Viewport-Aware Deep Reinforcement Learning Approach for 360 ^\circ Video Caching

360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive experience to the users. However, 360<inline-formula><tex-math notation="LaTeX">^{\c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 24; pp. 386 - 399
Main Authors Maniotis, Pantelis, Thomos, Nikolaos
Format Journal Article
LanguageEnglish
Published IEEE 2022
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2021.3052339

Cover

Abstract 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive experience to the users. However, 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is associated with high bandwidth requirements. The required bandwidth can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene and that users request viewports that overlap with each other. Motivated by the findings of our recent works where the benefits of caching video tiles at edge servers instead of caching entire 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos were shown, in this paper, we introduce the concept of virtual viewports that have the same number of tiles with the original viewports. The tiles forming these viewports are the most popular ones for each video and are determined by the users' requests. Then, we propose a reactive caching scheme that assumes unknown videos' and viewports' popularity. Our scheme determines which videos to cache as well as which is the optimal virtual viewport per video. Virtual viewports permit to lower the dimensionality of the cache optimization problem. To solve the problem, we first formulate the content placement of 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos in edge cache networks as a Markov Decision Process (MDP), and then we determine the optimal caching placement using the Deep Q-Network (DQN) algorithm. The proposed solution aims at maximizing the overall quality of the 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos delivered to the end-users by caching the most popular 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos at base quality along with a virtual viewport in high quality. We extensively evaluate the performance of the proposed system and compare it with that of known systems such as Least Frequently Used (LFU), Least Recently Used (LRU), First In First Out (FIFO), over both synthetic and real 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video traces. The results reveal the large benefits coming from reactive caching of virtual viewports instead of the original ones in terms of the overall quality of the rendered viewports, the cache hit ratio, and the servicing cost.
AbstractList 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive experience to the users. However, 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is associated with high bandwidth requirements. The required bandwidth can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene and that users request viewports that overlap with each other. Motivated by the findings of our recent works where the benefits of caching video tiles at edge servers instead of caching entire 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos were shown, in this paper, we introduce the concept of virtual viewports that have the same number of tiles with the original viewports. The tiles forming these viewports are the most popular ones for each video and are determined by the users' requests. Then, we propose a reactive caching scheme that assumes unknown videos' and viewports' popularity. Our scheme determines which videos to cache as well as which is the optimal virtual viewport per video. Virtual viewports permit to lower the dimensionality of the cache optimization problem. To solve the problem, we first formulate the content placement of 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos in edge cache networks as a Markov Decision Process (MDP), and then we determine the optimal caching placement using the Deep Q-Network (DQN) algorithm. The proposed solution aims at maximizing the overall quality of the 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos delivered to the end-users by caching the most popular 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> videos at base quality along with a virtual viewport in high quality. We extensively evaluate the performance of the proposed system and compare it with that of known systems such as Least Frequently Used (LFU), Least Recently Used (LRU), First In First Out (FIFO), over both synthetic and real 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video traces. The results reveal the large benefits coming from reactive caching of virtual viewports instead of the original ones in terms of the overall quality of the rendered viewports, the cache hit ratio, and the servicing cost.
Author Maniotis, Pantelis
Thomos, Nikolaos
Author_xml – sequence: 1
  givenname: Pantelis
  orcidid: 0000-0001-9432-0440
  surname: Maniotis
  fullname: Maniotis, Pantelis
  email: p.maniotis@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, U.K
– sequence: 2
  givenname: Nikolaos
  orcidid: 0000-0001-7266-2642
  surname: Thomos
  fullname: Thomos, Nikolaos
  email: nthomos@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, U.K
BookMark eNp9kE1LAzEQhoNUsK3eBS_5A1snyWazOZb6CVsUqT2JSzY7q5F2s2QXiv_elBYPHjzNwPs-w_BMyKj1LRJyyWDGGOjr1XI548DZTIDkQugTMmY6ZQmAUqO4Sw6J5gzOyKTvvwBYKkGNyfPa4a7zYUjmOxOQ3iB29AVd2_hgcYvtQAs0oXXtB513XfDGftKYUZEBfX-zLli6djV6uohJbJ2T08Zserw4zil5vbtdLR6S4un-cTEvEssgh0RBbUHFXyvWyNRIyUBlKYLiOq-1qdIaIZe1qKw2VsqGoxXMaKGzHAEqFFOSHe7a4Ps-YFNaN5jB-XYIxm1KBuXeSxm9lHsv5dFLBOEP2AW3NeH7P-TqgDhE_K1rwXPBQPwAXP5ugQ
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_JSAC_2022_3145813
crossref_primary_10_1007_s11036_024_02291_2
crossref_primary_10_1109_JIOT_2024_3405493
crossref_primary_10_1007_s44196_023_00377_5
crossref_primary_10_1007_s10922_022_09649_5
crossref_primary_10_1109_TSC_2024_3451237
crossref_primary_10_1016_j_sysarc_2025_103401
crossref_primary_10_1109_ACCESS_2023_3297280
crossref_primary_10_3390_electronics13214200
crossref_primary_10_1109_TMM_2022_3172550
crossref_primary_10_1109_TMM_2023_3321439
crossref_primary_10_1109_JIOT_2023_3263885
crossref_primary_10_1109_TSC_2023_3347741
crossref_primary_10_1109_OJCOMS_2024_3426098
crossref_primary_10_1109_TWC_2021_3121584
crossref_primary_10_3390_s22030819
crossref_primary_10_1109_ACCESS_2022_3194512
crossref_primary_10_3390_s21082867
crossref_primary_10_1109_JIOT_2022_3197798
crossref_primary_10_1109_JIOT_2023_3287187
crossref_primary_10_3390_app12157581
crossref_primary_10_1109_JSYST_2023_3262255
crossref_primary_10_1016_j_jnca_2022_103342
crossref_primary_10_1109_JSAC_2023_3345418
crossref_primary_10_1109_TBC_2024_3374119
crossref_primary_10_11834_jig_230025
Cites_doi 10.1109/JETCAS.2019.2898877
10.1109/JSAC.2018.2844983
10.1109/JSAC.2019.2933887
10.1038/nature16961
10.1109/JSAC.2018.2845000
10.1109/ISM.2016.0089
10.1109/ICCAD.2017.8203866
10.1109/ICC.2017.7996611
10.1093/teamat/17.4.155
10.1109/APNOMS.2017.8094203
10.1109/ICCW.2018.8403711
10.1109/TWC.2016.2636139
10.1109/IC3D.2017.8251913
10.1109/TNN.1998.712192
10.1109/MMSP.2017.8122230
10.1109/INFOCOM.2014.6848038
10.1145/3241539.3241565
10.1145/3083187.3083219
10.1109/TWC.2018.2803816
10.1109/CISS.2018.8362276
10.1109/TMM.2019.2957993
10.1109/ISIT.2014.6874793
10.1109/VCIP47243.2019.8965938
10.1109/MCOM.2016.7565183
10.1109/ACCESS.2018.2809490
10.1109/TMM.2017.2733338
10.1109/ICCVW.2017.275
10.1145/3123266.3123339
10.1145/3323679.3326515
10.1109/COMST.2019.2916583
10.1109/ICME.2018.8486537
10.1109/TMM.2017.2757761
10.1109/MMSP.2019.8901727
10.1109/TVT.2017.2724547
10.1109/VR.2017.7892357
10.1109/ICNP.2016.7784458
10.1016/j.comnet.2008.09.022
10.1145/3240508.3240680
10.1007/BF00992698
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMM.2021.3052339
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 399
ExternalDocumentID 10_1109_TMM_2021_3052339
9328310
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c1080-70dc07305b1f54a5510764e07298d9ab4de085d3bc9ac55f2ec31a93968e00be3
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Tue Jul 01 01:54:36 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Wed Aug 27 03:02:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1080-70dc07305b1f54a5510764e07298d9ab4de085d3bc9ac55f2ec31a93968e00be3
ORCID 0000-0001-9432-0440
0000-0001-7266-2642
PageCount 14
ParticipantIDs crossref_primary_10_1109_TMM_2021_3052339
ieee_primary_9328310
crossref_citationtrail_10_1109_TMM_2021_3052339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Bellman (ref39) 2003
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Dulac-Arnold (ref21) 2015
Watkins (ref9) 1992; 8
J (ref24) 2016
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
Bertsekas (ref37) 1995
ref40
References_xml – ident: ref32
  doi: 10.1109/JETCAS.2019.2898877
– ident: ref36
  doi: 10.1109/JSAC.2018.2844983
– ident: ref42
  doi: 10.1109/JSAC.2019.2933887
– ident: ref41
  doi: 10.1038/nature16961
– ident: ref12
  doi: 10.1109/JSAC.2018.2845000
– ident: ref22
  doi: 10.1109/ISM.2016.0089
– ident: ref10
  doi: 10.1109/ICCAD.2017.8203866
– ident: ref3
  doi: 10.1109/ICC.2017.7996611
– volume-title: Dynamic Programming
  year: 2003
  ident: ref39
– ident: ref43
  doi: 10.1093/teamat/17.4.155
– ident: ref30
  doi: 10.1109/APNOMS.2017.8094203
– ident: ref20
  doi: 10.1109/ICCW.2018.8403711
– ident: ref8
  doi: 10.1109/TWC.2016.2636139
– ident: ref35
  doi: 10.1109/IC3D.2017.8251913
– ident: ref38
  doi: 10.1109/TNN.1998.712192
– ident: ref29
  doi: 10.1109/MMSP.2017.8122230
– ident: ref44
  doi: 10.1109/INFOCOM.2014.6848038
– ident: ref31
  doi: 10.1145/3241539.3241565
– ident: ref4
  doi: 10.1145/3083187.3083219
– ident: ref16
  doi: 10.1109/TWC.2018.2803816
– ident: ref19
  doi: 10.1109/CISS.2018.8362276
– ident: ref2
  doi: 10.1109/TMM.2019.2957993
– ident: ref7
  doi: 10.1109/ISIT.2014.6874793
– ident: ref26
  doi: 10.1109/VCIP47243.2019.8965938
– ident: ref14
  doi: 10.1109/MCOM.2016.7565183
– ident: ref15
  doi: 10.1109/ACCESS.2018.2809490
– ident: ref18
  doi: 10.1109/TMM.2017.2733338
– year: 2015
  ident: ref21
  article-title: Deep reinforcement learning in large discrete action spaces
– ident: ref34
  doi: 10.1109/ICCVW.2017.275
– ident: ref33
  doi: 10.1145/3123266.3123339
– ident: ref6
  doi: 10.1145/3323679.3326515
– ident: ref40
  doi: 10.1109/COMST.2019.2916583
– ident: ref11
  doi: 10.1109/ICME.2018.8486537
– ident: ref13
  doi: 10.1109/TMM.2017.2757761
– ident: ref28
  doi: 10.1109/ICME.2018.8486537
– ident: ref1
  doi: 10.1109/MMSP.2019.8901727
– year: 1995
  ident: ref37
  article-title: Belmont, MA, USA: Athena Scientific
  publication-title: Dynamic Programming and Optimal Control
– ident: ref17
  doi: 10.1109/TVT.2017.2724547
– ident: ref23
  doi: 10.1109/VR.2017.7892357
– ident: ref27
  doi: 10.1109/ICNP.2016.7784458
– volume-title: Proc. 7th ACM Int. Conf. Multimedia Syst.
  year: 2016
  ident: ref24
  article-title: Tiled-based adaptive streaming using MPEG-DASH
– ident: ref5
  doi: 10.1016/j.comnet.2008.09.022
– ident: ref25
  doi: 10.1145/3240508.3240680
– volume: 8
  start-page: 279
  year: 1992
  ident: ref9
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
SSID ssj0014507
Score 2.3365307
Snippet 360<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> video is an essential component of VR/AR/MR systems that provides immersive...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 386
SubjectTerms 360<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^\circ</tex-math> </inline-formula> video
Bandwidth
deep reinforcement learning
Encoding
Markov processes
Optimization
Reinforcement learning
Servers
Streaming media
tile-encoding
viewport-aware caching
Title Viewport-Aware Deep Reinforcement Learning Approach for 360 ^\circ Video Caching
URI https://ieeexplore.ieee.org/document/9328310
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7mnvTB6aY4f5EHXwTbpWvTrY9jOoYwEdnGHsSSpFcZyjbGxsC_3lzajiEivpU2gdC7kO8ud98HcEO4PiCZVJKsc4JQhY7yfOG0TahhdlOoNKfm5MFT2B8FjxMxKcHdthcGEW3xGbr0aO_yk7leU6qsYbAG6WLtwZ5xs6xXa3tjEAjbGm2OI-5EJo4priR51BgOBiYQbHquTzlQkgXfOYJ2NFXskdKrwKBYTFZJ8uGuV8rVXz94Gv-72iM4zLEl62TOcAwlnFWhUug2sHwbV-Fgh4SwBs_jKW4IhTudjVwiu0dcsBe0jKraJg9ZTsL6zjo5Azkz35gfcvb2qqdLzcbTBOesmxVmnsCo9zDs9p1cZ8HRVGHotHiiaacL5aUikAZD8VYYIHGKt5NIqiBBA8wSX-lIaiHSJmrfk5EfhW3kXKF_CuXZfIZnwDwpVJhKnhojB35iRglpIF9LNzFNPenVoVH8-ljnJOSkhfEZ22CER7ExVkzGinNj1eF2O2OREXD8MbZGZtiOyy1w_vvrC9hvUi-DzadcQnm1XOOVQRgrdW1d6xuhpMpg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDryrWZw5eBLfNdpNt91h8UB8rIq14EJckOytFaUtpKfjrzWS3pYiIt2U3gbCTMN9MZr4P4JRwvSCZVJKs80SoQ0_7gfQaNtSwpynUhlNzcvwQtjri9kW-LMD5rBcGEV3xGVbo0d3lp30zplRZ1WIN0sVahGXr94XMu7VmdwZCuuZo65C4F9lIZnopyaNqO45tKFjzKwFlQUkYfM4JzamqOKdyvQHxdDl5LclHZTzSFfP1g6nxv-vdhPUCXbJmvh22YAF727AxVW5gxUHehrU5GsISPD53cUI43GtO1BDZJeKAPaHjVDUufcgKGtZ31iw4yJn9xoKQs7dX0x0a9txNsc8u8tLMHehcX7UvWl6htOAZqjH06jw1dNal9jMplEVRvB4KJFbxRhopLVK00CwNtImUkTKroQl8FQVR2EDONQa7sNTr93APmK-kDjPFM2tmEaR2lFQW9NVNDbPMV34ZqtNfn5iChpzUMD4TF47wKLHGSshYSWGsMpzNZgxyCo4_xpbIDLNxhQX2f399Aiutdnyf3N883B3Aao06G1x25RCWRsMxHlm8MdLHbpt9A2g7za0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewport-Aware+Deep+Reinforcement+Learning+Approach+for+360%24%5E%5Ccirc%24+Video+Caching&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Maniotis%2C+Pantelis&rft.au=Thomos%2C+Nikolaos&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=386&rft.epage=399&rft_id=info:doi/10.1109%2FTMM.2021.3052339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3052339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon