1145/3240508.3240680 10.1007/BF00992698 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TMM.2021.3052339 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 399 |
ExternalDocumentID | 10_1109_TMM_2021_3052339 9328310 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c1080-70dc07305b1f54a5510764e07298d9ab4de085d3bc9ac55f2ec31a93968e00be3 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Tue Jul 01 01:54:36 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Wed Aug 27 03:02:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1080-70dc07305b1f54a5510764e07298d9ab4de085d3bc9ac55f2ec31a93968e00be3 |
ORCID | 0000-0001-9432-0440 0000-0001-7266-2642 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TMM_2021_3052339 ieee_primary_9328310 crossref_citationtrail_10_1109_TMM_2021_3052339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Bellman (ref39) 2003 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Dulac-Arnold (ref21) 2015 Watkins (ref9) 1992; 8 J (ref24) 2016 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Bertsekas (ref37) 1995 ref40 |
References_xml | – ident: ref32 doi: 10.1109/JETCAS.2019.2898877 – ident: ref36 doi: 10.1109/JSAC.2018.2844983 – ident: ref42 doi: 10.1109/JSAC.2019.2933887 – ident: ref41 doi: 10.1038/nature16961 – ident: ref12 doi: 10.1109/JSAC.2018.2845000 – ident: ref22 doi: 10.1109/ISM.2016.0089 – ident: ref10 doi: 10.1109/ICCAD.2017.8203866 – ident: ref3 doi: 10.1109/ICC.2017.7996611 – volume-title: Dynamic Programming year: 2003 ident: ref39 – ident: ref43 doi: 10.1093/teamat/17.4.155 – ident: ref30 doi: 10.1109/APNOMS.2017.8094203 – ident: ref20 doi: 10.1109/ICCW.2018.8403711 – ident: ref8 doi: 10.1109/TWC.2016.2636139 – ident: ref35 doi: 10.1109/IC3D.2017.8251913 – ident: ref38 doi: 10.1109/TNN.1998.712192 – ident: ref29 doi: 10.1109/MMSP.2017.8122230 – ident: ref44 doi: 10.1109/INFOCOM.2014.6848038 – ident: ref31 doi: 10.1145/3241539.3241565 – ident: ref4 doi: 10.1145/3083187.3083219 – ident: ref16 doi: 10.1109/TWC.2018.2803816 – ident: ref19 doi: 10.1109/CISS.2018.8362276 – ident: ref2 doi: 10.1109/TMM.2019.2957993 – ident: ref7 doi: 10.1109/ISIT.2014.6874793 – ident: ref26 doi: 10.1109/VCIP47243.2019.8965938 – ident: ref14 doi: 10.1109/MCOM.2016.7565183 – ident: ref15 doi: 10.1109/ACCESS.2018.2809490 – ident: ref18 doi: 10.1109/TMM.2017.2733338 – year: 2015 ident: ref21 article-title: Deep reinforcement learning in large discrete action spaces – ident: ref34 doi: 10.1109/ICCVW.2017.275 – ident: ref33 doi: 10.1145/3123266.3123339 – ident: ref6 doi: 10.1145/3323679.3326515 – ident: ref40 doi: 10.1109/COMST.2019.2916583 – ident: ref11 doi: 10.1109/ICME.2018.8486537 – ident: ref13 doi: 10.1109/TMM.2017.2757761 – ident: ref28 doi: 10.1109/ICME.2018.8486537 – ident: ref1 doi: 10.1109/MMSP.2019.8901727 – year: 1995 ident: ref37 article-title: Belmont, MA, USA: Athena Scientific publication-title: Dynamic Programming and Optimal Control – ident: ref17 doi: 10.1109/TVT.2017.2724547 – ident: ref23 doi: 10.1109/VR.2017.7892357 – ident: ref27 doi: 10.1109/ICNP.2016.7784458 – volume-title: Proc. 7th ACM Int. Conf. Multimedia Syst. year: 2016 ident: ref24 article-title: Tiled-based adaptive streaming using MPEG-DASH – ident: ref5 doi: 10.1016/j.comnet.2008.09.022 – ident: ref25 doi: 10.1145/3240508.3240680 – volume: 8 start-page: 279 year: 1992 ident: ref9 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 |
SSID | ssj0014507 |
Score | 2.3365307 |
Snippet | 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 386 |
SubjectTerms | 360<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^\circ</tex-math> </inline-formula> video Bandwidth deep reinforcement learning Encoding Markov processes Optimization Reinforcement learning Servers Streaming media tile-encoding viewport-aware caching |
Title | Viewport-Aware Deep Reinforcement Learning Approach for 360 ^\circ Video Caching |
URI | https://ieeexplore.ieee.org/document/9328310 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7mnvTB6aY4f5EHXwTbpWvTrY9jOoYwEdnGHsSSpFcZyjbGxsC_3lzajiEivpU2gdC7kO8ud98HcEO4PiCZVJKsc4JQhY7yfOG0TahhdlOoNKfm5MFT2B8FjxMxKcHdthcGEW3xGbr0aO_yk7leU6qsYbAG6WLtwZ5xs6xXa3tjEAjbGm2OI-5EJo4priR51BgOBiYQbHquTzlQkgXfOYJ2NFXskdKrwKBYTFZJ8uGuV8rVXz94Gv-72iM4zLEl62TOcAwlnFWhUug2sHwbV-Fgh4SwBs_jKW4IhTudjVwiu0dcsBe0jKraJg9ZTsL6zjo5Azkz35gfcvb2qqdLzcbTBOesmxVmnsCo9zDs9p1cZ8HRVGHotHiiaacL5aUikAZD8VYYIHGKt5NIqiBBA8wSX-lIaiHSJmrfk5EfhW3kXKF_CuXZfIZnwDwpVJhKnhojB35iRglpIF9LNzFNPenVoVH8-ljnJOSkhfEZ22CER7ExVkzGinNj1eF2O2OREXD8MbZGZtiOyy1w_vvrC9hvUi-DzadcQnm1XOOVQRgrdW1d6xuhpMpg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDryrWZw5eBLfNdpNt91h8UB8rIq14EJckOytFaUtpKfjrzWS3pYiIt2U3gbCTMN9MZr4P4JRwvSCZVJKs80SoQ0_7gfQaNtSwpynUhlNzcvwQtjri9kW-LMD5rBcGEV3xGVbo0d3lp30zplRZ1WIN0sVahGXr94XMu7VmdwZCuuZo65C4F9lIZnopyaNqO45tKFjzKwFlQUkYfM4JzamqOKdyvQHxdDl5LclHZTzSFfP1g6nxv-vdhPUCXbJmvh22YAF727AxVW5gxUHehrU5GsISPD53cUI43GtO1BDZJeKAPaHjVDUufcgKGtZ31iw4yJn9xoKQs7dX0x0a9txNsc8u8tLMHehcX7UvWl6htOAZqjH06jw1dNal9jMplEVRvB4KJFbxRhopLVK00CwNtImUkTKroQl8FQVR2EDONQa7sNTr93APmK-kDjPFM2tmEaR2lFQW9NVNDbPMV34ZqtNfn5iChpzUMD4TF47wKLHGSshYSWGsMpzNZgxyCo4_xpbIDLNxhQX2f399Aiutdnyf3N883B3Aao06G1x25RCWRsMxHlm8MdLHbpt9A2g7za0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewport-Aware+Deep+Reinforcement+Learning+Approach+for+360%24%5E%5Ccirc%24+Video+Caching&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Maniotis%2C+Pantelis&rft.au=Thomos%2C+Nikolaos&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=386&rft.epage=399&rft_id=info:doi/10.1109%2FTMM.2021.3052339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3052339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |