High Mass Loading of Edge-Exposed Cu 3 P Nanocrystal in 3D Freestanding Matrix Regulating Lithiophilic Sites for High-Performance Lithium Metal Anode
Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with effici...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 24; pp. 29352 - 29362 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
21.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with efficient lithiophilic materials. To realize next-generation Li-metal batteries, it is critical to effectively regulate the surface structure of the lithiophilic crystals. Herein, exposed-edged Cu
P faceted nanoparticles anchored along the interlaced carbon nanofibers (ECP@CNF) are developed as a highly efficient 3D Li host. Through the 3D interlaced rigid carbon skeleton, volume expansion can be accommodated. The (300)-dominant edged crystal facets of Cu
P with abundant exposed P
sites not only exhibit strong micro-structural Li affinity but also have relatively high charge transference to nucleate uniformly and effectively, resulting in reduced polarization. Consequently, under a high current density of 10 mA cm
with a high discharge of depth (60%), ECP@CNF/Li symmetric cells demonstrate outstanding cycling stability for 500 h with a small voltage hysteresis of 32.8 mV. Notably, the ECP@CNF/Li∥LiFePO
full cell exhibits a more stable cycling performance for 650 cycles under a high rate of 1 C, with capacity retention up to 92% (N/P = 10, 4.7 mg cm
LiFePO
). Even under a limit Li (3.4 mA h) with an N/P ratio of 2 (8.9 mg cm
LiFePO
), ECP@CNF/Li∥LiFePO
full cell can also demonstrate excellent reversibility and stable cycling performance with higher utilization of Li. This work provides an insight view into constructing high-performance Li-metal batteries under more strict conditions. |
---|---|
AbstractList | Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with efficient lithiophilic materials. To realize next-generation Li-metal batteries, it is critical to effectively regulate the surface structure of the lithiophilic crystals. Herein, exposed-edged Cu
P faceted nanoparticles anchored along the interlaced carbon nanofibers (ECP@CNF) are developed as a highly efficient 3D Li host. Through the 3D interlaced rigid carbon skeleton, volume expansion can be accommodated. The (300)-dominant edged crystal facets of Cu
P with abundant exposed P
sites not only exhibit strong micro-structural Li affinity but also have relatively high charge transference to nucleate uniformly and effectively, resulting in reduced polarization. Consequently, under a high current density of 10 mA cm
with a high discharge of depth (60%), ECP@CNF/Li symmetric cells demonstrate outstanding cycling stability for 500 h with a small voltage hysteresis of 32.8 mV. Notably, the ECP@CNF/Li∥LiFePO
full cell exhibits a more stable cycling performance for 650 cycles under a high rate of 1 C, with capacity retention up to 92% (N/P = 10, 4.7 mg cm
LiFePO
). Even under a limit Li (3.4 mA h) with an N/P ratio of 2 (8.9 mg cm
LiFePO
), ECP@CNF/Li∥LiFePO
full cell can also demonstrate excellent reversibility and stable cycling performance with higher utilization of Li. This work provides an insight view into constructing high-performance Li-metal batteries under more strict conditions. |
Author | Ayranci, Cagri Zhang, Xuzi Li, Ge Chen, Jiawei Li, Pengcheng |
Author_xml | – sequence: 1 givenname: Xuzi surname: Zhang fullname: Zhang, Xuzi organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada – sequence: 2 givenname: Jiawei orcidid: 0000-0003-1381-3046 surname: Chen fullname: Chen, Jiawei organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada – sequence: 3 givenname: Pengcheng surname: Li fullname: Li, Pengcheng organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada – sequence: 4 givenname: Cagri surname: Ayranci fullname: Ayranci, Cagri organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada – sequence: 5 givenname: Ge orcidid: 0000-0002-1978-2976 surname: Li fullname: Li, Ge organization: Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37294288$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctOwzAQtFARlMeVI_IPpDixkzjHqrSA1ALicY7WG6c1SuzKTqXyIfwvKQUOSJx2djUzq905IQPrrCbkImajmCXxFWCA1ow4MpYLdkCGcSFEJJM0GfxiIY7JSQhvjGU8YekROeZ5UohEyiH5uDXLFV1ACHTuoDJ2SV1Np9VSR9Pt2gVd0cmGcvpI78E69O-hg4YaS_k1nXmt-9Z-qRbQebOlT3q5aaDbTeamWxm3XpnGIH02nQ60dp7uFkaP2ve4BYt6z9u0dKF31mPrKn1GDmtogj7_rqfkdTZ9mdxG84ebu8l4HmHMchlpqfKiUDkWijFR8YwjMCWlTFUqsiJDzBUCB5mAykGJVDGpsgRTxAp5jfyUXO591xvV6qpce9OCfy9__tMTxJ6A3oXgdV2i6frznO08mKaMWbmLodzHUH7H0MtGf2Q_zv8IPgFHvI0D |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_151922 crossref_primary_10_1016_j_apsusc_2023_159145 crossref_primary_10_1016_j_nanoen_2024_110439 crossref_primary_10_3390_molecules29174096 crossref_primary_10_1021_acsami_4c15406 |
Cites_doi | 10.1002/adma.202000721 10.1002/smll.202000699 10.1021/acsami.0c18831 10.1016/j.ensm.2022.08.020 10.1016/j.electacta.2015.04.035 10.1002/adfm.202102158 10.1039/c9nr05107d 10.1021/acsami.1c17616 10.1016/j.electacta.2005.01.012 10.1002/aenm.201902989 10.1002/adma.202004379 10.1039/d1qm00212k 10.1002/anie.202017281 10.1002/cey2.94 10.1016/j.electacta.2022.141150 10.1016/j.nanoen.2021.106353 10.1039/d1ee02205a 10.1016/j.cej.2021.128698 10.1016/j.jechem.2022.01.011 10.1002/cey2.95 10.1016/j.apsusc.2016.03.108 10.1016/j.jcis.2021.09.147 10.1016/j.cpc.2021.108033 10.1002/adfm.202100537 10.1016/j.ensm.2021.01.034 10.1016/j.joule.2020.10.002 10.1039/d0ta09884a 10.1039/c8ta04959a 10.1016/j.carbon.2020.01.077 10.1016/j.ensm.2021.01.028 10.1002/adfm.202102735 10.1021/acsami.2c11397 10.1021/acsami.1c21783 10.1002/anie.201702099 10.1002/adfm.202202771 10.1103/physrev.140.a1133 10.1016/j.nanoen.2021.106905 10.1038/s41467-020-14505-8 10.1021/acsami.2c10920 10.1002/anie.201812523 10.1002/adfm.202009013 10.1016/j.jechem.2020.06.004 10.1016/j.cej.2020.127872 10.1021/acsami.0c22046 10.1002/adfm.202102354 10.1002/adfm.202006950 10.1002/smll.202007142 10.1016/j.jallcom.2020.156436 10.1021/acs.nanolett.1c00534 10.1002/adfm.202200893 10.1007/s41918-021-00109-3 10.1021/cm070048c 10.1021/acsami.2c11673 10.1039/d0nr06539k 10.1016/j.cej.2021.132648 10.1002/adma.201904991 10.1021/acsami.7b18697 10.1039/c7ta02528a 10.1021/acsami.6b06251 10.1016/j.nanoen.2020.105736 10.1016/j.ensm.2021.03.010 10.1002/sus2.67 10.1007/s41918-022-00158-2 10.1016/j.ensm.2021.08.008 10.1002/adfm.202008044 10.1002/adma.201202271 10.1088/1361-6528/ab8e78 10.1149/2.0631712jes 10.1002/adma.202004128 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM |
DOI | 10.1021/acsami.3c00740 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 29362 |
ExternalDocumentID | 37294288 10_1021_acsami_3c00740 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ NPM |
ID | FETCH-LOGICAL-c1078-e8b799b7c9b004d363ca0b8885b54696cc7bca3a82ab7ab45b08b62c5ccdc3fc3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Wed Feb 19 02:24:10 EST 2025 Tue Jul 01 00:55:52 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | limit Li edge-exposed Cu3P nanocrystal abundant exposed P3− sites dominant facets 3D carbon matrix |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1078-e8b799b7c9b004d363ca0b8885b54696cc7bca3a82ab7ab45b08b62c5ccdc3fc3 |
ORCID | 0000-0002-1978-2976 0000-0003-1381-3046 |
PMID | 37294288 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_37294288 crossref_citationtrail_10_1021_acsami_3c00740 crossref_primary_10_1021_acsami_3c00740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-21 |
PublicationDateYYYYMMDD | 2023-06-21 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl Mater Interfaces |
PublicationYear | 2023 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1002/adma.202000721 – ident: ref28/cit28 doi: 10.1002/smll.202000699 – ident: ref37/cit37 doi: 10.1021/acsami.0c18831 – ident: ref16/cit16 doi: 10.1016/j.ensm.2022.08.020 – ident: ref68/cit68 doi: 10.1016/j.electacta.2015.04.035 – ident: ref7/cit7 doi: 10.1002/adfm.202102158 – ident: ref49/cit49 doi: 10.1039/c9nr05107d – ident: ref12/cit12 doi: 10.1021/acsami.1c17616 – ident: ref52/cit52 doi: 10.1016/j.electacta.2005.01.012 – ident: ref41/cit41 doi: 10.1002/aenm.201902989 – ident: ref29/cit29 doi: 10.1002/adma.202004379 – ident: ref43/cit43 doi: 10.1039/d1qm00212k – ident: ref10/cit10 doi: 10.1002/anie.202017281 – ident: ref17/cit17 doi: 10.1002/cey2.94 – ident: ref23/cit23 doi: 10.1016/j.electacta.2022.141150 – ident: ref11/cit11 doi: 10.1016/j.nanoen.2021.106353 – ident: ref1/cit1 doi: 10.1039/d1ee02205a – ident: ref13/cit13 doi: 10.1016/j.cej.2021.128698 – ident: ref22/cit22 doi: 10.1016/j.jechem.2022.01.011 – ident: ref35/cit35 doi: 10.1002/cey2.95 – ident: ref59/cit59 doi: 10.1016/j.apsusc.2016.03.108 – ident: ref62/cit62 doi: 10.1016/j.jcis.2021.09.147 – ident: ref58/cit58 doi: 10.1016/j.cpc.2021.108033 – ident: ref9/cit9 doi: 10.1002/adfm.202100537 – ident: ref39/cit39 doi: 10.1016/j.ensm.2021.01.034 – ident: ref50/cit50 doi: 10.1016/j.joule.2020.10.002 – ident: ref25/cit25 doi: 10.1039/d0ta09884a – ident: ref64/cit64 doi: 10.1039/c8ta04959a – ident: ref14/cit14 doi: 10.1016/j.carbon.2020.01.077 – ident: ref36/cit36 doi: 10.1016/j.ensm.2021.01.028 – ident: ref24/cit24 doi: 10.1002/adfm.202102735 – ident: ref40/cit40 doi: 10.1021/acsami.2c11397 – ident: ref66/cit66 doi: 10.1021/acsami.1c21783 – ident: ref15/cit15 doi: 10.1002/anie.201702099 – ident: ref30/cit30 doi: 10.1002/adfm.202202771 – ident: ref57/cit57 doi: 10.1103/physrev.140.a1133 – ident: ref2/cit2 doi: 10.1016/j.nanoen.2021.106905 – ident: ref6/cit6 doi: 10.1038/s41467-020-14505-8 – ident: ref20/cit20 doi: 10.1021/acsami.2c10920 – ident: ref54/cit54 doi: 10.1002/anie.201812523 – ident: ref31/cit31 doi: 10.1002/adfm.202009013 – ident: ref45/cit45 doi: 10.1016/j.jechem.2020.06.004 – ident: ref19/cit19 doi: 10.1016/j.cej.2020.127872 – ident: ref26/cit26 doi: 10.1021/acsami.0c22046 – ident: ref34/cit34 doi: 10.1002/adfm.202102354 – ident: ref56/cit56 doi: 10.1002/adfm.202006950 – ident: ref60/cit60 doi: 10.1002/smll.202007142 – ident: ref61/cit61 doi: 10.1016/j.jallcom.2020.156436 – ident: ref38/cit38 doi: 10.1021/acs.nanolett.1c00534 – ident: ref48/cit48 doi: 10.1002/adfm.202200893 – ident: ref33/cit33 doi: 10.1007/s41918-021-00109-3 – ident: ref53/cit53 doi: 10.1021/cm070048c – ident: ref27/cit27 doi: 10.1021/acsami.2c11673 – ident: ref42/cit42 doi: 10.1039/d0nr06539k – ident: ref44/cit44 doi: 10.1016/j.cej.2021.132648 – ident: ref47/cit47 doi: 10.1002/adma.201904991 – ident: ref65/cit65 doi: 10.1021/acsami.7b18697 – ident: ref69/cit69 doi: 10.1039/c7ta02528a – ident: ref46/cit46 doi: 10.1021/acsami.6b06251 – ident: ref55/cit55 doi: 10.1016/j.nanoen.2020.105736 – ident: ref18/cit18 doi: 10.1016/j.ensm.2021.03.010 – ident: ref5/cit5 doi: 10.1002/sus2.67 – ident: ref32/cit32 doi: 10.1007/s41918-022-00158-2 – ident: ref8/cit8 doi: 10.1016/j.ensm.2021.08.008 – ident: ref21/cit21 doi: 10.1002/adfm.202008044 – ident: ref51/cit51 doi: 10.1002/adma.201202271 – ident: ref67/cit67 doi: 10.1088/1361-6528/ab8e78 – ident: ref63/cit63 doi: 10.1149/2.0631712jes – ident: ref4/cit4 doi: 10.1002/adma.202004128 |
SSID | ssj0063205 |
Score | 2.4020793 |
Snippet | Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 29352 |
Title | High Mass Loading of Edge-Exposed Cu 3 P Nanocrystal in 3D Freestanding Matrix Regulating Lithiophilic Sites for High-Performance Lithium Metal Anode |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37294288 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqTu0BWr77geaA1JNpYjt2clxtd4UqqFABidvKM3ZgxTZZ7WYl2v_R_1s72YVSVNFrNBlbtuV5Yz-_YexQF2mB3mtuQvziypDnKHzCBWonROoS4VqC7Fd9fKm-XGVXD-cdf9_gi_STpXkshSMpRrs2OTcqiuT3-uerLVdL0XIVQ0KueB4C1kqd8cnvj6LPIxzZxpPhRiduNG9lCCON5PZo0eAR_Xwq0vhsV1-z9SWohF63Ct6wF77aZK_-kBrcYr8ioQNOA1SGk7rlzUNdwsBdez64m9Zz76C_AAlnEPbbmmY_AmqcwLgC-RmGM-9X71-Ci2Y2voNvXQ37-OVk3NyM62k8mSE4DxB2DgEJQ2yQnz28S-jsFt_h1EfXvap2fptdDgcX_WO-LMnAKeSJOfc5mqJAQ1FKUTmpJdkEQxadYRYSbU1kkKy0ubBoLKoMkxy1oIzIkSxJ7rC1qq78HgOjbVIWVmMAkCoTyjoshQzZkColqsLsM76aqhEt9cpj2YzJqL03F-moG-7Rcrj32cd7-2mn1PFPy91u5u_t4t1laDl_-98-3rGXsfB8JI2J9D1ba2YL_yHAkwYP2qX5G6Z54XQ |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Mass+Loading+of+Edge-Exposed+Cu+3+P+Nanocrystal+in+3D+Freestanding+Matrix+Regulating+Lithiophilic+Sites+for+High-Performance+Lithium+Metal+Anode&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Xuzi&rft.au=Chen%2C+Jiawei&rft.au=Li%2C+Pengcheng&rft.au=Ayranci%2C+Cagri&rft.date=2023-06-21&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.3c00740&rft_id=info%3Apmid%2F37294288&rft.externalDocID=37294288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |