High Mass Loading of Edge-Exposed Cu 3 P Nanocrystal in 3D Freestanding Matrix Regulating Lithiophilic Sites for High-Performance Lithium Metal Anode

Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with effici...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 24; pp. 29352 - 29362
Main Authors Zhang, Xuzi, Chen, Jiawei, Li, Pengcheng, Ayranci, Cagri, Li, Ge
Format Journal Article
LanguageEnglish
Published United States 21.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with efficient lithiophilic materials. To realize next-generation Li-metal batteries, it is critical to effectively regulate the surface structure of the lithiophilic crystals. Herein, exposed-edged Cu P faceted nanoparticles anchored along the interlaced carbon nanofibers (ECP@CNF) are developed as a highly efficient 3D Li host. Through the 3D interlaced rigid carbon skeleton, volume expansion can be accommodated. The (300)-dominant edged crystal facets of Cu P with abundant exposed P sites not only exhibit strong micro-structural Li affinity but also have relatively high charge transference to nucleate uniformly and effectively, resulting in reduced polarization. Consequently, under a high current density of 10 mA cm with a high discharge of depth (60%), ECP@CNF/Li symmetric cells demonstrate outstanding cycling stability for 500 h with a small voltage hysteresis of 32.8 mV. Notably, the ECP@CNF/Li∥LiFePO full cell exhibits a more stable cycling performance for 650 cycles under a high rate of 1 C, with capacity retention up to 92% (N/P = 10, 4.7 mg cm LiFePO ). Even under a limit Li (3.4 mA h) with an N/P ratio of 2 (8.9 mg cm LiFePO ), ECP@CNF/Li∥LiFePO full cell can also demonstrate excellent reversibility and stable cycling performance with higher utilization of Li. This work provides an insight view into constructing high-performance Li-metal batteries under more strict conditions.
AbstractList Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with efficient lithiophilic materials. To realize next-generation Li-metal batteries, it is critical to effectively regulate the surface structure of the lithiophilic crystals. Herein, exposed-edged Cu P faceted nanoparticles anchored along the interlaced carbon nanofibers (ECP@CNF) are developed as a highly efficient 3D Li host. Through the 3D interlaced rigid carbon skeleton, volume expansion can be accommodated. The (300)-dominant edged crystal facets of Cu P with abundant exposed P sites not only exhibit strong micro-structural Li affinity but also have relatively high charge transference to nucleate uniformly and effectively, resulting in reduced polarization. Consequently, under a high current density of 10 mA cm with a high discharge of depth (60%), ECP@CNF/Li symmetric cells demonstrate outstanding cycling stability for 500 h with a small voltage hysteresis of 32.8 mV. Notably, the ECP@CNF/Li∥LiFePO full cell exhibits a more stable cycling performance for 650 cycles under a high rate of 1 C, with capacity retention up to 92% (N/P = 10, 4.7 mg cm LiFePO ). Even under a limit Li (3.4 mA h) with an N/P ratio of 2 (8.9 mg cm LiFePO ), ECP@CNF/Li∥LiFePO full cell can also demonstrate excellent reversibility and stable cycling performance with higher utilization of Li. This work provides an insight view into constructing high-performance Li-metal batteries under more strict conditions.
Author Ayranci, Cagri
Zhang, Xuzi
Li, Ge
Chen, Jiawei
Li, Pengcheng
Author_xml – sequence: 1
  givenname: Xuzi
  surname: Zhang
  fullname: Zhang, Xuzi
  organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
– sequence: 2
  givenname: Jiawei
  orcidid: 0000-0003-1381-3046
  surname: Chen
  fullname: Chen, Jiawei
  organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
– sequence: 3
  givenname: Pengcheng
  surname: Li
  fullname: Li, Pengcheng
  organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
– sequence: 4
  givenname: Cagri
  surname: Ayranci
  fullname: Ayranci, Cagri
  organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
– sequence: 5
  givenname: Ge
  orcidid: 0000-0002-1978-2976
  surname: Li
  fullname: Li, Ge
  organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37294288$$D View this record in MEDLINE/PubMed
BookMark eNp1UctOwzAQtFARlMeVI_IPpDixkzjHqrSA1ALicY7WG6c1SuzKTqXyIfwvKQUOSJx2djUzq905IQPrrCbkImajmCXxFWCA1ow4MpYLdkCGcSFEJJM0GfxiIY7JSQhvjGU8YekROeZ5UohEyiH5uDXLFV1ACHTuoDJ2SV1Np9VSR9Pt2gVd0cmGcvpI78E69O-hg4YaS_k1nXmt-9Z-qRbQebOlT3q5aaDbTeamWxm3XpnGIH02nQ60dp7uFkaP2ve4BYt6z9u0dKF31mPrKn1GDmtogj7_rqfkdTZ9mdxG84ebu8l4HmHMchlpqfKiUDkWijFR8YwjMCWlTFUqsiJDzBUCB5mAykGJVDGpsgRTxAp5jfyUXO591xvV6qpce9OCfy9__tMTxJ6A3oXgdV2i6frznO08mKaMWbmLodzHUH7H0MtGf2Q_zv8IPgFHvI0D
CitedBy_id crossref_primary_10_1016_j_cej_2024_151922
crossref_primary_10_1016_j_apsusc_2023_159145
crossref_primary_10_1016_j_nanoen_2024_110439
crossref_primary_10_3390_molecules29174096
crossref_primary_10_1021_acsami_4c15406
Cites_doi 10.1002/adma.202000721
10.1002/smll.202000699
10.1021/acsami.0c18831
10.1016/j.ensm.2022.08.020
10.1016/j.electacta.2015.04.035
10.1002/adfm.202102158
10.1039/c9nr05107d
10.1021/acsami.1c17616
10.1016/j.electacta.2005.01.012
10.1002/aenm.201902989
10.1002/adma.202004379
10.1039/d1qm00212k
10.1002/anie.202017281
10.1002/cey2.94
10.1016/j.electacta.2022.141150
10.1016/j.nanoen.2021.106353
10.1039/d1ee02205a
10.1016/j.cej.2021.128698
10.1016/j.jechem.2022.01.011
10.1002/cey2.95
10.1016/j.apsusc.2016.03.108
10.1016/j.jcis.2021.09.147
10.1016/j.cpc.2021.108033
10.1002/adfm.202100537
10.1016/j.ensm.2021.01.034
10.1016/j.joule.2020.10.002
10.1039/d0ta09884a
10.1039/c8ta04959a
10.1016/j.carbon.2020.01.077
10.1016/j.ensm.2021.01.028
10.1002/adfm.202102735
10.1021/acsami.2c11397
10.1021/acsami.1c21783
10.1002/anie.201702099
10.1002/adfm.202202771
10.1103/physrev.140.a1133
10.1016/j.nanoen.2021.106905
10.1038/s41467-020-14505-8
10.1021/acsami.2c10920
10.1002/anie.201812523
10.1002/adfm.202009013
10.1016/j.jechem.2020.06.004
10.1016/j.cej.2020.127872
10.1021/acsami.0c22046
10.1002/adfm.202102354
10.1002/adfm.202006950
10.1002/smll.202007142
10.1016/j.jallcom.2020.156436
10.1021/acs.nanolett.1c00534
10.1002/adfm.202200893
10.1007/s41918-021-00109-3
10.1021/cm070048c
10.1021/acsami.2c11673
10.1039/d0nr06539k
10.1016/j.cej.2021.132648
10.1002/adma.201904991
10.1021/acsami.7b18697
10.1039/c7ta02528a
10.1021/acsami.6b06251
10.1016/j.nanoen.2020.105736
10.1016/j.ensm.2021.03.010
10.1002/sus2.67
10.1007/s41918-022-00158-2
10.1016/j.ensm.2021.08.008
10.1002/adfm.202008044
10.1002/adma.201202271
10.1088/1361-6528/ab8e78
10.1149/2.0631712jes
10.1002/adma.202004128
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1021/acsami.3c00740
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 29362
ExternalDocumentID 37294288
10_1021_acsami_3c00740
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
NPM
ID FETCH-LOGICAL-c1078-e8b799b7c9b004d363ca0b8885b54696cc7bca3a82ab7ab45b08b62c5ccdc3fc3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Wed Feb 19 02:24:10 EST 2025
Tue Jul 01 00:55:52 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords limit Li
edge-exposed Cu3P nanocrystal
abundant exposed P3− sites
dominant facets
3D carbon matrix
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1078-e8b799b7c9b004d363ca0b8885b54696cc7bca3a82ab7ab45b08b62c5ccdc3fc3
ORCID 0000-0002-1978-2976
0000-0003-1381-3046
PMID 37294288
PageCount 11
ParticipantIDs pubmed_primary_37294288
crossref_citationtrail_10_1021_acsami_3c00740
crossref_primary_10_1021_acsami_3c00740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-21
PublicationDateYYYYMMDD 2023-06-21
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2023
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1002/adma.202000721
– ident: ref28/cit28
  doi: 10.1002/smll.202000699
– ident: ref37/cit37
  doi: 10.1021/acsami.0c18831
– ident: ref16/cit16
  doi: 10.1016/j.ensm.2022.08.020
– ident: ref68/cit68
  doi: 10.1016/j.electacta.2015.04.035
– ident: ref7/cit7
  doi: 10.1002/adfm.202102158
– ident: ref49/cit49
  doi: 10.1039/c9nr05107d
– ident: ref12/cit12
  doi: 10.1021/acsami.1c17616
– ident: ref52/cit52
  doi: 10.1016/j.electacta.2005.01.012
– ident: ref41/cit41
  doi: 10.1002/aenm.201902989
– ident: ref29/cit29
  doi: 10.1002/adma.202004379
– ident: ref43/cit43
  doi: 10.1039/d1qm00212k
– ident: ref10/cit10
  doi: 10.1002/anie.202017281
– ident: ref17/cit17
  doi: 10.1002/cey2.94
– ident: ref23/cit23
  doi: 10.1016/j.electacta.2022.141150
– ident: ref11/cit11
  doi: 10.1016/j.nanoen.2021.106353
– ident: ref1/cit1
  doi: 10.1039/d1ee02205a
– ident: ref13/cit13
  doi: 10.1016/j.cej.2021.128698
– ident: ref22/cit22
  doi: 10.1016/j.jechem.2022.01.011
– ident: ref35/cit35
  doi: 10.1002/cey2.95
– ident: ref59/cit59
  doi: 10.1016/j.apsusc.2016.03.108
– ident: ref62/cit62
  doi: 10.1016/j.jcis.2021.09.147
– ident: ref58/cit58
  doi: 10.1016/j.cpc.2021.108033
– ident: ref9/cit9
  doi: 10.1002/adfm.202100537
– ident: ref39/cit39
  doi: 10.1016/j.ensm.2021.01.034
– ident: ref50/cit50
  doi: 10.1016/j.joule.2020.10.002
– ident: ref25/cit25
  doi: 10.1039/d0ta09884a
– ident: ref64/cit64
  doi: 10.1039/c8ta04959a
– ident: ref14/cit14
  doi: 10.1016/j.carbon.2020.01.077
– ident: ref36/cit36
  doi: 10.1016/j.ensm.2021.01.028
– ident: ref24/cit24
  doi: 10.1002/adfm.202102735
– ident: ref40/cit40
  doi: 10.1021/acsami.2c11397
– ident: ref66/cit66
  doi: 10.1021/acsami.1c21783
– ident: ref15/cit15
  doi: 10.1002/anie.201702099
– ident: ref30/cit30
  doi: 10.1002/adfm.202202771
– ident: ref57/cit57
  doi: 10.1103/physrev.140.a1133
– ident: ref2/cit2
  doi: 10.1016/j.nanoen.2021.106905
– ident: ref6/cit6
  doi: 10.1038/s41467-020-14505-8
– ident: ref20/cit20
  doi: 10.1021/acsami.2c10920
– ident: ref54/cit54
  doi: 10.1002/anie.201812523
– ident: ref31/cit31
  doi: 10.1002/adfm.202009013
– ident: ref45/cit45
  doi: 10.1016/j.jechem.2020.06.004
– ident: ref19/cit19
  doi: 10.1016/j.cej.2020.127872
– ident: ref26/cit26
  doi: 10.1021/acsami.0c22046
– ident: ref34/cit34
  doi: 10.1002/adfm.202102354
– ident: ref56/cit56
  doi: 10.1002/adfm.202006950
– ident: ref60/cit60
  doi: 10.1002/smll.202007142
– ident: ref61/cit61
  doi: 10.1016/j.jallcom.2020.156436
– ident: ref38/cit38
  doi: 10.1021/acs.nanolett.1c00534
– ident: ref48/cit48
  doi: 10.1002/adfm.202200893
– ident: ref33/cit33
  doi: 10.1007/s41918-021-00109-3
– ident: ref53/cit53
  doi: 10.1021/cm070048c
– ident: ref27/cit27
  doi: 10.1021/acsami.2c11673
– ident: ref42/cit42
  doi: 10.1039/d0nr06539k
– ident: ref44/cit44
  doi: 10.1016/j.cej.2021.132648
– ident: ref47/cit47
  doi: 10.1002/adma.201904991
– ident: ref65/cit65
  doi: 10.1021/acsami.7b18697
– ident: ref69/cit69
  doi: 10.1039/c7ta02528a
– ident: ref46/cit46
  doi: 10.1021/acsami.6b06251
– ident: ref55/cit55
  doi: 10.1016/j.nanoen.2020.105736
– ident: ref18/cit18
  doi: 10.1016/j.ensm.2021.03.010
– ident: ref5/cit5
  doi: 10.1002/sus2.67
– ident: ref32/cit32
  doi: 10.1007/s41918-022-00158-2
– ident: ref8/cit8
  doi: 10.1016/j.ensm.2021.08.008
– ident: ref21/cit21
  doi: 10.1002/adfm.202008044
– ident: ref51/cit51
  doi: 10.1002/adma.201202271
– ident: ref67/cit67
  doi: 10.1088/1361-6528/ab8e78
– ident: ref63/cit63
  doi: 10.1149/2.0631712jes
– ident: ref4/cit4
  doi: 10.1002/adma.202004128
SSID ssj0063205
Score 2.4020793
Snippet Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 29352
Title High Mass Loading of Edge-Exposed Cu 3 P Nanocrystal in 3D Freestanding Matrix Regulating Lithiophilic Sites for High-Performance Lithium Metal Anode
URI https://www.ncbi.nlm.nih.gov/pubmed/37294288
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqTu0BWr77geaA1JNpYjt2clxtd4UqqFABidvKM3ZgxTZZ7WYl2v_R_1s72YVSVNFrNBlbtuV5Yz-_YexQF2mB3mtuQvziypDnKHzCBWonROoS4VqC7Fd9fKm-XGVXD-cdf9_gi_STpXkshSMpRrs2OTcqiuT3-uerLVdL0XIVQ0KueB4C1kqd8cnvj6LPIxzZxpPhRiduNG9lCCON5PZo0eAR_Xwq0vhsV1-z9SWohF63Ct6wF77aZK_-kBrcYr8ioQNOA1SGk7rlzUNdwsBdez64m9Zz76C_AAlnEPbbmmY_AmqcwLgC-RmGM-9X71-Ci2Y2voNvXQ37-OVk3NyM62k8mSE4DxB2DgEJQ2yQnz28S-jsFt_h1EfXvap2fptdDgcX_WO-LMnAKeSJOfc5mqJAQ1FKUTmpJdkEQxadYRYSbU1kkKy0ubBoLKoMkxy1oIzIkSxJ7rC1qq78HgOjbVIWVmMAkCoTyjoshQzZkColqsLsM76aqhEt9cpj2YzJqL03F-moG-7Rcrj32cd7-2mn1PFPy91u5u_t4t1laDl_-98-3rGXsfB8JI2J9D1ba2YL_yHAkwYP2qX5G6Z54XQ
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Mass+Loading+of+Edge-Exposed+Cu+3+P+Nanocrystal+in+3D+Freestanding+Matrix+Regulating+Lithiophilic+Sites+for+High-Performance+Lithium+Metal+Anode&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Xuzi&rft.au=Chen%2C+Jiawei&rft.au=Li%2C+Pengcheng&rft.au=Ayranci%2C+Cagri&rft.date=2023-06-21&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.3c00740&rft_id=info%3Apmid%2F37294288&rft.externalDocID=37294288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon