Surface Modification of Co 3 O 4 Nanoplates as Efficient Peroxidase Nanozymes for Biosensing Application

Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co O nanoplates were modified by different functiona...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 4; no. 4; pp. 3443 - 3452
Main Authors Huo, Jianzhong, Hao, Jinyu, Mu, Jianshuai, Wang, Yan
Format Journal Article
LanguageEnglish
Published United States 19.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co O nanoplates were modified by different functional groups, including the amino group, carboxyl group, hydroxyl group, and sulfhydryl group (NH -Co O , COOH-Co O , OH-Co O , and SH-Co O ). And the modified Co O nanoplates were characterized by XRD, SEM, TEM, XPS, FTIR, TG, and the Zeta potential, verifying the successful modification of different functional groups. Their mimetic peroxidase properties and kinetics process were further studied and showed that the order of their catalytic activities was as follows: NH -Co O > SH-Co O > COOH-Co O > pure Co O > OH-Co O , and the catalysis of modified Co O nanozymes all followed Michaelis-Menten kinetics. The results indicated that the different functional groups changed their electron transfer ability, and further affected their catalytic activity. H O detection was selected as an application model system to evaluate the modified Co O nanozymes. Compared with other Co O nanozymes, a wider linear range from 0.01 to 40 mmol L and a lower detection limit of 1.5 μmol L was constructed with NH -Co O nanozymes. The results suggested that surface modification by functional groups was a robust strategy to improve the application of Co O nanozymes. The enhanced catalytic activity and good biocompatibility of modified Co O nanozymes provided valuable materials for the relative application, such as medical detection and antioxidation.
AbstractList Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co O nanoplates were modified by different functional groups, including the amino group, carboxyl group, hydroxyl group, and sulfhydryl group (NH -Co O , COOH-Co O , OH-Co O , and SH-Co O ). And the modified Co O nanoplates were characterized by XRD, SEM, TEM, XPS, FTIR, TG, and the Zeta potential, verifying the successful modification of different functional groups. Their mimetic peroxidase properties and kinetics process were further studied and showed that the order of their catalytic activities was as follows: NH -Co O > SH-Co O > COOH-Co O > pure Co O > OH-Co O , and the catalysis of modified Co O nanozymes all followed Michaelis-Menten kinetics. The results indicated that the different functional groups changed their electron transfer ability, and further affected their catalytic activity. H O detection was selected as an application model system to evaluate the modified Co O nanozymes. Compared with other Co O nanozymes, a wider linear range from 0.01 to 40 mmol L and a lower detection limit of 1.5 μmol L was constructed with NH -Co O nanozymes. The results suggested that surface modification by functional groups was a robust strategy to improve the application of Co O nanozymes. The enhanced catalytic activity and good biocompatibility of modified Co O nanozymes provided valuable materials for the relative application, such as medical detection and antioxidation.
Author Hao, Jinyu
Mu, Jianshuai
Huo, Jianzhong
Wang, Yan
Author_xml – sequence: 1
  givenname: Jianzhong
  surname: Huo
  fullname: Huo, Jianzhong
  organization: College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, PR China
– sequence: 2
  givenname: Jinyu
  surname: Hao
  fullname: Hao, Jinyu
  organization: College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, PR China
– sequence: 3
  givenname: Jianshuai
  orcidid: 0000-0002-7804-536X
  surname: Mu
  fullname: Mu, Jianshuai
  organization: College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, PR China
– sequence: 4
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35014428$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNUbK3dupT8gal5TWayrKU-oFpBXQ95aqSTDEkL1l_vaKu4umfxncPlOwWDEIMF4ByjKUYEX0qdpWqnWCOEcHUERqSseMEZIYN_eQgmOb_3CEGI4lqcgCEtEWaM1CPw9rRNTmoL76Pxzmu58THA6OA8QgpXkMEHGWK3lhubocxw4XrI27CBjzbFD29ktj_I567tCRcTvPIx25B9eIWzrlsfNs_AsZPrbCeHOwYv14vn-W2xXN3czWfLQmNU1QXu_3QWiZrVijNnKNPCEKu0QUozJLAUVem45Ly0jlRKGMVp5SzVpeC1MXQMpvtdnWLOybqmS76Vaddg1Hxba_bWmoO1vnCxL3Rb1Vrzh_86ol9Y1mtr
CitedBy_id crossref_primary_10_1016_j_bios_2022_115022
crossref_primary_10_3390_s21155201
crossref_primary_10_1016_j_talanta_2022_123853
crossref_primary_10_1016_j_talanta_2023_124845
crossref_primary_10_1007_s11696_024_03476_5
crossref_primary_10_1016_j_colsurfa_2023_131542
crossref_primary_10_2139_ssrn_4181249
crossref_primary_10_1016_j_aca_2022_339703
crossref_primary_10_1039_D3MA00687E
crossref_primary_10_1007_s40820_021_00674_8
crossref_primary_10_1021_acs_jchemed_3c00548
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_2139_ssrn_4151294
crossref_primary_10_1016_j_ijbiomac_2022_11_110
crossref_primary_10_1016_j_microc_2024_110781
crossref_primary_10_1016_j_snb_2022_131429
crossref_primary_10_1021_acs_analchem_3c04409
crossref_primary_10_1016_j_bios_2021_113494
crossref_primary_10_1016_j_lwt_2023_115260
crossref_primary_10_1021_acsanm_1c02693
Cites_doi 10.1021/jf202874r
10.1016/j.biomaterials.2012.10.063
10.1016/j.bios.2016.09.108
10.1021/acs.accounts.9b00140
10.1002/sia.5261
10.1039/c1cc11943e
10.1021/am406033q
10.1016/j.molcata.2013.05.016
10.1007/s11427-019-1570-7
10.1038/ncomms12876
10.1039/c2cc17013b
10.1016/j.electacta.2011.07.033
10.1039/c4cp01326c
10.1007/s12274-018-2079-8
10.1016/j.snb.2019.127106
10.1038/nnano.2007.260
10.1002/chem.201803040
10.1039/C7NR03399K
10.1016/j.msec.2019.110388
10.1021/jp901655j
10.1039/c3ta11054k
10.1016/S0927-7757(02)00305-9
10.1016/j.atherosclerosis.2011.06.054
10.1002/anie.201502226
10.1007/s00604-020-04373-w
10.1166/mex.2011.1015
10.1021/acs.analchem.9b04333
10.1016/j.apsusc.2005.08.004
10.1016/j.susc.2010.02.023
10.1002/smll.201803256
10.1039/C6RA04757B
10.1038/s41467-017-00424-8
10.1002/adfm.201304206
10.1166/jbmb.2007.028
10.1016/j.colsurfa.2020.125063
10.1038/ncomms9625
10.1088/0022-3727/33/22/301
10.1039/c0cc02698k
10.1039/C8CS00718G
10.1016/j.snb.2015.12.109
10.1039/C9AN01262A
10.1016/j.bcp.2006.06.027
10.1002/adma.200903783
10.1021/nn300291r
10.1002/adma.201601387
10.1016/j.freeradbiomed.2013.01.034
10.1016/j.diamond.2018.03.012
10.1016/j.bios.2019.111983
10.1161/01.CIR.101.21.2510
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1021/acsabm.1c00017
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 3452
ExternalDocumentID 10_1021_acsabm_1c00017
35014428
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CGR
CUPRZ
CUY
CVF
EBS
ECM
EIF
GGK
NPM
VF5
VG9
AAYXX
CITATION
ID FETCH-LOGICAL-c1078-1000fe09848b64fd34c9d2ebcd0bc4091a975f6a665ef27b9db637fe3c5968dd3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Fri Aug 23 01:46:44 EDT 2024
Tue Aug 27 13:45:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords nanozymes
mimetic peroxidase
H2O2 sensor
surface modification
Co3O4 nanoplates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1078-1000fe09848b64fd34c9d2ebcd0bc4091a975f6a665ef27b9db637fe3c5968dd3
ORCID 0000-0002-7804-536X
PMID 35014428
PageCount 10
ParticipantIDs crossref_primary_10_1021_acsabm_1c00017
pubmed_primary_35014428
PublicationCentury 2000
PublicationDate 2021-04-19
PublicationDateYYYYMMDD 2021-04-19
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl Bio Mater
PublicationYear 2021
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1021/jf202874r
– ident: ref13/cit13
  doi: 10.1016/j.biomaterials.2012.10.063
– ident: ref17/cit17
  doi: 10.1016/j.bios.2016.09.108
– ident: ref2/cit2
  doi: 10.1021/acs.accounts.9b00140
– ident: ref19/cit19
  doi: 10.1016/j.biomaterials.2012.10.063
– ident: ref25/cit25
  doi: 10.1002/sia.5261
– ident: ref44/cit44
  doi: 10.1039/c1cc11943e
– ident: ref4/cit4
  doi: 10.1021/am406033q
– ident: ref12/cit12
  doi: 10.1016/j.molcata.2013.05.016
– ident: ref3/cit3
  doi: 10.1007/s11427-019-1570-7
– ident: ref7/cit7
  doi: 10.1038/ncomms12876
– ident: ref11/cit11
  doi: 10.1039/c2cc17013b
– ident: ref22/cit22
  doi: 10.1016/j.electacta.2011.07.033
– ident: ref23/cit23
  doi: 10.1039/c4cp01326c
– ident: ref41/cit41
  doi: 10.1007/s12274-018-2079-8
– ident: ref16/cit16
  doi: 10.1016/j.snb.2019.127106
– ident: ref40/cit40
  doi: 10.1038/nnano.2007.260
– ident: ref15/cit15
  doi: 10.1002/chem.201803040
– ident: ref14/cit14
  doi: 10.1039/C7NR03399K
– ident: ref30/cit30
  doi: 10.1016/j.msec.2019.110388
– ident: ref32/cit32
  doi: 10.1021/jp901655j
– ident: ref10/cit10
  doi: 10.1039/c3ta11054k
– ident: ref31/cit31
  doi: 10.1016/S0927-7757(02)00305-9
– ident: ref36/cit36
  doi: 10.1016/j.atherosclerosis.2011.06.054
– ident: ref29/cit29
  doi: 10.1002/anie.201502226
– ident: ref48/cit48
  doi: 10.1007/s00604-020-04373-w
– ident: ref26/cit26
  doi: 10.1166/mex.2011.1015
– ident: ref46/cit46
  doi: 10.1021/acs.analchem.9b04333
– ident: ref33/cit33
  doi: 10.1016/j.apsusc.2005.08.004
– ident: ref28/cit28
  doi: 10.1016/j.susc.2010.02.023
– ident: ref18/cit18
  doi: 10.1002/smll.201803256
– ident: ref8/cit8
  doi: 10.1039/C6RA04757B
– ident: ref38/cit38
  doi: 10.1038/s41467-017-00424-8
– ident: ref9/cit9
  doi: 10.1002/adfm.201304206
– ident: ref34/cit34
  doi: 10.1166/jbmb.2007.028
– ident: ref47/cit47
  doi: 10.1016/j.colsurfa.2020.125063
– ident: ref24/cit24
  doi: 10.1038/ncomms9625
– ident: ref27/cit27
  doi: 10.1088/0022-3727/33/22/301
– ident: ref45/cit45
  doi: 10.1039/c0cc02698k
– ident: ref1/cit1
  doi: 10.1039/C8CS00718G
– ident: ref5/cit5
  doi: 10.1016/j.snb.2015.12.109
– ident: ref50/cit50
  doi: 10.1039/C9AN01262A
– ident: ref43/cit43
  doi: 10.1016/j.bcp.2006.06.027
– ident: ref42/cit42
  doi: 10.1002/adma.200903783
– ident: ref39/cit39
  doi: 10.1021/nn300291r
– ident: ref6/cit6
  doi: 10.1002/adma.201601387
– ident: ref20/cit20
  doi: 10.1016/j.freeradbiomed.2013.01.034
– ident: ref35/cit35
  doi: 10.1016/j.diamond.2018.03.012
– ident: ref49/cit49
  doi: 10.1016/j.bios.2019.111983
– ident: ref37/cit37
  doi: 10.1161/01.CIR.101.21.2510
SSID ssj0002003189
Score 2.190212
Snippet Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 3443
SubjectTerms Biocompatible Materials - chemistry
Biosensing Techniques
Cobalt - chemistry
Hydrogen Peroxide - analysis
Materials Testing
Molecular Structure
Nanostructures - chemistry
Oxides - chemistry
Particle Size
Peroxidase - chemistry
Peroxidase - metabolism
Surface Properties
Title Surface Modification of Co 3 O 4 Nanoplates as Efficient Peroxidase Nanozymes for Biosensing Application
URI https://www.ncbi.nlm.nih.gov/pubmed/35014428
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQT3BgX8omH5A4pSSO4zTHUrWqkFikUqm3yCtU0KRq2gP9esZOF0oPcB_Z1ng088bz9IzQjQ4jKQMjPGapjVQLCnlQMAByilAjTSy0I8g-sU6PPvSj_uq94_cEnwR3XBZcDGuBdNouNtkCILQYqNldPqYQF5sW6lr87AGmJguBxo0V1grQGpR0JaW9V-obFU6J0DJJPmrTiajJ2aZO45-n3Ue7c1yJG2UgHKAtnR2inR9qg0fovTsdGy41fsyVJQi5O8G5wc0ch_gZUwypNh99WvSJeYFbTl0CihJ-0XDEgYKC50xmX0OwALSL7wd5YRnw2RturCbhx6jXbr02O978owVPQvdn5V1932g_qdO6YNSokMpEES2k8oWEBjDgSRwZxhmLtCGxSJRgYWx0KKOE1ZUKT1AlyzN9hrBvGASFlDSWlFIF7ZeBPVgktNHgFF5Ftwvvp6NSTyN1c3ASpKXv0rnvqui0vJylnZuBQrt0_u81LtA2sRwUq82YXKLKZDzVVwAiJuLaBdA3iXXDTQ
link.rule.ids 315,783,787,2772,27936,27937
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+Co+3+O+4+Nanoplates+as+Efficient+Peroxidase+Nanozymes+for+Biosensing+Application&rft.jtitle=ACS+applied+bio+materials&rft.au=Huo%2C+Jianzhong&rft.au=Hao%2C+Jinyu&rft.au=Mu%2C+Jianshuai&rft.au=Wang%2C+Yan&rft.date=2021-04-19&rft.eissn=2576-6422&rft.volume=4&rft.issue=4&rft.spage=3443&rft_id=info:doi/10.1021%2Facsabm.1c00017&rft_id=info%3Apmid%2F35014428&rft.externalDocID=35014428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon