Structure-Tailored Surface Oxide on Cu-Ga Intermetallics Enhances CO 2 Reduction Selectivity to Methanol at Ultralow Potential
Electrochemical CO reduction reaction (eCO RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa and Cu Ga ). Among them, CuGa selectively converts CO to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of -0.3 V vs RHE. The hig...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 19; p. e2109426 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical CO
reduction reaction (eCO
RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa
and Cu
Ga
). Among them, CuGa
selectively converts CO
to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of -0.3 V vs RHE. The high performance of CuGa
compared to Cu
Ga
is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga
O
) even in the reduction atmosphere. The Ga
O
species is mapped by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO
RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga
O
, which is probed by in situ XAFS, quasi in situ powder X-ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope-labeling experiments in presence of
CO
. Finally, to minimize the mass transport limitations and improve the overall eCO
RR performance, a poly(tetrafluoroethylene)-based gas diffusion electrode is used in the flow cell configuration. |
---|---|
AbstractList | Electrochemical CO
reduction reaction (eCO
RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa
and Cu
Ga
). Among them, CuGa
selectively converts CO
to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of -0.3 V vs RHE. The high performance of CuGa
compared to Cu
Ga
is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga
O
) even in the reduction atmosphere. The Ga
O
species is mapped by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO
RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga
O
, which is probed by in situ XAFS, quasi in situ powder X-ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope-labeling experiments in presence of
CO
. Finally, to minimize the mass transport limitations and improve the overall eCO
RR performance, a poly(tetrafluoroethylene)-based gas diffusion electrode is used in the flow cell configuration. Abstract Electrochemical CO 2 reduction reaction (eCO 2 RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa 2 and Cu 9 Ga 4 ). Among them, CuGa 2 selectively converts CO 2 to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of −0.3 V vs RHE. The high performance of CuGa 2 compared to Cu 9 Ga 4 is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga 2 O 3 ) even in the reduction atmosphere. The Ga 2 O 3 species is mapped by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO 2 RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga 2 O 3 , which is probed by in situ XAFS, quasi in situ powder X‐ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope‐labeling experiments in presence of 13 CO 2 . Finally, to minimize the mass transport limitations and improve the overall eCO 2 RR performance, a poly(tetrafluoroethylene)‐based gas diffusion electrode is used in the flow cell configuration. |
Author | Raj, Jithu Roy, Soumyabrata Singh, Ashutosh Kumar Bagchi, Debabrata Manoj, Kaja Sai Vinod, C P Peter, Sebastian C Cherevotan, Arjun |
Author_xml | – sequence: 1 givenname: Debabrata orcidid: 0000-0001-9922-2073 surname: Bagchi fullname: Bagchi, Debabrata organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India – sequence: 2 givenname: Jithu surname: Raj fullname: Raj, Jithu organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India – sequence: 3 givenname: Ashutosh Kumar orcidid: 0000-0002-2491-3678 surname: Singh fullname: Singh, Ashutosh Kumar organization: Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India – sequence: 4 givenname: Arjun orcidid: 0000-0003-1649-0123 surname: Cherevotan fullname: Cherevotan, Arjun organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India – sequence: 5 givenname: Soumyabrata orcidid: 0000-0003-3540-1341 surname: Roy fullname: Roy, Soumyabrata organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India – sequence: 6 givenname: Kaja Sai surname: Manoj fullname: Manoj, Kaja Sai organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India – sequence: 7 givenname: C P orcidid: 0000-0001-9857-4907 surname: Vinod fullname: Vinod, C P organization: Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India – sequence: 8 givenname: Sebastian C orcidid: 0000-0002-5211-446X surname: Peter fullname: Peter, Sebastian C organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35278256$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kMtOwzAQRS1URB-wZYn8AyljJ07jJapKqVRURNt15DhjEeTEleMA3fDtpAK6mrs490pzxmTQuAYJuWUwZQD8XpW1mnLgDGTC0wsyYoKzKAEpBmQEMhaRTJNsSMZt-w4AMoX0igxjwWcZF-mIfG-D73ToPEY7VVnnsaTbzhulkW6-qhKpa-i8i5aKrpqAvsagrK10SxfNm2o0tnS-oZy-YtnPVD28RYt9-qjCkQZHnzH0nLNUBbq3wSvrPumLC9iEStlrcmmUbfHm707I_nGxmz9F681yNX9YR5rBLI2M1FkiGBqWmZJDBkmhY-TSQJyU0jAjhFRSC5EJjPvPFEpm0KSZYgUrgMUTMv3d1d61rUeTH3xVK3_MGeQnkflJZH4W2RfufguHrqixPOP_5uIf8eRx4Q |
CitedBy_id | crossref_primary_10_3390_en16166035 crossref_primary_10_1039_D3SC06351H crossref_primary_10_1021_jacs_2c10351 crossref_primary_10_1021_jacs_3c10202 crossref_primary_10_1039_D3QM00364G crossref_primary_10_1002_aenm_202400696 crossref_primary_10_1021_acscatal_2c03183 crossref_primary_10_3390_catal13061005 crossref_primary_10_1002_adma_202202294 crossref_primary_10_1016_j_cclet_2023_108515 crossref_primary_10_1039_D2CC06986E crossref_primary_10_1021_acsami_3c14932 crossref_primary_10_1002_chem_202202221 crossref_primary_10_34133_research_0233 crossref_primary_10_1021_acs_chemmater_4c00405 crossref_primary_10_1039_D2CC00490A crossref_primary_10_1021_acscatal_3c00972 crossref_primary_10_1016_j_jenvman_2023_118354 crossref_primary_10_1016_j_matre_2023_100175 crossref_primary_10_1149_1945_7111_ad377f crossref_primary_10_1016_j_matre_2023_100177 crossref_primary_10_1039_D3CS00857F crossref_primary_10_1002_adfm_202400798 crossref_primary_10_1021_jacs_2c13437 crossref_primary_10_1002_ange_202215136 crossref_primary_10_1039_D2NR03539A crossref_primary_10_1021_acsnano_1c11664 crossref_primary_10_1038_s41467_023_43118_0 crossref_primary_10_1016_j_jcou_2023_102477 crossref_primary_10_3390_ma17112683 crossref_primary_10_3390_suschem5010002 crossref_primary_10_1016_j_wear_2023_205234 crossref_primary_10_1021_acs_chemmater_4c01008 crossref_primary_10_1002_adfm_202209023 crossref_primary_10_59761_RCR5101 crossref_primary_10_1021_acs_chemrev_3c00206 crossref_primary_10_1002_smsc_202400129 crossref_primary_10_1021_acsaem_3c01058 crossref_primary_10_1039_D4CS00390J crossref_primary_10_1088_2516_1083_ac6e23 crossref_primary_10_1016_j_jallcom_2023_170903 crossref_primary_10_1002_adma_202205994 crossref_primary_10_1021_acsnano_3c04585 crossref_primary_10_1016_j_jcis_2023_10_045 crossref_primary_10_1016_S1872_2067_23_64455_9 crossref_primary_10_1039_D4SE00368C crossref_primary_10_1016_j_jiec_2023_06_022 crossref_primary_10_1021_acsami_4c06789 crossref_primary_10_1002_anie_202215136 crossref_primary_10_1039_D4TA00270A crossref_primary_10_1016_S1872_2067_22_64152_4 crossref_primary_10_1016_j_ces_2023_119209 crossref_primary_10_1016_j_nantod_2024_102152 crossref_primary_10_1021_jacs_2c04541 crossref_primary_10_1021_jacs_3c09828 crossref_primary_10_1039_D2EY00081D crossref_primary_10_1007_s12274_023_5653_7 crossref_primary_10_1021_jacs_3c09307 crossref_primary_10_1016_j_checat_2023_100796 crossref_primary_10_1016_j_coelec_2023_101219 crossref_primary_10_1016_j_mcat_2024_113839 crossref_primary_10_1002_cssc_202301927 crossref_primary_10_1002_adma_202207088 crossref_primary_10_1002_adma_202300713 crossref_primary_10_1016_j_triboint_2023_109181 crossref_primary_10_1080_01614940_2024_2340582 crossref_primary_10_1021_acs_jpcc_2c07240 crossref_primary_10_1021_acssuschemeng_4c02069 crossref_primary_10_1016_j_susmat_2023_e00663 crossref_primary_10_1021_acsenergylett_3c02362 crossref_primary_10_1016_j_ccr_2023_215409 crossref_primary_10_1016_j_mtener_2023_101433 crossref_primary_10_1002_adfm_202300926 |
Cites_doi | 10.1038/s41929-018-0182-6 10.1021/acssuschemeng.8b03843 10.1016/j.rser.2013.11.045 10.1039/D0CC07318K 10.1016/j.joule.2019.07.021 10.1126/science.aas9100 10.1021/jacs.7b10462 10.1021/acscatal.7b01161 10.1039/D0EE03679J 10.1039/C9DT04749B 10.1039/C9EE03660A 10.1039/C6CY00971A 10.1039/C4GC02453B 10.1016/j.jpowsour.2013.12.002 10.1016/j.apcatb.2019.118369 10.1016/j.electacta.2020.137207 10.1021/acsenergylett.8b00740 10.1021/acsenergylett.8b00878 10.1016/0022-0728(91)85528-W 10.1016/j.jcat.2004.06.012 10.1039/C8EE00097B 10.1007/s00216-010-4219-1 10.1039/c3ee24040a 10.1021/ja202642y 10.1039/b800519b 10.1002/anie.201603034 10.1021/acscatal.6b02928 10.1021/acscatal.5b02543 10.1038/s41565-021-00974-5 10.1126/science.aav3506 10.1038/nchem.1873 10.1007/s10562-005-6507-5 10.1016/j.elecom.2020.106789 10.1149/1.3561636 10.1038/s41929-018-0169-3 10.1016/j.matt.2020.08.012 10.1021/jacs.9b11126 10.1088/0953-8984/27/17/175601 10.1039/D0SC01882A 10.1016/S0022-0728(96)04823-1 10.1002/anie.201810991 10.1039/c2ee21234j 10.1016/j.electacta.2004.11.061 10.1038/s41929-019-0269-8 10.1002/sia.6239 10.1021/acsenergylett.8b02525 10.1038/s41586-019-1760-8 10.1038/s41929-019-0397-1 10.1002/elan.201900665 10.1038/s41929-020-00547-0 10.1002/adfm.200701216 10.1016/j.jcou.2020.03.001 10.1016/0022-0728(94)03300-5 10.1016/j.jelechem.2017.09.046 10.1006/jcat.2000.2940 10.1038/s41929-020-00504-x 10.1103/PhysRevB.55.10786 10.1021/acs.chemrev.8b00705 10.1002/anie.201804142 10.1016/j.jcou.2019.05.025 10.1021/acs.jpcc.8b09598 10.1021/ja3010978 10.1021/acs.jpcc.6b03065 |
ContentType | Journal Article |
Copyright | 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION |
DOI | 10.1002/adma.202109426 |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
ExternalDocumentID | 10_1002_adma_202109426 35278256 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Jawaharlal Nehru Centre for Advanced Scientific Research and the Department of Science and Technology grantid: DST/TM/EWO/MI/CCUS/13(G) – fundername: DST for SwarnaJayanti Fellowship grantid: DST/SJF/CSA-02/2017-18 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB NPM O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c1076-f9c8451ef18fd20804bc3e29f034d9f1f559a9c5585e3782ae91fef68a1b1b013 |
ISSN | 0935-9648 |
IngestDate | Thu Sep 26 16:08:59 EDT 2024 Sat Sep 28 08:19:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | electrochemistry methanol CO 2 reduction |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1076-f9c8451ef18fd20804bc3e29f034d9f1f559a9c5585e3782ae91fef68a1b1b013 |
ORCID | 0000-0001-9922-2073 0000-0003-1649-0123 0000-0002-2491-3678 0000-0002-5211-446X 0000-0003-3540-1341 0000-0001-9857-4907 |
PMID | 35278256 |
ParticipantIDs | crossref_primary_10_1002_adma_202109426 pubmed_primary_35278256 |
PublicationCentury | 2000 |
PublicationDate | 2022-May 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Shang L. (e_1_2_8_49_1) 2021 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_37_1 doi: 10.1038/s41929-018-0182-6 – ident: e_1_2_8_12_1 doi: 10.1021/acssuschemeng.8b03843 – ident: e_1_2_8_13_1 doi: 10.1016/j.rser.2013.11.045 – ident: e_1_2_8_40_1 doi: 10.1039/D0CC07318K – ident: e_1_2_8_64_1 doi: 10.1016/j.joule.2019.07.021 – ident: e_1_2_8_54_1 doi: 10.1126/science.aas9100 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.7b10462 – ident: e_1_2_8_23_1 doi: 10.1021/acscatal.7b01161 – ident: e_1_2_8_55_1 doi: 10.1039/D0EE03679J – ident: e_1_2_8_35_1 doi: 10.1039/C9DT04749B – ident: e_1_2_8_6_1 doi: 10.1039/C9EE03660A – ident: e_1_2_8_18_1 doi: 10.1039/C6CY00971A – ident: e_1_2_8_11_1 doi: 10.1039/C4GC02453B – ident: e_1_2_8_16_1 doi: 10.1016/j.jpowsour.2013.12.002 – ident: e_1_2_8_28_1 doi: 10.1016/j.apcatb.2019.118369 – ident: e_1_2_8_56_1 doi: 10.1016/j.electacta.2020.137207 – ident: e_1_2_8_3_1 doi: 10.1021/acsenergylett.8b00740 – ident: e_1_2_8_2_1 doi: 10.1021/acsenergylett.8b00878 – ident: e_1_2_8_26_1 doi: 10.1016/0022-0728(91)85528-W – ident: e_1_2_8_52_1 doi: 10.1016/j.jcat.2004.06.012 – ident: e_1_2_8_7_1 doi: 10.1039/C8EE00097B – ident: e_1_2_8_48_1 doi: 10.1007/s00216-010-4219-1 – ident: e_1_2_8_4_1 doi: 10.1039/c3ee24040a – ident: e_1_2_8_1_1 doi: 10.1021/ja202642y – ident: e_1_2_8_47_1 doi: 10.1039/b800519b – ident: e_1_2_8_61_1 doi: 10.1002/anie.201603034 – ident: e_1_2_8_51_1 doi: 10.1021/acscatal.6b02928 – ident: e_1_2_8_41_1 doi: 10.1021/acscatal.5b02543 – ident: e_1_2_8_44_1 doi: 10.1038/s41565-021-00974-5 – ident: e_1_2_8_5_1 doi: 10.1126/science.aav3506 – ident: e_1_2_8_27_1 doi: 10.1038/nchem.1873 – ident: e_1_2_8_39_1 doi: 10.1007/s10562-005-6507-5 – ident: e_1_2_8_57_1 doi: 10.1016/j.elecom.2020.106789 – ident: e_1_2_8_15_1 doi: 10.1149/1.3561636 – ident: e_1_2_8_36_1 doi: 10.1038/s41929-018-0169-3 – ident: e_1_2_8_34_1 doi: 10.1016/j.matt.2020.08.012 – ident: e_1_2_8_43_1 doi: 10.1021/jacs.9b11126 – ident: e_1_2_8_31_1 doi: 10.1088/0953-8984/27/17/175601 – ident: e_1_2_8_22_1 doi: 10.1039/D0SC01882A – ident: e_1_2_8_59_1 doi: 10.1016/S0022-0728(96)04823-1 – ident: e_1_2_8_62_1 doi: 10.1002/anie.201810991 – ident: e_1_2_8_8_1 doi: 10.1039/c2ee21234j – start-page: 2101334 year: 2021 ident: e_1_2_8_49_1 publication-title: Small Methods contributor: fullname: Shang L. – ident: e_1_2_8_21_1 doi: 10.1016/j.electacta.2004.11.061 – ident: e_1_2_8_30_1 doi: 10.1038/s41929-019-0269-8 – ident: e_1_2_8_50_1 doi: 10.1002/sia.6239 – ident: e_1_2_8_38_1 doi: 10.1021/acsenergylett.8b02525 – ident: e_1_2_8_58_1 doi: 10.1038/s41586-019-1760-8 – ident: e_1_2_8_53_1 doi: 10.1038/s41929-019-0397-1 – ident: e_1_2_8_63_1 doi: 10.1002/elan.201900665 – ident: e_1_2_8_10_1 doi: 10.1038/s41929-020-00547-0 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.200701216 – ident: e_1_2_8_29_1 doi: 10.1016/j.jcou.2020.03.001 – ident: e_1_2_8_60_1 doi: 10.1016/0022-0728(94)03300-5 – ident: e_1_2_8_19_1 doi: 10.1016/j.jelechem.2017.09.046 – ident: e_1_2_8_14_1 doi: 10.1006/jcat.2000.2940 – ident: e_1_2_8_9_1 doi: 10.1038/s41929-020-00504-x – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevB.55.10786 – ident: e_1_2_8_25_1 doi: 10.1021/acs.chemrev.8b00705 – ident: e_1_2_8_20_1 doi: 10.1002/anie.201804142 – ident: e_1_2_8_17_1 doi: 10.1016/j.jcou.2019.05.025 – ident: e_1_2_8_45_1 doi: 10.1021/acs.jpcc.8b09598 – ident: e_1_2_8_24_1 doi: 10.1021/ja3010978 – ident: e_1_2_8_46_1 doi: 10.1021/acs.jpcc.6b03065 |
SSID | ssj0009606 |
Score | 2.4355435 |
Snippet | Electrochemical CO
reduction reaction (eCO
RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa
and Cu
Ga
). Among them,... Abstract Electrochemical CO 2 reduction reaction (eCO 2 RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa 2 and Cu 9 Ga... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | e2109426 |
Title | Structure-Tailored Surface Oxide on Cu-Ga Intermetallics Enhances CO 2 Reduction Selectivity to Methanol at Ultralow Potential |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35278256 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcoED4p9dfuQDEocqS-P8ND6WaNnVSkulpRV7q9zEJkElQW0irTiteAIk3oRH2idhxo7dFvWwcImiKHEiz5fxN-PxZ0JeB1wGOc-Uh3NkHjBi5SVBJj0VAPlQUTTMfFwofPYhPpmGpxfRRa_3e6NqqW3mh9n3netK_seqcA3siqtk_8GyrlG4AOdgXziCheF4Ixt_1OKv7VK6koWJKCEARxLZLpWAf3Z8WeYSZwTS1t4UHAuTCPwqgXkvUKb5qCrQ-qt-Ou4z6PLcaMqCJ1loh4hUHUjqmcREe73AFZDTBeZIcCFd3WDFUfetVtDWlhYAITY9gVT2kyyrQuL-zS798E58zoqy83wCQvfGjRPnQs8snZZN0bpEEIy0OhE0WhVtU6-Kvq4RXxcpYNly3Zis7mj5pa020xoQEbsiQpufDCKPx0aG81B23plhwGt25bTuu8uFdjDlO4cFIzMrcq00BUEuD9kO_e2_xkVXrWiUndkMn5-552-R2wycmy4NOF9LlmFEqPUdu8-3QqED9nb7_VtEaCuk0dRmcp_c62ISOjIAe0B6snpI7m4oVT4iPxzUrq9-WpDRDmRUg4zWFU3b66tfx4Juw4taeNF0TBl18KIb8KJNTS28qGiohRd18HpMpu-PJumJ123f4WX-YBh7imdJGPlS-YnKGUQm4TwLJONqEIQ5Vz54Ai54FkHAKgMgqkJyX0kVJ8Kf-5ief0L2qrqSzwhlwhf-UAGxglZkMkiyAIUiJVCteR6G-T55Y_ty9s2otMx2W22fPDVd7e6DCAReHsUHN27jObmzRuwLsgcGkC-BmjbzVxoLfwBT_4-f |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%90Tailored+Surface+Oxide+on+Cu%E2%80%93Ga+Intermetallics+Enhances+CO+2+Reduction+Selectivity+to+Methanol+at+Ultralow+Potential&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Bagchi%2C+Debabrata&rft.au=Raj%2C+Jithu&rft.au=Singh%2C+Ashutosh+Kumar&rft.au=Cherevotan%2C+Arjun&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=19&rft_id=info:doi/10.1002%2Fadma.202109426&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202109426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |