High-Responsivity Gate-Tunable Ultraviolet-Visible Broadband Phototransistor Based on Graphene-WS 2 Mixed-Dimensional (2D-0D) Heterostructure

Recent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband absorption spectra and wavelength selectivity features have led to their increasing use in broadband photodetectors. With the solution-based...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 4; pp. 5775 - 5784
Main Authors Mukherjee, Shubhrasish, Bhattacharya, Didhiti, Patra, Sumanti, Paul, Sanjukta, Mitra, Rajib Kumar, Mahadevan, Priya, Pal, Atindra Nath, Ray, Samit Kumar
Format Journal Article
LanguageEnglish
Published United States 02.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband absorption spectra and wavelength selectivity features have led to their increasing use in broadband photodetectors. With the solution-based processing, we demonstrate a superlarge (∼0.75 mm ), ultraviolet-visible (UV-vis) broadband (365-633 nm) phototransistor made of WS QDs-decorated chemical vapor deposited (CVD) graphene as the active channel with extraordinary stability and durability under ambient conditions (without any degradation of photocurrent until 4 months after fabrication). Here, colloidal zero-dimensional (0D) WS QDs are used as the photoabsorbing material, and graphene acts as the conducting channel. A high photoresponsivity (3.1 × 10 A/W), moderately high detectivity (∼8.9 × 10 Jones), and low noise equivalent power (∼9.7 × 10 W/Hz ) are obtained at a low bias voltage ( = 1 V) at an illumination of 365 nm with optical power as low as ∼0.8 μW/cm , which can be further tuned by modulating the gate bias. While comparing the photocurrent between two different morphologies of WS [QDs and two-dimensional (2D) nanosheets], a significant enhancement of photocurrent is observed in the case of QD-based devices. Ab initio density functional theory (DFT)-based calculations further support our observation, revealing the role of quantum confinement in enhanced photoresponse. Our work reveals a strategy toward developing a scalable, cost-effective, high-performance hybrid mixed-dimensional (2D-0D) photodetector with graphene-WS QDs for next-generation optoelectronic applications.
AbstractList Recent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband absorption spectra and wavelength selectivity features have led to their increasing use in broadband photodetectors. With the solution-based processing, we demonstrate a superlarge (∼0.75 mm ), ultraviolet-visible (UV-vis) broadband (365-633 nm) phototransistor made of WS QDs-decorated chemical vapor deposited (CVD) graphene as the active channel with extraordinary stability and durability under ambient conditions (without any degradation of photocurrent until 4 months after fabrication). Here, colloidal zero-dimensional (0D) WS QDs are used as the photoabsorbing material, and graphene acts as the conducting channel. A high photoresponsivity (3.1 × 10 A/W), moderately high detectivity (∼8.9 × 10 Jones), and low noise equivalent power (∼9.7 × 10 W/Hz ) are obtained at a low bias voltage ( = 1 V) at an illumination of 365 nm with optical power as low as ∼0.8 μW/cm , which can be further tuned by modulating the gate bias. While comparing the photocurrent between two different morphologies of WS [QDs and two-dimensional (2D) nanosheets], a significant enhancement of photocurrent is observed in the case of QD-based devices. Ab initio density functional theory (DFT)-based calculations further support our observation, revealing the role of quantum confinement in enhanced photoresponse. Our work reveals a strategy toward developing a scalable, cost-effective, high-performance hybrid mixed-dimensional (2D-0D) photodetector with graphene-WS QDs for next-generation optoelectronic applications.
Author Mukherjee, Shubhrasish
Mahadevan, Priya
Paul, Sanjukta
Patra, Sumanti
Mitra, Rajib Kumar
Ray, Samit Kumar
Bhattacharya, Didhiti
Pal, Atindra Nath
Author_xml – sequence: 1
  givenname: Shubhrasish
  surname: Mukherjee
  fullname: Mukherjee, Shubhrasish
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 2
  givenname: Didhiti
  surname: Bhattacharya
  fullname: Bhattacharya, Didhiti
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 3
  givenname: Sumanti
  surname: Patra
  fullname: Patra, Sumanti
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 4
  givenname: Sanjukta
  surname: Paul
  fullname: Paul, Sanjukta
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 5
  givenname: Rajib Kumar
  orcidid: 0000-0001-9159-0517
  surname: Mitra
  fullname: Mitra, Rajib Kumar
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 6
  givenname: Priya
  orcidid: 0000-0003-0240-4490
  surname: Mahadevan
  fullname: Mahadevan, Priya
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 7
  givenname: Atindra Nath
  orcidid: 0000-0001-9584-2283
  surname: Pal
  fullname: Pal, Atindra Nath
  organization: S. N. Bose National Center for Basic Science, Sector III, Block JD, Salt Lake, Kolkata 700106, India
– sequence: 8
  givenname: Samit Kumar
  surname: Ray
  fullname: Ray, Samit Kumar
  organization: Indian Institute of Technology Kharagpur, 721302 West Bengal, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35068147$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS0EgvLYskRewsJl7NgkXtIWWiQQiOcycuIpNUrjynYRfAT_TFBLV3M1OndGOvtku_UtEnLMoc9B8HNTRzN3fV7zQmu9RXpcS8kKocT2Jku5R_Zj_AC4yASoXbKXKbgouMx75Gfi3mfsEePCt9F9uvRNxyYhe162pmqQvjQpmE_nG0zs1UX3txsEb2xlWksfZj75DuiqMflAByaipb6l42AWM2yRvT1RQe_cF1o2cnPsQN-ahp6KEYPRGZ1gwuBjCss6LQMekp2paSIerecBebm-eh5O2O39-GZ4ectqDnnOdJ7bQulCoeVa1VklxVTk0xxAylwaXWuoRIGFharINK8AKhACuAJlbKZMdkD6q7t19zwGnJaL4OYmfJccyj-v5cprufbaFU5WhcWymqPd4P8is199i3de
CitedBy_id crossref_primary_10_1021_acsami_2c08933
crossref_primary_10_1088_1361_6528_ace97d
crossref_primary_10_1016_j_carbon_2023_118475
crossref_primary_10_1016_j_mssp_2022_107204
crossref_primary_10_1039_D3NH00310H
crossref_primary_10_1103_PhysRevApplied_19_034051
crossref_primary_10_1016_j_mee_2022_111926
crossref_primary_10_1039_D3NA00525A
crossref_primary_10_1002_elt2_30
crossref_primary_10_1016_j_cej_2022_140728
crossref_primary_10_3390_nano12162777
crossref_primary_10_1109_TNANO_2024_3385834
crossref_primary_10_1557_s43577_023_00618_0
crossref_primary_10_1039_D3NR02791K
crossref_primary_10_1039_D2TC02281H
crossref_primary_10_1080_10408436_2023_2289928
crossref_primary_10_1109_TED_2024_3383402
crossref_primary_10_1002_adom_202201889
crossref_primary_10_1016_j_apsusc_2023_159135
crossref_primary_10_1103_PhysRevApplied_20_064010
crossref_primary_10_1109_LPT_2024_3401847
crossref_primary_10_1002_adfm_202403705
crossref_primary_10_1021_acsami_3c15533
crossref_primary_10_1021_acsami_2c14499
crossref_primary_10_1039_D3TC04253G
crossref_primary_10_1016_j_est_2023_108345
crossref_primary_10_1039_D3RA07240A
Cites_doi 10.1088/0957-4484/27/22/225403
10.1038/nnano.2012.60
10.1038/nnano.2010.279
10.1126/sciadv.aay5225
10.1021/acsnano.7b00805
10.1021/acsami.5b07026
10.1039/c7tc01001j
10.1038/nphoton.2010.186
10.1103/PhysRevB.88.115205
10.1002/admi.201901304
10.1038/nnano.2014.215
10.1038/nmat3004
10.1002/admi.202001730
10.1016/j.sse.2018.03.007
10.1021/acsami.6b12859
10.1021/acsami.9b09262
10.1063/1.4961878
10.1021/acsami.8b20321
10.1021/nn304028b
10.1021/nl204512x
10.1039/c5nr90175h
10.1021/acsami.8b17966
10.1021/acs.nanolett.7b02980
10.1002/adma.201700222
10.1039/c9nr09070c
10.1557/jmr.2016.47
10.1063/1.5088512
10.1021/acsanm.9b00820
10.1002/adom.201500150
10.1063/1.3206658
10.1063/1.4941996
10.1016/j.carbon.2015.11.027
10.1515/nanoph-2017-0061
10.1038/ncomms13906
10.1002/adma.201600400
10.1016/j.jlumin.2017.01.024
10.1021/acsnano.7b03569
10.1021/nn305275h
10.1038/nnano.2008.313
10.1016/j.jcis.2013.01.035
10.1021/acsami.6b05109
10.1039/c6dt02823c
10.1039/c4nr03170a
10.1038/srep03282
10.3390/s100908604
10.1002/smll.201303670
10.1038/nature04233
10.1038/nmat4703
10.1038/nphoton.2010.40
10.1021/acs.jpcc.5b07895
10.1002/adom.201701241
10.1063/1.5000735
10.1038/ncomms9589
10.1039/C6TC05037A
10.1038/nnano.2013.46
10.1088/1361-6528/aa565c
10.1038/nnano.2013.206
10.1002/adma.201202220
10.1002/adfm.201603886
10.1021/nl201874w
10.1126/science.1226419
10.1021/am508569m
10.1038/nature11458
10.1103/PhysRevLett.100.016602
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acsami.1c18999
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 5784
ExternalDocumentID 10_1021_acsami_1c18999
35068147
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
CITATION
ID FETCH-LOGICAL-c1077-977d85985ed195c3b42f27f7004474a9c90b28e8d0b8391b00b02201505ad35a3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 23 01:30:58 EDT 2024
Sat Sep 28 08:27:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords mixed-dimensional heterostructure
phototransistor
broadband
WS2 quantum dots
graphene
stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1077-977d85985ed195c3b42f27f7004474a9c90b28e8d0b8391b00b02201505ad35a3
ORCID 0000-0003-0240-4490
0000-0001-9159-0517
0000-0001-9584-2283
PMID 35068147
PageCount 10
ParticipantIDs crossref_primary_10_1021_acsami_1c18999
pubmed_primary_35068147
PublicationCentury 2000
PublicationDate 2022-Feb-02
2022-02-02
PublicationDateYYYYMMDD 2022-02-02
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-Feb-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2022
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1088/0957-4484/27/22/225403
– ident: ref19/cit19
  doi: 10.1038/nnano.2012.60
– ident: ref13/cit13
  doi: 10.1038/nnano.2010.279
– ident: ref26/cit26
  doi: 10.1126/sciadv.aay5225
– ident: ref20/cit20
  doi: 10.1021/acsnano.7b00805
– ident: ref53/cit53
  doi: 10.1021/acsami.5b07026
– ident: ref34/cit34
  doi: 10.1039/c7tc01001j
– ident: ref16/cit16
  doi: 10.1038/nphoton.2010.186
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.88.115205
– ident: ref59/cit59
  doi: 10.1002/admi.201901304
– ident: ref3/cit3
  doi: 10.1038/nnano.2014.215
– ident: ref44/cit44
  doi: 10.1038/nmat3004
– ident: ref50/cit50
  doi: 10.1002/admi.202001730
– ident: ref60/cit60
  doi: 10.1016/j.sse.2018.03.007
– ident: ref29/cit29
  doi: 10.1021/acsami.6b12859
– ident: ref42/cit42
  doi: 10.1021/acsami.9b09262
– ident: ref5/cit5
  doi: 10.1063/1.4961878
– ident: ref57/cit57
  doi: 10.1021/acsami.8b20321
– ident: ref17/cit17
  doi: 10.1021/nn304028b
– ident: ref18/cit18
  doi: 10.1021/nl204512x
– ident: ref54/cit54
  doi: 10.1039/c5nr90175h
– ident: ref32/cit32
  doi: 10.1021/acsami.8b17966
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.7b02980
– ident: ref23/cit23
  doi: 10.1002/adma.201700222
– ident: ref1/cit1
  doi: 10.1039/c9nr09070c
– ident: ref39/cit39
  doi: 10.1557/jmr.2016.47
– ident: ref46/cit46
  doi: 10.1063/1.5088512
– ident: ref64/cit64
  doi: 10.1021/acsanm.9b00820
– ident: ref47/cit47
  doi: 10.1002/adom.201500150
– ident: ref49/cit49
  doi: 10.1063/1.3206658
– ident: ref58/cit58
  doi: 10.1063/1.4941996
– ident: ref48/cit48
  doi: 10.1016/j.carbon.2015.11.027
– ident: ref9/cit9
  doi: 10.1515/nanoph-2017-0061
– ident: ref36/cit36
  doi: 10.1038/ncomms13906
– ident: ref52/cit52
  doi: 10.1002/adma.201600400
– ident: ref37/cit37
  doi: 10.1016/j.jlumin.2017.01.024
– ident: ref21/cit21
  doi: 10.1021/acsnano.7b03569
– ident: ref33/cit33
  doi: 10.1021/nn305275h
– ident: ref8/cit8
  doi: 10.1038/nnano.2008.313
– ident: ref45/cit45
  doi: 10.1016/j.jcis.2013.01.035
– ident: ref40/cit40
  doi: 10.1021/acsami.6b05109
– ident: ref30/cit30
  doi: 10.1039/c6dt02823c
– ident: ref6/cit6
  doi: 10.1039/c4nr03170a
– ident: ref31/cit31
  doi: 10.1038/srep03282
– ident: ref4/cit4
  doi: 10.3390/s100908604
– ident: ref56/cit56
  doi: 10.1002/smll.201303670
– ident: ref12/cit12
  doi: 10.1038/nature04233
– ident: ref2/cit2
  doi: 10.1038/nmat4703
– ident: ref55/cit55
  doi: 10.1038/nphoton.2010.40
– ident: ref25/cit25
  doi: 10.1021/acs.jpcc.5b07895
– ident: ref43/cit43
  doi: 10.1002/adom.201701241
– ident: ref10/cit10
  doi: 10.1063/1.5000735
– ident: ref51/cit51
  doi: 10.1038/ncomms9589
– ident: ref62/cit62
  doi: 10.1039/C6TC05037A
– ident: ref41/cit41
  doi: 10.1038/nnano.2013.46
– ident: ref7/cit7
  doi: 10.1088/1361-6528/aa565c
– ident: ref22/cit22
  doi: 10.1038/nnano.2013.206
– ident: ref24/cit24
  doi: 10.1002/adma.201202220
– ident: ref61/cit61
  doi: 10.1002/adfm.201603886
– ident: ref27/cit27
  doi: 10.1021/nl201874w
– ident: ref28/cit28
  doi: 10.1126/science.1226419
– ident: ref63/cit63
  doi: 10.1021/am508569m
– ident: ref15/cit15
  doi: 10.1038/nature11458
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.100.016602
SSID ssj0063205
Score 2.4104593
Snippet Recent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 5775
Title High-Responsivity Gate-Tunable Ultraviolet-Visible Broadband Phototransistor Based on Graphene-WS 2 Mixed-Dimensional (2D-0D) Heterostructure
URI https://www.ncbi.nlm.nih.gov/pubmed/35068147
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQJziwL2WTD0jAwZA4duMcoQUqpCIELXCrvEVUoAS1qYQ48QuIP-RLGDstUDjANYqjyGP7vfHMvEFoWwHIMEBWF3TXhCXKkkRbRqoUbBzrlMXMFTg3z6uNNju75bdf9x0_I_g0PJC671rhhDoE18BX6gGoOQ5UuxodudWI-lxFcMgZEQBYI3XGX8PH0GeMR3o8OZktxY36XobQpZHc7w8Kta-ff4s0_vmrc2hmSCrxYbkK5tGEzRbQ9DepwUX06hI6yOUwI9Y1jMDu4oy0Br54Crcfip70Ufri_eXtugs7BZ6Cky6NkpnBF3d5kRcO2LyuCD4C9DM4z_CpU7yGAxNG3VxhipvdJ2tI3TUNKAU_8C6tk6C-hxsu8yYvBWsHPbuE2ifHrVqDDNsxEA0-YkyAKRrBE8GtCROuI8VoSuPU6eODRWWik0BRYYUJFLCuEGytXBkvME4uTcRltIwmszyzqwjbVAotAmq5MkzaQAZpwFNggzCeizSuoJ2RmTqPpepGx0fLadgpJ7kznOQKWimt-PlexIOqCFm89u9vrKMp6ooaXC423UCTMA92E6hGobb8MvsA7I_SAA
link.rule.ids 315,786,790,2782,27957,27958
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Responsivity+Gate-Tunable+Ultraviolet%E2%80%93Visible+Broadband+Phototransistor+Based+on+Graphene%E2%80%93WS+2+Mixed-Dimensional+%282D-0D%29+Heterostructure&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Mukherjee%2C+Shubhrasish&rft.au=Bhattacharya%2C+Didhiti&rft.au=Patra%2C+Sumanti&rft.au=Paul%2C+Sanjukta&rft.date=2022-02-02&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=4&rft.spage=5775&rft.epage=5784&rft_id=info:doi/10.1021%2Facsami.1c18999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_1c18999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon