Facile Preparation of MnO 2 Quantum Dots with Enhanced Fluorescence via Microenvironment Engineering with the Assistance of Some Reductive Biomolecules
MnO nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related activities. However, not many reports on self-luminescent MnO materials have been concerned to date, which greatly hampered their further development i...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 13; pp. 15919 - 15927 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MnO
nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related activities. However, not many reports on self-luminescent MnO
materials have been concerned to date, which greatly hampered their further development in various fields. In this paper, luminescent MnO
quantum dots (MnO
QDs) have been first prepared via a facile one-step ultrasonic method. With the assistance of bovine serum albumin (BSA) or cysteine (Cys), the synthesized MnO
QDs (BSA-MnO
QDs or Cys-MnO
QDs) display strongly enhanced fluorescence (FL). The prepared BSA-MnO
QDs with a particle size of about 1 to 2 nm show the maximum excitation and emission peaks at 320 and 410 nm with excellent salt stability, anti-photobleaching ability, and time stability. It is confirmed that BSA plays a dual function as the exfoliating agent to promote the exfoliation of bulk MnO
nanosheets and as the capping agent to provide a friendly microenvironment for MnO
QDs. Ag ions can destroy the microenvironment of BSA-MnO
QDs owing to the in situ formation of Ag nanoparticles (Ag NPs) mediated by BSA on the surface of the QDs. Then, these Ag NPs can quench the FL intensity of the QDs by fluorescence resonance energy transfer. However, the FL strength of the BSA-MnO
QDs is recovered after adding H
O
and NaHS since they may react with Ag NPs to produce Ag
and Ag
S, which further confirmed the role of BSA. This work not only opens up a facile and universal avenue to synthesize luminescent MnO
QDs with enhanced FL but also provides a possible sensing platform through tuning the microenvironment of the MnO
QDs. The MnO
QDs with outstanding performance may show great potential as fluorescent probes in the fields of biological imaging, optical sensing, drug delivery, and therapy. |
---|---|
AbstractList | MnO
nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related activities. However, not many reports on self-luminescent MnO
materials have been concerned to date, which greatly hampered their further development in various fields. In this paper, luminescent MnO
quantum dots (MnO
QDs) have been first prepared via a facile one-step ultrasonic method. With the assistance of bovine serum albumin (BSA) or cysteine (Cys), the synthesized MnO
QDs (BSA-MnO
QDs or Cys-MnO
QDs) display strongly enhanced fluorescence (FL). The prepared BSA-MnO
QDs with a particle size of about 1 to 2 nm show the maximum excitation and emission peaks at 320 and 410 nm with excellent salt stability, anti-photobleaching ability, and time stability. It is confirmed that BSA plays a dual function as the exfoliating agent to promote the exfoliation of bulk MnO
nanosheets and as the capping agent to provide a friendly microenvironment for MnO
QDs. Ag ions can destroy the microenvironment of BSA-MnO
QDs owing to the in situ formation of Ag nanoparticles (Ag NPs) mediated by BSA on the surface of the QDs. Then, these Ag NPs can quench the FL intensity of the QDs by fluorescence resonance energy transfer. However, the FL strength of the BSA-MnO
QDs is recovered after adding H
O
and NaHS since they may react with Ag NPs to produce Ag
and Ag
S, which further confirmed the role of BSA. This work not only opens up a facile and universal avenue to synthesize luminescent MnO
QDs with enhanced FL but also provides a possible sensing platform through tuning the microenvironment of the MnO
QDs. The MnO
QDs with outstanding performance may show great potential as fluorescent probes in the fields of biological imaging, optical sensing, drug delivery, and therapy. |
Author | Yin, Peng Zhang, Youyu Lu, Qiujun Ma, Zhangyan Xie, Jingwen Liu, Meiling Li, Haitao Sun, Yan Li, Peipei Yao, Shouzhuo |
Author_xml | – sequence: 1 givenname: Zhangyan surname: Ma fullname: Ma, Zhangyan organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 2 givenname: Yan surname: Sun fullname: Sun, Yan organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 3 givenname: Jingwen surname: Xie fullname: Xie, Jingwen organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 4 givenname: Peipei surname: Li fullname: Li, Peipei organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 5 givenname: Qiujun surname: Lu fullname: Lu, Qiujun organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 6 givenname: Meiling orcidid: 0000-0002-0935-7853 surname: Liu fullname: Liu, Meiling organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 7 givenname: Peng orcidid: 0000-0002-9809-2366 surname: Yin fullname: Yin, Peng organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 8 givenname: Haitao surname: Li fullname: Li, Haitao organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 9 givenname: Youyu orcidid: 0000-0002-7502-6817 surname: Zhang fullname: Zhang, Youyu organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China – sequence: 10 givenname: Shouzhuo surname: Yao fullname: Yao, Shouzhuo organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32141728$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctOwzAQtFARfcCVI_IPtNiO8-ixlBaQWpXnOXKcTWuU2JXtFPEl_C4pKT0gcdpdzcyudqaPOtpoQOiSkhEljF4L6USlRkQSMqbxCerRMefDhIWsc-w576K-c--ERAEj4RnqBoxyGrOkh77mQqoS8KOFrbDCK6OxKfBSrzDDT7XQvq7wrfEOfyi_wTO9EVpCjudlbSw4Cc2Ed0rgpZLWgN4pa3QF2jfUtdIAVul1q_UbwBPnlPP7FfsrL6YC_Ax5Lb3aAb5RpjIlyLoEd45OC1E6uDjUAXqbz16n98PF6u5hOlkMJSVxMmRhmFAWxAEpGInCcZLlBc-A84zwnMYwpnlCMxkFMpKkARqEZBHPszyQPBY0GKCrdu-2zirI061VlbCf6a9DDWHUEpr3nLNQHCmUpPsI0jaC9BBBI-B_BFL5H2O9Far8T_YN8uCOag |
CitedBy_id | crossref_primary_10_1021_acsanm_0c01719 crossref_primary_10_1007_s00253_023_12605_1 crossref_primary_10_1021_acsaelm_3c01523 crossref_primary_10_1039_D1NJ02325J crossref_primary_10_1016_j_aca_2023_341010 crossref_primary_10_1039_D1AN01268A crossref_primary_10_1039_D1NA00257K crossref_primary_10_1039_D1NJ05105A crossref_primary_10_1021_acsanm_1c03433 crossref_primary_10_1016_j_saa_2021_120168 crossref_primary_10_1007_s00604_022_05170_3 crossref_primary_10_1016_j_inoche_2022_109677 crossref_primary_10_1016_j_colsurfb_2024_113767 crossref_primary_10_1016_j_jiec_2021_08_046 crossref_primary_10_1002_slct_202100172 crossref_primary_10_1016_j_apsusc_2024_160949 crossref_primary_10_1021_acs_analchem_1c00967 crossref_primary_10_1007_s00216_023_04827_z crossref_primary_10_1002_slct_202101386 crossref_primary_10_1016_j_ica_2021_120534 crossref_primary_10_1021_acs_jafc_3c00469 crossref_primary_10_1016_j_jddst_2023_105190 crossref_primary_10_1016_j_ica_2023_121579 crossref_primary_10_1016_j_snb_2020_129164 crossref_primary_10_1039_D4AY00032C crossref_primary_10_1021_acs_langmuir_2c02966 crossref_primary_10_1016_j_colsurfb_2022_112823 crossref_primary_10_1039_D0TB03005H crossref_primary_10_1016_j_cej_2023_143584 crossref_primary_10_1016_j_microc_2022_107706 crossref_primary_10_1038_s41598_021_99761_4 crossref_primary_10_1039_D1NJ01775F crossref_primary_10_1021_acs_analchem_1c01787 crossref_primary_10_1016_j_colsurfa_2022_129458 crossref_primary_10_1016_j_jlumin_2021_118422 crossref_primary_10_1016_j_snb_2020_128766 crossref_primary_10_1080_00032719_2021_1991365 crossref_primary_10_1016_j_inoche_2021_108847 crossref_primary_10_1016_j_jcis_2025_01_041 crossref_primary_10_1021_acsbiomaterials_0c00842 crossref_primary_10_1021_acsanm_4c02349 crossref_primary_10_1016_j_ijbiomac_2025_142142 crossref_primary_10_1016_j_ccr_2022_214540 crossref_primary_10_1021_acssuschemeng_0c06224 crossref_primary_10_1021_acsaelm_2c01528 crossref_primary_10_1016_j_cej_2023_142366 crossref_primary_10_1016_j_talanta_2023_125324 crossref_primary_10_1149_1945_7111_ac40c7 crossref_primary_10_1016_j_colsurfb_2024_114193 crossref_primary_10_1016_j_inoche_2021_108739 crossref_primary_10_1021_acs_inorgchem_1c02109 crossref_primary_10_1016_j_bioelechem_2021_107815 crossref_primary_10_1016_j_saa_2024_124878 crossref_primary_10_1039_D2AN00537A crossref_primary_10_1016_j_jelechem_2023_117307 crossref_primary_10_1016_j_molliq_2021_115555 crossref_primary_10_1002_slct_202203005 crossref_primary_10_1016_j_saa_2023_122395 crossref_primary_10_1007_s12274_020_3101_5 crossref_primary_10_1016_j_talanta_2020_121374 crossref_primary_10_1039_D0CC02782K crossref_primary_10_1007_s12668_024_01649_w crossref_primary_10_1039_D1NJ05804E crossref_primary_10_1021_acs_analchem_2c04803 crossref_primary_10_1016_j_inoche_2022_109751 crossref_primary_10_1039_D4NJ00798K crossref_primary_10_1016_j_snb_2023_133503 crossref_primary_10_1016_j_colsurfa_2021_127962 crossref_primary_10_1021_acsanm_2c01949 crossref_primary_10_1021_acssuschemeng_2c02981 crossref_primary_10_1007_s00604_020_04484_4 crossref_primary_10_1016_j_jphotochem_2022_114280 crossref_primary_10_1021_acs_jafc_2c05567 crossref_primary_10_1021_acsami_2c17849 crossref_primary_10_1016_j_jhazmat_2021_126660 crossref_primary_10_1016_j_jhazmat_2021_127991 crossref_primary_10_1039_D3AY02106H crossref_primary_10_1016_j_colsurfa_2022_129377 crossref_primary_10_1039_D1QM00128K crossref_primary_10_1016_j_snb_2020_128847 crossref_primary_10_1002_lsm_23292 crossref_primary_10_1016_j_jlumin_2023_119753 crossref_primary_10_1021_acs_jafc_2c00746 crossref_primary_10_1039_D2TB02438A crossref_primary_10_1016_j_ecoenv_2022_113668 crossref_primary_10_1016_j_snb_2021_129549 crossref_primary_10_1039_D1AN00891A crossref_primary_10_1016_j_saa_2020_118713 crossref_primary_10_1149_1945_7111_ac3ab8 crossref_primary_10_1007_s00289_021_03857_w crossref_primary_10_1016_j_ijbiomac_2023_125028 crossref_primary_10_1016_j_bios_2023_115623 crossref_primary_10_1021_acs_analchem_0c05102 crossref_primary_10_1088_1748_605X_ad330f crossref_primary_10_1186_s12951_022_01661_w crossref_primary_10_1016_j_talanta_2021_122578 crossref_primary_10_1021_acs_analchem_2c03925 crossref_primary_10_1039_D3NJ00704A crossref_primary_10_1007_s00604_021_04855_5 crossref_primary_10_1039_D2NJ00220E crossref_primary_10_1016_j_colsurfb_2023_113278 crossref_primary_10_1039_D5NR00107B crossref_primary_10_1016_j_cej_2025_160576 crossref_primary_10_1021_acsanm_4c01349 crossref_primary_10_1039_D2NJ05844H crossref_primary_10_1039_D3NJ05244C crossref_primary_10_1002_slct_202002969 crossref_primary_10_3390_inorganics11070265 |
Cites_doi | 10.1002/adma.200902825 10.1021/acssuschemeng.9b03427 10.1021/acs.analchem.7b00942 10.1021/acssuschemeng.9b02287 10.1039/C9NR01408J 10.1021/acssuschemeng.7b03858 10.1021/acs.analchem.8b03083 10.1002/anie.201510219 10.1016/j.bios.2019.04.005 10.1039/C5CC04905A 10.1039/C9NR04421C 10.1021/acs.nanolett.9b01948 10.1016/j.bios.2018.09.023 10.1021/acsami.5b02188 10.1016/j.bios.2016.08.033 10.1039/C9CC04660G 10.1021/acsami.7b18816 10.1002/adfm.201702748 10.1021/acsami.9b07643 10.1021/acs.analchem.9b00007 10.1002/adfm.201603504 10.1021/jacs.5b02780 10.1021/ac201134d 10.1021/acs.analchem.9b00255 10.1016/j.bios.2012.04.025 10.1039/C9NR04768A 10.1016/j.electacta.2018.08.096 10.1021/acs.analchem.7b04193 10.1021/acs.analchem.7b05267 10.1021/acsami.8b14109 10.1039/C8CC05837G 10.1016/j.snb.2018.01.096 10.1021/acs.analchem.8b04609 10.1002/adma.201405141 10.1021/ac503215z 10.1002/advs.201901837 10.1039/C9NR02872B 10.1016/j.bios.2019.05.010 10.1007/s00604-019-3613-4 10.1039/C9NR03583D 10.1002/adfm.201903791 10.1002/adfm.201803804 10.1016/j.bios.2019.01.026 10.1021/acssuschemeng.6b00974 10.1021/am403942y 10.1021/ac500336f 10.1016/j.bios.2016.11.046 10.1016/j.trac.2018.06.003 10.1002/adma.201700326 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1021/acsami.0c00917 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 15927 |
ExternalDocumentID | 32141728 10_1021_acsami_0c00917 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c1078-2558123730f206598bdf4be44b04d17e91d81bc63c6c04bee440b64dbd3c47a13 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Thu Jan 02 22:58:41 EST 2025 Tue Jul 01 01:48:32 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Ag ions reductive biomolecules MnO2 QDs microenvironment engineering enhanced fluorescence |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1078-2558123730f206598bdf4be44b04d17e91d81bc63c6c04bee440b64dbd3c47a13 |
ORCID | 0000-0002-0935-7853 0000-0002-7502-6817 0000-0002-9809-2366 |
PMID | 32141728 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_32141728 crossref_primary_10_1021_acsami_0c00917 crossref_citationtrail_10_1021_acsami_0c00917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-Apr-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl Mater Interfaces |
PublicationYear | 2020 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 Guan G. J. (ref36/cit36) 2019; 6 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1002/adma.200902825 – ident: ref47/cit47 doi: 10.1021/acssuschemeng.9b03427 – ident: ref1/cit1 doi: 10.1021/acs.analchem.7b00942 – ident: ref30/cit30 doi: 10.1021/acssuschemeng.9b02287 – ident: ref39/cit39 doi: 10.1039/C9NR01408J – ident: ref31/cit31 doi: 10.1021/acssuschemeng.7b03858 – ident: ref41/cit41 doi: 10.1021/acs.analchem.8b03083 – ident: ref46/cit46 doi: 10.1002/anie.201510219 – ident: ref23/cit23 doi: 10.1016/j.bios.2019.04.005 – ident: ref9/cit9 doi: 10.1039/C5CC04905A – ident: ref21/cit21 doi: 10.1039/C9NR04421C – ident: ref22/cit22 doi: 10.1021/acs.nanolett.9b01948 – ident: ref45/cit45 doi: 10.1016/j.bios.2018.09.023 – ident: ref20/cit20 doi: 10.1021/acsami.5b02188 – ident: ref48/cit48 doi: 10.1016/j.bios.2016.08.033 – ident: ref34/cit34 doi: 10.1039/C9CC04660G – ident: ref11/cit11 doi: 10.1021/acsami.7b18816 – ident: ref2/cit2 doi: 10.1002/adfm.201702748 – ident: ref17/cit17 doi: 10.1021/acsami.9b07643 – ident: ref25/cit25 doi: 10.1021/acs.analchem.9b00007 – ident: ref4/cit4 doi: 10.1002/adfm.201603504 – ident: ref35/cit35 doi: 10.1021/jacs.5b02780 – ident: ref42/cit42 doi: 10.1021/ac201134d – ident: ref44/cit44 doi: 10.1021/acs.analchem.9b00255 – ident: ref40/cit40 doi: 10.1016/j.bios.2012.04.025 – ident: ref16/cit16 doi: 10.1039/C9NR04768A – ident: ref33/cit33 doi: 10.1016/j.electacta.2018.08.096 – ident: ref12/cit12 doi: 10.1021/acs.analchem.7b04193 – ident: ref10/cit10 doi: 10.1021/acs.analchem.7b05267 – ident: ref5/cit5 doi: 10.1021/acsami.8b14109 – ident: ref3/cit3 doi: 10.1039/C8CC05837G – ident: ref38/cit38 doi: 10.1016/j.snb.2018.01.096 – ident: ref49/cit49 doi: 10.1021/acs.analchem.8b04609 – ident: ref15/cit15 doi: 10.1002/adma.201405141 – ident: ref26/cit26 doi: 10.1021/ac503215z – volume: 6 start-page: 1901837 year: 2019 ident: ref36/cit36 publication-title: Adv. Sci. doi: 10.1002/advs.201901837 – ident: ref13/cit13 doi: 10.1039/C9NR02872B – ident: ref19/cit19 doi: 10.1016/j.bios.2019.05.010 – ident: ref29/cit29 doi: 10.1007/s00604-019-3613-4 – ident: ref27/cit27 doi: 10.1039/C9NR03583D – ident: ref7/cit7 doi: 10.1002/adfm.201903791 – ident: ref6/cit6 doi: 10.1002/adfm.201803804 – ident: ref14/cit14 doi: 10.1016/j.bios.2019.01.026 – ident: ref32/cit32 doi: 10.1021/acssuschemeng.6b00974 – ident: ref43/cit43 doi: 10.1021/am403942y – ident: ref8/cit8 doi: 10.1021/ac500336f – ident: ref37/cit37 doi: 10.1016/j.bios.2016.11.046 – ident: ref18/cit18 doi: 10.1016/j.trac.2018.06.003 – ident: ref28/cit28 doi: 10.1002/adma.201700326 |
SSID | ssj0063205 |
Score | 2.2967134 |
Snippet | MnO
nanomaterials have aroused widespread attention because of their nanozyme activity, redox properties, good biocompatibility, and therapy-related... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 15919 |
SubjectTerms | Animals Cattle Cysteine - chemistry Hydrogen Peroxide - chemistry Manganese Compounds - chemistry Metal Nanoparticles - chemistry Oxidation-Reduction Oxides - chemistry Particle Size Quantum Dots - chemistry Serum Albumin, Bovine - chemistry Silver - chemistry Sulfides - chemistry |
Title | Facile Preparation of MnO 2 Quantum Dots with Enhanced Fluorescence via Microenvironment Engineering with the Assistance of Some Reductive Biomolecules |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32141728 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQJziwL2XTHJA4BezYSZojW1UhlR2JWxVvoqJNUNtw4Ef4XcZOCy0IwdkeO7KdmTee8RtC9uPMJFGGbmrKdRoIHdlARlQGVCBaMClCVOkiuq3LuPkgLh6jx6_7ju8R_JAdZWrgSuFQhWiA-WfjiXAk-cend2OVG_PQ5yqiQy6COhqsMTvjD_Ep6zOFI709aSxW5EYDT0Po0kieD8uhPFRvP0ka__zUJbIwApVwXJ2CZTJj8hUyP0E1uEreG5lCBQDXfVOxfRc5FBZa-RWEcFPi-pY9OCuGA3A3s3CeP_nUAGh0y6LvKZ-UgddOBi2XwTfxPA4mpqlkEVIC7roDpk4IZ7kregZuHUmsU65w0il6VVVeM1gjD43z-9NmMCrKECj0FPGviiLEBBwVgw1dTLYutRXSCCGp0CwxKdOIhFXMVawoNmALlbHQUnMlkozxdTKbF7nZJGAoN3VmaWrrWliaSM4c_Z7lTIdcK1sjwXiz2mrEWO4KZ3TbPnIesna14O3RgtfIwWf_l4qr49eeG9Xef_Zz9Zpcqa6tf4-xTeZC53v7LJ4dMjvsl2YXAcpQ7vnD-QFkUOMq |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Preparation+of+MnO+2+Quantum+Dots+with+Enhanced+Fluorescence+via+Microenvironment+Engineering+with+the+Assistance+of+Some+Reductive+Biomolecules&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ma%2C+Zhangyan&rft.au=Sun%2C+Yan&rft.au=Xie%2C+Jingwen&rft.au=Li%2C+Peipei&rft.date=2020-04-01&rft.eissn=1944-8252&rft.volume=12&rft.issue=13&rft.spage=15919&rft_id=info:doi/10.1021%2Facsami.0c00917&rft_id=info%3Apmid%2F32141728&rft.externalDocID=32141728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |