Surface Modification of Co 3 O 4 Nanoplates as Efficient Peroxidase Nanozymes for Biosensing Application
Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co O nanoplates were modified by different functiona...
Saved in:
Published in | ACS applied bio materials Vol. 4; no. 4; pp. 3443 - 3452 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
19.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co
O
nanoplates were modified by different functional groups, including the amino group, carboxyl group, hydroxyl group, and sulfhydryl group (NH
-Co
O
, COOH-Co
O
, OH-Co
O
, and SH-Co
O
). And the modified Co
O
nanoplates were characterized by XRD, SEM, TEM, XPS, FTIR, TG, and the Zeta potential, verifying the successful modification of different functional groups. Their mimetic peroxidase properties and kinetics process were further studied and showed that the order of their catalytic activities was as follows: NH
-Co
O
> SH-Co
O
> COOH-Co
O
> pure Co
O
> OH-Co
O
, and the catalysis of modified Co
O
nanozymes all followed Michaelis-Menten kinetics. The results indicated that the different functional groups changed their electron transfer ability, and further affected their catalytic activity. H
O
detection was selected as an application model system to evaluate the modified Co
O
nanozymes. Compared with other Co
O
nanozymes, a wider linear range from 0.01 to 40 mmol L
and a lower detection limit of 1.5 μmol L
was constructed with NH
-Co
O
nanozymes. The results suggested that surface modification by functional groups was a robust strategy to improve the application of Co
O
nanozymes. The enhanced catalytic activity and good biocompatibility of modified Co
O
nanozymes provided valuable materials for the relative application, such as medical detection and antioxidation. |
---|---|
AbstractList | Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co
O
nanoplates were modified by different functional groups, including the amino group, carboxyl group, hydroxyl group, and sulfhydryl group (NH
-Co
O
, COOH-Co
O
, OH-Co
O
, and SH-Co
O
). And the modified Co
O
nanoplates were characterized by XRD, SEM, TEM, XPS, FTIR, TG, and the Zeta potential, verifying the successful modification of different functional groups. Their mimetic peroxidase properties and kinetics process were further studied and showed that the order of their catalytic activities was as follows: NH
-Co
O
> SH-Co
O
> COOH-Co
O
> pure Co
O
> OH-Co
O
, and the catalysis of modified Co
O
nanozymes all followed Michaelis-Menten kinetics. The results indicated that the different functional groups changed their electron transfer ability, and further affected their catalytic activity. H
O
detection was selected as an application model system to evaluate the modified Co
O
nanozymes. Compared with other Co
O
nanozymes, a wider linear range from 0.01 to 40 mmol L
and a lower detection limit of 1.5 μmol L
was constructed with NH
-Co
O
nanozymes. The results suggested that surface modification by functional groups was a robust strategy to improve the application of Co
O
nanozymes. The enhanced catalytic activity and good biocompatibility of modified Co
O
nanozymes provided valuable materials for the relative application, such as medical detection and antioxidation. |
Author | Hao, Jinyu Mu, Jianshuai Huo, Jianzhong Wang, Yan |
Author_xml | – sequence: 1 givenname: Jianzhong surname: Huo fullname: Huo, Jianzhong organization: College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, PR China – sequence: 2 givenname: Jinyu surname: Hao fullname: Hao, Jinyu organization: College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, PR China – sequence: 3 givenname: Jianshuai orcidid: 0000-0002-7804-536X surname: Mu fullname: Mu, Jianshuai organization: College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, PR China – sequence: 4 givenname: Yan surname: Wang fullname: Wang, Yan organization: School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35014428$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkEtLAzEUhYNUbK3dupT8gal5TWayrKU-oFpBXQ95aqSTDEkL1l_vaKu4umfxncPlOwWDEIMF4ByjKUYEX0qdpWqnWCOEcHUERqSseMEZIYN_eQgmOb_3CEGI4lqcgCEtEWaM1CPw9rRNTmoL76Pxzmu58THA6OA8QgpXkMEHGWK3lhubocxw4XrI27CBjzbFD29ktj_I567tCRcTvPIx25B9eIWzrlsfNs_AsZPrbCeHOwYv14vn-W2xXN3czWfLQmNU1QXu_3QWiZrVijNnKNPCEKu0QUozJLAUVem45Ly0jlRKGMVp5SzVpeC1MXQMpvtdnWLOybqmS76Vaddg1Hxba_bWmoO1vnCxL3Rb1Vrzh_86ol9Y1mtr |
CitedBy_id | crossref_primary_10_1016_j_bios_2022_115022 crossref_primary_10_3390_s21155201 crossref_primary_10_1016_j_talanta_2022_123853 crossref_primary_10_1016_j_talanta_2023_124845 crossref_primary_10_1007_s11696_024_03476_5 crossref_primary_10_1016_j_colsurfa_2023_131542 crossref_primary_10_2139_ssrn_4181249 crossref_primary_10_1016_j_aca_2022_339703 crossref_primary_10_1039_D3MA00687E crossref_primary_10_1007_s40820_021_00674_8 crossref_primary_10_1021_acs_jchemed_3c00548 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_2139_ssrn_4151294 crossref_primary_10_1016_j_ijbiomac_2022_11_110 crossref_primary_10_1016_j_microc_2024_110781 crossref_primary_10_1016_j_snb_2022_131429 crossref_primary_10_1021_acs_analchem_3c04409 crossref_primary_10_1016_j_bios_2021_113494 crossref_primary_10_1016_j_lwt_2023_115260 crossref_primary_10_1021_acsanm_1c02693 |
Cites_doi | 10.1021/jf202874r 10.1016/j.biomaterials.2012.10.063 10.1016/j.bios.2016.09.108 10.1021/acs.accounts.9b00140 10.1002/sia.5261 10.1039/c1cc11943e 10.1021/am406033q 10.1016/j.molcata.2013.05.016 10.1007/s11427-019-1570-7 10.1038/ncomms12876 10.1039/c2cc17013b 10.1016/j.electacta.2011.07.033 10.1039/c4cp01326c 10.1007/s12274-018-2079-8 10.1016/j.snb.2019.127106 10.1038/nnano.2007.260 10.1002/chem.201803040 10.1039/C7NR03399K 10.1016/j.msec.2019.110388 10.1021/jp901655j 10.1039/c3ta11054k 10.1016/S0927-7757(02)00305-9 10.1016/j.atherosclerosis.2011.06.054 10.1002/anie.201502226 10.1007/s00604-020-04373-w 10.1166/mex.2011.1015 10.1021/acs.analchem.9b04333 10.1016/j.apsusc.2005.08.004 10.1016/j.susc.2010.02.023 10.1002/smll.201803256 10.1039/C6RA04757B 10.1038/s41467-017-00424-8 10.1002/adfm.201304206 10.1166/jbmb.2007.028 10.1016/j.colsurfa.2020.125063 10.1038/ncomms9625 10.1088/0022-3727/33/22/301 10.1039/c0cc02698k 10.1039/C8CS00718G 10.1016/j.snb.2015.12.109 10.1039/C9AN01262A 10.1016/j.bcp.2006.06.027 10.1002/adma.200903783 10.1021/nn300291r 10.1002/adma.201601387 10.1016/j.freeradbiomed.2013.01.034 10.1016/j.diamond.2018.03.012 10.1016/j.bios.2019.111983 10.1161/01.CIR.101.21.2510 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1021/acsabm.1c00017 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 3452 |
ExternalDocumentID | 10_1021_acsabm_1c00017 35014428 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CGR CUPRZ CUY CVF EBS ECM EIF GGK NPM VF5 VG9 AAYXX CITATION |
ID | FETCH-LOGICAL-c1078-1000fe09848b64fd34c9d2ebcd0bc4091a975f6a665ef27b9db637fe3c5968dd3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Fri Aug 23 01:46:44 EDT 2024 Tue Aug 27 13:45:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | nanozymes mimetic peroxidase H2O2 sensor surface modification Co3O4 nanoplates |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1078-1000fe09848b64fd34c9d2ebcd0bc4091a975f6a665ef27b9db637fe3c5968dd3 |
ORCID | 0000-0002-7804-536X |
PMID | 35014428 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acsabm_1c00017 pubmed_primary_35014428 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-19 |
PublicationDateYYYYMMDD | 2021-04-19 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl Bio Mater |
PublicationYear | 2021 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref21/cit21 doi: 10.1021/jf202874r – ident: ref13/cit13 doi: 10.1016/j.biomaterials.2012.10.063 – ident: ref17/cit17 doi: 10.1016/j.bios.2016.09.108 – ident: ref2/cit2 doi: 10.1021/acs.accounts.9b00140 – ident: ref19/cit19 doi: 10.1016/j.biomaterials.2012.10.063 – ident: ref25/cit25 doi: 10.1002/sia.5261 – ident: ref44/cit44 doi: 10.1039/c1cc11943e – ident: ref4/cit4 doi: 10.1021/am406033q – ident: ref12/cit12 doi: 10.1016/j.molcata.2013.05.016 – ident: ref3/cit3 doi: 10.1007/s11427-019-1570-7 – ident: ref7/cit7 doi: 10.1038/ncomms12876 – ident: ref11/cit11 doi: 10.1039/c2cc17013b – ident: ref22/cit22 doi: 10.1016/j.electacta.2011.07.033 – ident: ref23/cit23 doi: 10.1039/c4cp01326c – ident: ref41/cit41 doi: 10.1007/s12274-018-2079-8 – ident: ref16/cit16 doi: 10.1016/j.snb.2019.127106 – ident: ref40/cit40 doi: 10.1038/nnano.2007.260 – ident: ref15/cit15 doi: 10.1002/chem.201803040 – ident: ref14/cit14 doi: 10.1039/C7NR03399K – ident: ref30/cit30 doi: 10.1016/j.msec.2019.110388 – ident: ref32/cit32 doi: 10.1021/jp901655j – ident: ref10/cit10 doi: 10.1039/c3ta11054k – ident: ref31/cit31 doi: 10.1016/S0927-7757(02)00305-9 – ident: ref36/cit36 doi: 10.1016/j.atherosclerosis.2011.06.054 – ident: ref29/cit29 doi: 10.1002/anie.201502226 – ident: ref48/cit48 doi: 10.1007/s00604-020-04373-w – ident: ref26/cit26 doi: 10.1166/mex.2011.1015 – ident: ref46/cit46 doi: 10.1021/acs.analchem.9b04333 – ident: ref33/cit33 doi: 10.1016/j.apsusc.2005.08.004 – ident: ref28/cit28 doi: 10.1016/j.susc.2010.02.023 – ident: ref18/cit18 doi: 10.1002/smll.201803256 – ident: ref8/cit8 doi: 10.1039/C6RA04757B – ident: ref38/cit38 doi: 10.1038/s41467-017-00424-8 – ident: ref9/cit9 doi: 10.1002/adfm.201304206 – ident: ref34/cit34 doi: 10.1166/jbmb.2007.028 – ident: ref47/cit47 doi: 10.1016/j.colsurfa.2020.125063 – ident: ref24/cit24 doi: 10.1038/ncomms9625 – ident: ref27/cit27 doi: 10.1088/0022-3727/33/22/301 – ident: ref45/cit45 doi: 10.1039/c0cc02698k – ident: ref1/cit1 doi: 10.1039/C8CS00718G – ident: ref5/cit5 doi: 10.1016/j.snb.2015.12.109 – ident: ref50/cit50 doi: 10.1039/C9AN01262A – ident: ref43/cit43 doi: 10.1016/j.bcp.2006.06.027 – ident: ref42/cit42 doi: 10.1002/adma.200903783 – ident: ref39/cit39 doi: 10.1021/nn300291r – ident: ref6/cit6 doi: 10.1002/adma.201601387 – ident: ref20/cit20 doi: 10.1016/j.freeradbiomed.2013.01.034 – ident: ref35/cit35 doi: 10.1016/j.diamond.2018.03.012 – ident: ref49/cit49 doi: 10.1016/j.bios.2019.111983 – ident: ref37/cit37 doi: 10.1161/01.CIR.101.21.2510 |
SSID | ssj0002003189 |
Score | 2.190212 |
Snippet | Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 3443 |
SubjectTerms | Biocompatible Materials - chemistry Biosensing Techniques Cobalt - chemistry Hydrogen Peroxide - analysis Materials Testing Molecular Structure Nanostructures - chemistry Oxides - chemistry Particle Size Peroxidase - chemistry Peroxidase - metabolism Surface Properties |
Title | Surface Modification of Co 3 O 4 Nanoplates as Efficient Peroxidase Nanozymes for Biosensing Application |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35014428 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQT3BgX8omH5A4pSSO4zTHUrWqkFikUqm3yCtU0KRq2gP9esZOF0oPcB_Z1ng088bz9IzQjQ4jKQMjPGapjVQLCnlQMAByilAjTSy0I8g-sU6PPvSj_uq94_cEnwR3XBZcDGuBdNouNtkCILQYqNldPqYQF5sW6lr87AGmJguBxo0V1grQGpR0JaW9V-obFU6J0DJJPmrTiajJ2aZO45-n3Ue7c1yJG2UgHKAtnR2inR9qg0fovTsdGy41fsyVJQi5O8G5wc0ch_gZUwypNh99WvSJeYFbTl0CihJ-0XDEgYKC50xmX0OwALSL7wd5YRnw2RturCbhx6jXbr02O978owVPQvdn5V1932g_qdO6YNSokMpEES2k8oWEBjDgSRwZxhmLtCGxSJRgYWx0KKOE1ZUKT1AlyzN9hrBvGASFlDSWlFIF7ZeBPVgktNHgFF5Ftwvvp6NSTyN1c3ASpKXv0rnvqui0vJylnZuBQrt0_u81LtA2sRwUq82YXKLKZDzVVwAiJuLaBdA3iXXDTQ |
link.rule.ids | 315,783,787,2772,27936,27937 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+Co+3+O+4+Nanoplates+as+Efficient+Peroxidase+Nanozymes+for+Biosensing+Application&rft.jtitle=ACS+applied+bio+materials&rft.au=Huo%2C+Jianzhong&rft.au=Hao%2C+Jinyu&rft.au=Mu%2C+Jianshuai&rft.au=Wang%2C+Yan&rft.date=2021-04-19&rft.eissn=2576-6422&rft.volume=4&rft.issue=4&rft.spage=3443&rft_id=info:doi/10.1021%2Facsabm.1c00017&rft_id=info%3Apmid%2F35014428&rft.externalDocID=35014428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |