Facile Preparation of MnO 2 Quantum Dots with Enhanced Fluorescence via Microenvironment Engineering with the Assistance of Some Reductive Biomolecules

MnO nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related activities. However, not many reports on self-luminescent MnO materials have been concerned to date, which greatly hampered their further development i...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 13; pp. 15919 - 15927
Main Authors Ma, Zhangyan, Sun, Yan, Xie, Jingwen, Li, Peipei, Lu, Qiujun, Liu, Meiling, Yin, Peng, Li, Haitao, Zhang, Youyu, Yao, Shouzhuo
Format Journal Article
LanguageEnglish
Published United States 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MnO nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related activities. However, not many reports on self-luminescent MnO materials have been concerned to date, which greatly hampered their further development in various fields. In this paper, luminescent MnO quantum dots (MnO QDs) have been first prepared via a facile one-step ultrasonic method. With the assistance of bovine serum albumin (BSA) or cysteine (Cys), the synthesized MnO QDs (BSA-MnO QDs or Cys-MnO QDs) display strongly enhanced fluorescence (FL). The prepared BSA-MnO QDs with a particle size of about 1 to 2 nm show the maximum excitation and emission peaks at 320 and 410 nm with excellent salt stability, anti-photobleaching ability, and time stability. It is confirmed that BSA plays a dual function as the exfoliating agent to promote the exfoliation of bulk MnO nanosheets and as the capping agent to provide a friendly microenvironment for MnO QDs. Ag ions can destroy the microenvironment of BSA-MnO QDs owing to the in situ formation of Ag nanoparticles (Ag NPs) mediated by BSA on the surface of the QDs. Then, these Ag NPs can quench the FL intensity of the QDs by fluorescence resonance energy transfer. However, the FL strength of the BSA-MnO QDs is recovered after adding H O and NaHS since they may react with Ag NPs to produce Ag and Ag S, which further confirmed the role of BSA. This work not only opens up a facile and universal avenue to synthesize luminescent MnO QDs with enhanced FL but also provides a possible sensing platform through tuning the microenvironment of the MnO QDs. The MnO QDs with outstanding performance may show great potential as fluorescent probes in the fields of biological imaging, optical sensing, drug delivery, and therapy.
AbstractList MnO nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related activities. However, not many reports on self-luminescent MnO materials have been concerned to date, which greatly hampered their further development in various fields. In this paper, luminescent MnO quantum dots (MnO QDs) have been first prepared via a facile one-step ultrasonic method. With the assistance of bovine serum albumin (BSA) or cysteine (Cys), the synthesized MnO QDs (BSA-MnO QDs or Cys-MnO QDs) display strongly enhanced fluorescence (FL). The prepared BSA-MnO QDs with a particle size of about 1 to 2 nm show the maximum excitation and emission peaks at 320 and 410 nm with excellent salt stability, anti-photobleaching ability, and time stability. It is confirmed that BSA plays a dual function as the exfoliating agent to promote the exfoliation of bulk MnO nanosheets and as the capping agent to provide a friendly microenvironment for MnO QDs. Ag ions can destroy the microenvironment of BSA-MnO QDs owing to the in situ formation of Ag nanoparticles (Ag NPs) mediated by BSA on the surface of the QDs. Then, these Ag NPs can quench the FL intensity of the QDs by fluorescence resonance energy transfer. However, the FL strength of the BSA-MnO QDs is recovered after adding H O and NaHS since they may react with Ag NPs to produce Ag and Ag S, which further confirmed the role of BSA. This work not only opens up a facile and universal avenue to synthesize luminescent MnO QDs with enhanced FL but also provides a possible sensing platform through tuning the microenvironment of the MnO QDs. The MnO QDs with outstanding performance may show great potential as fluorescent probes in the fields of biological imaging, optical sensing, drug delivery, and therapy.
Author Yin, Peng
Zhang, Youyu
Lu, Qiujun
Ma, Zhangyan
Xie, Jingwen
Liu, Meiling
Li, Haitao
Sun, Yan
Li, Peipei
Yao, Shouzhuo
Author_xml – sequence: 1
  givenname: Zhangyan
  surname: Ma
  fullname: Ma, Zhangyan
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 2
  givenname: Yan
  surname: Sun
  fullname: Sun, Yan
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 3
  givenname: Jingwen
  surname: Xie
  fullname: Xie, Jingwen
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 4
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 5
  givenname: Qiujun
  surname: Lu
  fullname: Lu, Qiujun
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 6
  givenname: Meiling
  orcidid: 0000-0002-0935-7853
  surname: Liu
  fullname: Liu, Meiling
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 7
  givenname: Peng
  orcidid: 0000-0002-9809-2366
  surname: Yin
  fullname: Yin, Peng
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 8
  givenname: Haitao
  surname: Li
  fullname: Li, Haitao
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 9
  givenname: Youyu
  orcidid: 0000-0002-7502-6817
  surname: Zhang
  fullname: Zhang, Youyu
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
– sequence: 10
  givenname: Shouzhuo
  surname: Yao
  fullname: Yao, Shouzhuo
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32141728$$D View this record in MEDLINE/PubMed
BookMark eNp1UctOwzAQtFARfcCVI_IPtNiO8-ixlBaQWpXnOXKcTWuU2JXtFPEl_C4pKT0gcdpdzcyudqaPOtpoQOiSkhEljF4L6USlRkQSMqbxCerRMefDhIWsc-w576K-c--ERAEj4RnqBoxyGrOkh77mQqoS8KOFrbDCK6OxKfBSrzDDT7XQvq7wrfEOfyi_wTO9EVpCjudlbSw4Cc2Ed0rgpZLWgN4pa3QF2jfUtdIAVul1q_UbwBPnlPP7FfsrL6YC_Ax5Lb3aAb5RpjIlyLoEd45OC1E6uDjUAXqbz16n98PF6u5hOlkMJSVxMmRhmFAWxAEpGInCcZLlBc-A84zwnMYwpnlCMxkFMpKkARqEZBHPszyQPBY0GKCrdu-2zirI061VlbCf6a9DDWHUEpr3nLNQHCmUpPsI0jaC9BBBI-B_BFL5H2O9Far8T_YN8uCOag
CitedBy_id crossref_primary_10_1021_acsanm_0c01719
crossref_primary_10_1007_s00253_023_12605_1
crossref_primary_10_1021_acsaelm_3c01523
crossref_primary_10_1039_D1NJ02325J
crossref_primary_10_1016_j_aca_2023_341010
crossref_primary_10_1039_D1AN01268A
crossref_primary_10_1039_D1NA00257K
crossref_primary_10_1039_D1NJ05105A
crossref_primary_10_1021_acsanm_1c03433
crossref_primary_10_1016_j_saa_2021_120168
crossref_primary_10_1007_s00604_022_05170_3
crossref_primary_10_1016_j_inoche_2022_109677
crossref_primary_10_1016_j_colsurfb_2024_113767
crossref_primary_10_1016_j_jiec_2021_08_046
crossref_primary_10_1002_slct_202100172
crossref_primary_10_1016_j_apsusc_2024_160949
crossref_primary_10_1021_acs_analchem_1c00967
crossref_primary_10_1007_s00216_023_04827_z
crossref_primary_10_1002_slct_202101386
crossref_primary_10_1016_j_ica_2021_120534
crossref_primary_10_1021_acs_jafc_3c00469
crossref_primary_10_1016_j_jddst_2023_105190
crossref_primary_10_1016_j_ica_2023_121579
crossref_primary_10_1016_j_snb_2020_129164
crossref_primary_10_1039_D4AY00032C
crossref_primary_10_1021_acs_langmuir_2c02966
crossref_primary_10_1016_j_colsurfb_2022_112823
crossref_primary_10_1039_D0TB03005H
crossref_primary_10_1016_j_cej_2023_143584
crossref_primary_10_1016_j_microc_2022_107706
crossref_primary_10_1038_s41598_021_99761_4
crossref_primary_10_1039_D1NJ01775F
crossref_primary_10_1021_acs_analchem_1c01787
crossref_primary_10_1016_j_colsurfa_2022_129458
crossref_primary_10_1016_j_jlumin_2021_118422
crossref_primary_10_1016_j_snb_2020_128766
crossref_primary_10_1080_00032719_2021_1991365
crossref_primary_10_1016_j_inoche_2021_108847
crossref_primary_10_1016_j_jcis_2025_01_041
crossref_primary_10_1021_acsbiomaterials_0c00842
crossref_primary_10_1021_acsanm_4c02349
crossref_primary_10_1016_j_ijbiomac_2025_142142
crossref_primary_10_1016_j_ccr_2022_214540
crossref_primary_10_1021_acssuschemeng_0c06224
crossref_primary_10_1021_acsaelm_2c01528
crossref_primary_10_1016_j_cej_2023_142366
crossref_primary_10_1016_j_talanta_2023_125324
crossref_primary_10_1149_1945_7111_ac40c7
crossref_primary_10_1016_j_colsurfb_2024_114193
crossref_primary_10_1016_j_inoche_2021_108739
crossref_primary_10_1021_acs_inorgchem_1c02109
crossref_primary_10_1016_j_bioelechem_2021_107815
crossref_primary_10_1016_j_saa_2024_124878
crossref_primary_10_1039_D2AN00537A
crossref_primary_10_1016_j_jelechem_2023_117307
crossref_primary_10_1016_j_molliq_2021_115555
crossref_primary_10_1002_slct_202203005
crossref_primary_10_1016_j_saa_2023_122395
crossref_primary_10_1007_s12274_020_3101_5
crossref_primary_10_1016_j_talanta_2020_121374
crossref_primary_10_1039_D0CC02782K
crossref_primary_10_1007_s12668_024_01649_w
crossref_primary_10_1039_D1NJ05804E
crossref_primary_10_1021_acs_analchem_2c04803
crossref_primary_10_1016_j_inoche_2022_109751
crossref_primary_10_1039_D4NJ00798K
crossref_primary_10_1016_j_snb_2023_133503
crossref_primary_10_1016_j_colsurfa_2021_127962
crossref_primary_10_1021_acsanm_2c01949
crossref_primary_10_1021_acssuschemeng_2c02981
crossref_primary_10_1007_s00604_020_04484_4
crossref_primary_10_1016_j_jphotochem_2022_114280
crossref_primary_10_1021_acs_jafc_2c05567
crossref_primary_10_1021_acsami_2c17849
crossref_primary_10_1016_j_jhazmat_2021_126660
crossref_primary_10_1016_j_jhazmat_2021_127991
crossref_primary_10_1039_D3AY02106H
crossref_primary_10_1016_j_colsurfa_2022_129377
crossref_primary_10_1039_D1QM00128K
crossref_primary_10_1016_j_snb_2020_128847
crossref_primary_10_1002_lsm_23292
crossref_primary_10_1016_j_jlumin_2023_119753
crossref_primary_10_1021_acs_jafc_2c00746
crossref_primary_10_1039_D2TB02438A
crossref_primary_10_1016_j_ecoenv_2022_113668
crossref_primary_10_1016_j_snb_2021_129549
crossref_primary_10_1039_D1AN00891A
crossref_primary_10_1016_j_saa_2020_118713
crossref_primary_10_1149_1945_7111_ac3ab8
crossref_primary_10_1007_s00289_021_03857_w
crossref_primary_10_1016_j_ijbiomac_2023_125028
crossref_primary_10_1016_j_bios_2023_115623
crossref_primary_10_1021_acs_analchem_0c05102
crossref_primary_10_1088_1748_605X_ad330f
crossref_primary_10_1186_s12951_022_01661_w
crossref_primary_10_1016_j_talanta_2021_122578
crossref_primary_10_1021_acs_analchem_2c03925
crossref_primary_10_1039_D3NJ00704A
crossref_primary_10_1007_s00604_021_04855_5
crossref_primary_10_1039_D2NJ00220E
crossref_primary_10_1016_j_colsurfb_2023_113278
crossref_primary_10_1039_D5NR00107B
crossref_primary_10_1016_j_cej_2025_160576
crossref_primary_10_1021_acsanm_4c01349
crossref_primary_10_1039_D2NJ05844H
crossref_primary_10_1039_D3NJ05244C
crossref_primary_10_1002_slct_202002969
crossref_primary_10_3390_inorganics11070265
Cites_doi 10.1002/adma.200902825
10.1021/acssuschemeng.9b03427
10.1021/acs.analchem.7b00942
10.1021/acssuschemeng.9b02287
10.1039/C9NR01408J
10.1021/acssuschemeng.7b03858
10.1021/acs.analchem.8b03083
10.1002/anie.201510219
10.1016/j.bios.2019.04.005
10.1039/C5CC04905A
10.1039/C9NR04421C
10.1021/acs.nanolett.9b01948
10.1016/j.bios.2018.09.023
10.1021/acsami.5b02188
10.1016/j.bios.2016.08.033
10.1039/C9CC04660G
10.1021/acsami.7b18816
10.1002/adfm.201702748
10.1021/acsami.9b07643
10.1021/acs.analchem.9b00007
10.1002/adfm.201603504
10.1021/jacs.5b02780
10.1021/ac201134d
10.1021/acs.analchem.9b00255
10.1016/j.bios.2012.04.025
10.1039/C9NR04768A
10.1016/j.electacta.2018.08.096
10.1021/acs.analchem.7b04193
10.1021/acs.analchem.7b05267
10.1021/acsami.8b14109
10.1039/C8CC05837G
10.1016/j.snb.2018.01.096
10.1021/acs.analchem.8b04609
10.1002/adma.201405141
10.1021/ac503215z
10.1002/advs.201901837
10.1039/C9NR02872B
10.1016/j.bios.2019.05.010
10.1007/s00604-019-3613-4
10.1039/C9NR03583D
10.1002/adfm.201903791
10.1002/adfm.201803804
10.1016/j.bios.2019.01.026
10.1021/acssuschemeng.6b00974
10.1021/am403942y
10.1021/ac500336f
10.1016/j.bios.2016.11.046
10.1016/j.trac.2018.06.003
10.1002/adma.201700326
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1021/acsami.0c00917
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 15927
ExternalDocumentID 32141728
10_1021_acsami_0c00917
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c1078-2558123730f206598bdf4be44b04d17e91d81bc63c6c04bee440b64dbd3c47a13
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Thu Jan 02 22:58:41 EST 2025
Tue Jul 01 01:48:32 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Ag ions
reductive biomolecules
MnO2 QDs
microenvironment engineering
enhanced fluorescence
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1078-2558123730f206598bdf4be44b04d17e91d81bc63c6c04bee440b64dbd3c47a13
ORCID 0000-0002-0935-7853
0000-0002-7502-6817
0000-0002-9809-2366
PMID 32141728
PageCount 9
ParticipantIDs pubmed_primary_32141728
crossref_primary_10_1021_acsami_0c00917
crossref_citationtrail_10_1021_acsami_0c00917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-Apr-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2020
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Guan G. J. (ref36/cit36) 2019; 6
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1002/adma.200902825
– ident: ref47/cit47
  doi: 10.1021/acssuschemeng.9b03427
– ident: ref1/cit1
  doi: 10.1021/acs.analchem.7b00942
– ident: ref30/cit30
  doi: 10.1021/acssuschemeng.9b02287
– ident: ref39/cit39
  doi: 10.1039/C9NR01408J
– ident: ref31/cit31
  doi: 10.1021/acssuschemeng.7b03858
– ident: ref41/cit41
  doi: 10.1021/acs.analchem.8b03083
– ident: ref46/cit46
  doi: 10.1002/anie.201510219
– ident: ref23/cit23
  doi: 10.1016/j.bios.2019.04.005
– ident: ref9/cit9
  doi: 10.1039/C5CC04905A
– ident: ref21/cit21
  doi: 10.1039/C9NR04421C
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.9b01948
– ident: ref45/cit45
  doi: 10.1016/j.bios.2018.09.023
– ident: ref20/cit20
  doi: 10.1021/acsami.5b02188
– ident: ref48/cit48
  doi: 10.1016/j.bios.2016.08.033
– ident: ref34/cit34
  doi: 10.1039/C9CC04660G
– ident: ref11/cit11
  doi: 10.1021/acsami.7b18816
– ident: ref2/cit2
  doi: 10.1002/adfm.201702748
– ident: ref17/cit17
  doi: 10.1021/acsami.9b07643
– ident: ref25/cit25
  doi: 10.1021/acs.analchem.9b00007
– ident: ref4/cit4
  doi: 10.1002/adfm.201603504
– ident: ref35/cit35
  doi: 10.1021/jacs.5b02780
– ident: ref42/cit42
  doi: 10.1021/ac201134d
– ident: ref44/cit44
  doi: 10.1021/acs.analchem.9b00255
– ident: ref40/cit40
  doi: 10.1016/j.bios.2012.04.025
– ident: ref16/cit16
  doi: 10.1039/C9NR04768A
– ident: ref33/cit33
  doi: 10.1016/j.electacta.2018.08.096
– ident: ref12/cit12
  doi: 10.1021/acs.analchem.7b04193
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.7b05267
– ident: ref5/cit5
  doi: 10.1021/acsami.8b14109
– ident: ref3/cit3
  doi: 10.1039/C8CC05837G
– ident: ref38/cit38
  doi: 10.1016/j.snb.2018.01.096
– ident: ref49/cit49
  doi: 10.1021/acs.analchem.8b04609
– ident: ref15/cit15
  doi: 10.1002/adma.201405141
– ident: ref26/cit26
  doi: 10.1021/ac503215z
– volume: 6
  start-page: 1901837
  year: 2019
  ident: ref36/cit36
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901837
– ident: ref13/cit13
  doi: 10.1039/C9NR02872B
– ident: ref19/cit19
  doi: 10.1016/j.bios.2019.05.010
– ident: ref29/cit29
  doi: 10.1007/s00604-019-3613-4
– ident: ref27/cit27
  doi: 10.1039/C9NR03583D
– ident: ref7/cit7
  doi: 10.1002/adfm.201903791
– ident: ref6/cit6
  doi: 10.1002/adfm.201803804
– ident: ref14/cit14
  doi: 10.1016/j.bios.2019.01.026
– ident: ref32/cit32
  doi: 10.1021/acssuschemeng.6b00974
– ident: ref43/cit43
  doi: 10.1021/am403942y
– ident: ref8/cit8
  doi: 10.1021/ac500336f
– ident: ref37/cit37
  doi: 10.1016/j.bios.2016.11.046
– ident: ref18/cit18
  doi: 10.1016/j.trac.2018.06.003
– ident: ref28/cit28
  doi: 10.1002/adma.201700326
SSID ssj0063205
Score 2.2967134
Snippet MnO nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 15919
SubjectTerms Animals
Cattle
Cysteine - chemistry
Hydrogen Peroxide - chemistry
Manganese Compounds - chemistry
Metal Nanoparticles - chemistry
Oxidation-Reduction
Oxides - chemistry
Particle Size
Quantum Dots - chemistry
Serum Albumin, Bovine - chemistry
Silver - chemistry
Sulfides - chemistry
Title Facile Preparation of MnO 2 Quantum Dots with Enhanced Fluorescence via Microenvironment Engineering with the Assistance of Some Reductive Biomolecules
URI https://www.ncbi.nlm.nih.gov/pubmed/32141728
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQJziwL2XTHJA4BezYSZojW1UhlR2JWxVvoqJNUNtw4Ef4XcZOCy0IwdkeO7KdmTee8RtC9uPMJFGGbmrKdRoIHdlARlQGVCBaMClCVOkiuq3LuPkgLh6jx6_7ju8R_JAdZWrgSuFQhWiA-WfjiXAk-cend2OVG_PQ5yqiQy6COhqsMTvjD_Ep6zOFI709aSxW5EYDT0Po0kieD8uhPFRvP0ka__zUJbIwApVwXJ2CZTJj8hUyP0E1uEreG5lCBQDXfVOxfRc5FBZa-RWEcFPi-pY9OCuGA3A3s3CeP_nUAGh0y6LvKZ-UgddOBi2XwTfxPA4mpqlkEVIC7roDpk4IZ7kregZuHUmsU65w0il6VVVeM1gjD43z-9NmMCrKECj0FPGviiLEBBwVgw1dTLYutRXSCCGp0CwxKdOIhFXMVawoNmALlbHQUnMlkozxdTKbF7nZJGAoN3VmaWrrWliaSM4c_Z7lTIdcK1sjwXiz2mrEWO4KZ3TbPnIesna14O3RgtfIwWf_l4qr49eeG9Xef_Zz9Zpcqa6tf4-xTeZC53v7LJ4dMjvsl2YXAcpQ7vnD-QFkUOMq
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Preparation+of+MnO+2+Quantum+Dots+with+Enhanced+Fluorescence+via+Microenvironment+Engineering+with+the+Assistance+of+Some+Reductive+Biomolecules&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ma%2C+Zhangyan&rft.au=Sun%2C+Yan&rft.au=Xie%2C+Jingwen&rft.au=Li%2C+Peipei&rft.date=2020-04-01&rft.eissn=1944-8252&rft.volume=12&rft.issue=13&rft.spage=15919&rft_id=info:doi/10.1021%2Facsami.0c00917&rft_id=info%3Apmid%2F32141728&rft.externalDocID=32141728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon