Structure-Tailored Surface Oxide on Cu-Ga Intermetallics Enhances CO 2 Reduction Selectivity to Methanol at Ultralow Potential

Electrochemical CO reduction reaction (eCO RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa and Cu Ga ). Among them, CuGa selectively converts CO to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of -0.3 V vs RHE. The hig...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 19; p. e2109426
Main Authors Bagchi, Debabrata, Raj, Jithu, Singh, Ashutosh Kumar, Cherevotan, Arjun, Roy, Soumyabrata, Manoj, Kaja Sai, Vinod, C P, Peter, Sebastian C
Format Journal Article
LanguageEnglish
Published Germany 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical CO reduction reaction (eCO RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa and Cu Ga ). Among them, CuGa selectively converts CO to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of -0.3 V vs RHE. The high performance of CuGa compared to Cu Ga is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga O ) even in the reduction atmosphere. The Ga O species is mapped by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga O , which is probed by in situ XAFS, quasi in situ powder X-ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope-labeling experiments in presence of CO . Finally, to minimize the mass transport limitations and improve the overall eCO RR performance, a poly(tetrafluoroethylene)-based gas diffusion electrode is used in the flow cell configuration.
AbstractList Electrochemical CO reduction reaction (eCO RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa and Cu Ga ). Among them, CuGa selectively converts CO to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of -0.3 V vs RHE. The high performance of CuGa compared to Cu Ga is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga O ) even in the reduction atmosphere. The Ga O species is mapped by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga O , which is probed by in situ XAFS, quasi in situ powder X-ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope-labeling experiments in presence of CO . Finally, to minimize the mass transport limitations and improve the overall eCO RR performance, a poly(tetrafluoroethylene)-based gas diffusion electrode is used in the flow cell configuration.
Abstract Electrochemical CO 2 reduction reaction (eCO 2 RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa 2 and Cu 9 Ga 4 ). Among them, CuGa 2 selectively converts CO 2 to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of −0.3 V vs RHE. The high performance of CuGa 2 compared to Cu 9 Ga 4 is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga 2 O 3 ) even in the reduction atmosphere. The Ga 2 O 3 species is mapped by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO 2 RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga 2 O 3 , which is probed by in situ XAFS, quasi in situ powder X‐ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope‐labeling experiments in presence of 13 CO 2 . Finally, to minimize the mass transport limitations and improve the overall eCO 2 RR performance, a poly(tetrafluoroethylene)‐based gas diffusion electrode is used in the flow cell configuration.
Author Raj, Jithu
Roy, Soumyabrata
Singh, Ashutosh Kumar
Bagchi, Debabrata
Manoj, Kaja Sai
Vinod, C P
Peter, Sebastian C
Cherevotan, Arjun
Author_xml – sequence: 1
  givenname: Debabrata
  orcidid: 0000-0001-9922-2073
  surname: Bagchi
  fullname: Bagchi, Debabrata
  organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
– sequence: 2
  givenname: Jithu
  surname: Raj
  fullname: Raj, Jithu
  organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
– sequence: 3
  givenname: Ashutosh Kumar
  orcidid: 0000-0002-2491-3678
  surname: Singh
  fullname: Singh, Ashutosh Kumar
  organization: Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
– sequence: 4
  givenname: Arjun
  orcidid: 0000-0003-1649-0123
  surname: Cherevotan
  fullname: Cherevotan, Arjun
  organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
– sequence: 5
  givenname: Soumyabrata
  orcidid: 0000-0003-3540-1341
  surname: Roy
  fullname: Roy, Soumyabrata
  organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
– sequence: 6
  givenname: Kaja Sai
  surname: Manoj
  fullname: Manoj, Kaja Sai
  organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
– sequence: 7
  givenname: C P
  orcidid: 0000-0001-9857-4907
  surname: Vinod
  fullname: Vinod, C P
  organization: Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
– sequence: 8
  givenname: Sebastian C
  orcidid: 0000-0002-5211-446X
  surname: Peter
  fullname: Peter, Sebastian C
  organization: School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35278256$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS1URB-wZYn8AyljJ07jJapKqVRURNt15DhjEeTEleMA3fDtpAK6mrs490pzxmTQuAYJuWUwZQD8XpW1mnLgDGTC0wsyYoKzKAEpBmQEMhaRTJNsSMZt-w4AMoX0igxjwWcZF-mIfG-D73ToPEY7VVnnsaTbzhulkW6-qhKpa-i8i5aKrpqAvsagrK10SxfNm2o0tnS-oZy-YtnPVD28RYt9-qjCkQZHnzH0nLNUBbq3wSvrPumLC9iEStlrcmmUbfHm707I_nGxmz9F681yNX9YR5rBLI2M1FkiGBqWmZJDBkmhY-TSQJyU0jAjhFRSC5EJjPvPFEpm0KSZYgUrgMUTMv3d1d61rUeTH3xVK3_MGeQnkflJZH4W2RfufguHrqixPOP_5uIf8eRx4Q
CitedBy_id crossref_primary_10_3390_en16166035
crossref_primary_10_1039_D3SC06351H
crossref_primary_10_1021_jacs_2c10351
crossref_primary_10_1021_jacs_3c10202
crossref_primary_10_1039_D3QM00364G
crossref_primary_10_1002_aenm_202400696
crossref_primary_10_1021_acscatal_2c03183
crossref_primary_10_3390_catal13061005
crossref_primary_10_1002_adma_202202294
crossref_primary_10_1016_j_cclet_2023_108515
crossref_primary_10_1039_D2CC06986E
crossref_primary_10_1021_acsami_3c14932
crossref_primary_10_1002_chem_202202221
crossref_primary_10_34133_research_0233
crossref_primary_10_1021_acs_chemmater_4c00405
crossref_primary_10_1039_D2CC00490A
crossref_primary_10_1021_acscatal_3c00972
crossref_primary_10_1016_j_jenvman_2023_118354
crossref_primary_10_1016_j_matre_2023_100175
crossref_primary_10_1149_1945_7111_ad377f
crossref_primary_10_1016_j_matre_2023_100177
crossref_primary_10_1039_D3CS00857F
crossref_primary_10_1002_adfm_202400798
crossref_primary_10_1021_jacs_2c13437
crossref_primary_10_1002_ange_202215136
crossref_primary_10_1039_D2NR03539A
crossref_primary_10_1021_acsnano_1c11664
crossref_primary_10_1038_s41467_023_43118_0
crossref_primary_10_1016_j_jcou_2023_102477
crossref_primary_10_3390_ma17112683
crossref_primary_10_3390_suschem5010002
crossref_primary_10_1016_j_wear_2023_205234
crossref_primary_10_1021_acs_chemmater_4c01008
crossref_primary_10_1002_adfm_202209023
crossref_primary_10_59761_RCR5101
crossref_primary_10_1021_acs_chemrev_3c00206
crossref_primary_10_1002_smsc_202400129
crossref_primary_10_1021_acsaem_3c01058
crossref_primary_10_1039_D4CS00390J
crossref_primary_10_1088_2516_1083_ac6e23
crossref_primary_10_1016_j_jallcom_2023_170903
crossref_primary_10_1002_adma_202205994
crossref_primary_10_1021_acsnano_3c04585
crossref_primary_10_1016_j_jcis_2023_10_045
crossref_primary_10_1016_S1872_2067_23_64455_9
crossref_primary_10_1039_D4SE00368C
crossref_primary_10_1016_j_jiec_2023_06_022
crossref_primary_10_1021_acsami_4c06789
crossref_primary_10_1002_anie_202215136
crossref_primary_10_1039_D4TA00270A
crossref_primary_10_1016_S1872_2067_22_64152_4
crossref_primary_10_1016_j_ces_2023_119209
crossref_primary_10_1016_j_nantod_2024_102152
crossref_primary_10_1021_jacs_2c04541
crossref_primary_10_1021_jacs_3c09828
crossref_primary_10_1039_D2EY00081D
crossref_primary_10_1007_s12274_023_5653_7
crossref_primary_10_1021_jacs_3c09307
crossref_primary_10_1016_j_checat_2023_100796
crossref_primary_10_1016_j_coelec_2023_101219
crossref_primary_10_1016_j_mcat_2024_113839
crossref_primary_10_1002_cssc_202301927
crossref_primary_10_1002_adma_202207088
crossref_primary_10_1002_adma_202300713
crossref_primary_10_1016_j_triboint_2023_109181
crossref_primary_10_1080_01614940_2024_2340582
crossref_primary_10_1021_acs_jpcc_2c07240
crossref_primary_10_1021_acssuschemeng_4c02069
crossref_primary_10_1016_j_susmat_2023_e00663
crossref_primary_10_1021_acsenergylett_3c02362
crossref_primary_10_1016_j_ccr_2023_215409
crossref_primary_10_1016_j_mtener_2023_101433
crossref_primary_10_1002_adfm_202300926
Cites_doi 10.1038/s41929-018-0182-6
10.1021/acssuschemeng.8b03843
10.1016/j.rser.2013.11.045
10.1039/D0CC07318K
10.1016/j.joule.2019.07.021
10.1126/science.aas9100
10.1021/jacs.7b10462
10.1021/acscatal.7b01161
10.1039/D0EE03679J
10.1039/C9DT04749B
10.1039/C9EE03660A
10.1039/C6CY00971A
10.1039/C4GC02453B
10.1016/j.jpowsour.2013.12.002
10.1016/j.apcatb.2019.118369
10.1016/j.electacta.2020.137207
10.1021/acsenergylett.8b00740
10.1021/acsenergylett.8b00878
10.1016/0022-0728(91)85528-W
10.1016/j.jcat.2004.06.012
10.1039/C8EE00097B
10.1007/s00216-010-4219-1
10.1039/c3ee24040a
10.1021/ja202642y
10.1039/b800519b
10.1002/anie.201603034
10.1021/acscatal.6b02928
10.1021/acscatal.5b02543
10.1038/s41565-021-00974-5
10.1126/science.aav3506
10.1038/nchem.1873
10.1007/s10562-005-6507-5
10.1016/j.elecom.2020.106789
10.1149/1.3561636
10.1038/s41929-018-0169-3
10.1016/j.matt.2020.08.012
10.1021/jacs.9b11126
10.1088/0953-8984/27/17/175601
10.1039/D0SC01882A
10.1016/S0022-0728(96)04823-1
10.1002/anie.201810991
10.1039/c2ee21234j
10.1016/j.electacta.2004.11.061
10.1038/s41929-019-0269-8
10.1002/sia.6239
10.1021/acsenergylett.8b02525
10.1038/s41586-019-1760-8
10.1038/s41929-019-0397-1
10.1002/elan.201900665
10.1038/s41929-020-00547-0
10.1002/adfm.200701216
10.1016/j.jcou.2020.03.001
10.1016/0022-0728(94)03300-5
10.1016/j.jelechem.2017.09.046
10.1006/jcat.2000.2940
10.1038/s41929-020-00504-x
10.1103/PhysRevB.55.10786
10.1021/acs.chemrev.8b00705
10.1002/anie.201804142
10.1016/j.jcou.2019.05.025
10.1021/acs.jpcc.8b09598
10.1021/ja3010978
10.1021/acs.jpcc.6b03065
ContentType Journal Article
Copyright 2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
DOI 10.1002/adma.202109426
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 10_1002_adma_202109426
35278256
Genre Journal Article
GrantInformation_xml – fundername: Jawaharlal Nehru Centre for Advanced Scientific Research and the Department of Science and Technology
  grantid: DST/TM/EWO/MI/CCUS/13(G)
– fundername: DST for SwarnaJayanti Fellowship
  grantid: DST/SJF/CSA-02/2017-18
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
NPM
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c1076-f9c8451ef18fd20804bc3e29f034d9f1f559a9c5585e3782ae91fef68a1b1b013
ISSN 0935-9648
IngestDate Thu Sep 26 16:08:59 EDT 2024
Sat Sep 28 08:19:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords electrochemistry
methanol
CO 2 reduction
Language English
License 2022 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1076-f9c8451ef18fd20804bc3e29f034d9f1f559a9c5585e3782ae91fef68a1b1b013
ORCID 0000-0001-9922-2073
0000-0003-1649-0123
0000-0002-2491-3678
0000-0002-5211-446X
0000-0003-3540-1341
0000-0001-9857-4907
PMID 35278256
ParticipantIDs crossref_primary_10_1002_adma_202109426
pubmed_primary_35278256
PublicationCentury 2000
PublicationDate 2022-May
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Shang L. (e_1_2_8_49_1) 2021
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_37_1
  doi: 10.1038/s41929-018-0182-6
– ident: e_1_2_8_12_1
  doi: 10.1021/acssuschemeng.8b03843
– ident: e_1_2_8_13_1
  doi: 10.1016/j.rser.2013.11.045
– ident: e_1_2_8_40_1
  doi: 10.1039/D0CC07318K
– ident: e_1_2_8_64_1
  doi: 10.1016/j.joule.2019.07.021
– ident: e_1_2_8_54_1
  doi: 10.1126/science.aas9100
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.7b10462
– ident: e_1_2_8_23_1
  doi: 10.1021/acscatal.7b01161
– ident: e_1_2_8_55_1
  doi: 10.1039/D0EE03679J
– ident: e_1_2_8_35_1
  doi: 10.1039/C9DT04749B
– ident: e_1_2_8_6_1
  doi: 10.1039/C9EE03660A
– ident: e_1_2_8_18_1
  doi: 10.1039/C6CY00971A
– ident: e_1_2_8_11_1
  doi: 10.1039/C4GC02453B
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jpowsour.2013.12.002
– ident: e_1_2_8_28_1
  doi: 10.1016/j.apcatb.2019.118369
– ident: e_1_2_8_56_1
  doi: 10.1016/j.electacta.2020.137207
– ident: e_1_2_8_3_1
  doi: 10.1021/acsenergylett.8b00740
– ident: e_1_2_8_2_1
  doi: 10.1021/acsenergylett.8b00878
– ident: e_1_2_8_26_1
  doi: 10.1016/0022-0728(91)85528-W
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jcat.2004.06.012
– ident: e_1_2_8_7_1
  doi: 10.1039/C8EE00097B
– ident: e_1_2_8_48_1
  doi: 10.1007/s00216-010-4219-1
– ident: e_1_2_8_4_1
  doi: 10.1039/c3ee24040a
– ident: e_1_2_8_1_1
  doi: 10.1021/ja202642y
– ident: e_1_2_8_47_1
  doi: 10.1039/b800519b
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.201603034
– ident: e_1_2_8_51_1
  doi: 10.1021/acscatal.6b02928
– ident: e_1_2_8_41_1
  doi: 10.1021/acscatal.5b02543
– ident: e_1_2_8_44_1
  doi: 10.1038/s41565-021-00974-5
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aav3506
– ident: e_1_2_8_27_1
  doi: 10.1038/nchem.1873
– ident: e_1_2_8_39_1
  doi: 10.1007/s10562-005-6507-5
– ident: e_1_2_8_57_1
  doi: 10.1016/j.elecom.2020.106789
– ident: e_1_2_8_15_1
  doi: 10.1149/1.3561636
– ident: e_1_2_8_36_1
  doi: 10.1038/s41929-018-0169-3
– ident: e_1_2_8_34_1
  doi: 10.1016/j.matt.2020.08.012
– ident: e_1_2_8_43_1
  doi: 10.1021/jacs.9b11126
– ident: e_1_2_8_31_1
  doi: 10.1088/0953-8984/27/17/175601
– ident: e_1_2_8_22_1
  doi: 10.1039/D0SC01882A
– ident: e_1_2_8_59_1
  doi: 10.1016/S0022-0728(96)04823-1
– ident: e_1_2_8_62_1
  doi: 10.1002/anie.201810991
– ident: e_1_2_8_8_1
  doi: 10.1039/c2ee21234j
– start-page: 2101334
  year: 2021
  ident: e_1_2_8_49_1
  publication-title: Small Methods
  contributor:
    fullname: Shang L.
– ident: e_1_2_8_21_1
  doi: 10.1016/j.electacta.2004.11.061
– ident: e_1_2_8_30_1
  doi: 10.1038/s41929-019-0269-8
– ident: e_1_2_8_50_1
  doi: 10.1002/sia.6239
– ident: e_1_2_8_38_1
  doi: 10.1021/acsenergylett.8b02525
– ident: e_1_2_8_58_1
  doi: 10.1038/s41586-019-1760-8
– ident: e_1_2_8_53_1
  doi: 10.1038/s41929-019-0397-1
– ident: e_1_2_8_63_1
  doi: 10.1002/elan.201900665
– ident: e_1_2_8_10_1
  doi: 10.1038/s41929-020-00547-0
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.200701216
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jcou.2020.03.001
– ident: e_1_2_8_60_1
  doi: 10.1016/0022-0728(94)03300-5
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jelechem.2017.09.046
– ident: e_1_2_8_14_1
  doi: 10.1006/jcat.2000.2940
– ident: e_1_2_8_9_1
  doi: 10.1038/s41929-020-00504-x
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevB.55.10786
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.chemrev.8b00705
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201804142
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jcou.2019.05.025
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.jpcc.8b09598
– ident: e_1_2_8_24_1
  doi: 10.1021/ja3010978
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.jpcc.6b03065
SSID ssj0009606
Score 2.4355435
Snippet Electrochemical CO reduction reaction (eCO RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa and Cu Ga ). Among them,...
Abstract Electrochemical CO 2 reduction reaction (eCO 2 RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa 2 and Cu 9 Ga...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e2109426
Title Structure-Tailored Surface Oxide on Cu-Ga Intermetallics Enhances CO 2 Reduction Selectivity to Methanol at Ultralow Potential
URI https://www.ncbi.nlm.nih.gov/pubmed/35278256
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcoED4p9dfuQDEocqS-P8ND6WaNnVSkulpRV7q9zEJkElQW0irTiteAIk3oRH2idhxo7dFvWwcImiKHEiz5fxN-PxZ0JeB1wGOc-Uh3NkHjBi5SVBJj0VAPlQUTTMfFwofPYhPpmGpxfRRa_3e6NqqW3mh9n3netK_seqcA3siqtk_8GyrlG4AOdgXziCheF4Ixt_1OKv7VK6koWJKCEARxLZLpWAf3Z8WeYSZwTS1t4UHAuTCPwqgXkvUKb5qCrQ-qt-Ou4z6PLcaMqCJ1loh4hUHUjqmcREe73AFZDTBeZIcCFd3WDFUfetVtDWlhYAITY9gVT2kyyrQuL-zS798E58zoqy83wCQvfGjRPnQs8snZZN0bpEEIy0OhE0WhVtU6-Kvq4RXxcpYNly3Zis7mj5pa020xoQEbsiQpufDCKPx0aG81B23plhwGt25bTuu8uFdjDlO4cFIzMrcq00BUEuD9kO_e2_xkVXrWiUndkMn5-552-R2wycmy4NOF9LlmFEqPUdu8-3QqED9nb7_VtEaCuk0dRmcp_c62ISOjIAe0B6snpI7m4oVT4iPxzUrq9-WpDRDmRUg4zWFU3b66tfx4Juw4taeNF0TBl18KIb8KJNTS28qGiohRd18HpMpu-PJumJ123f4WX-YBh7imdJGPlS-YnKGUQm4TwLJONqEIQ5Vz54Ai54FkHAKgMgqkJyX0kVJ8Kf-5ief0L2qrqSzwhlwhf-UAGxglZkMkiyAIUiJVCteR6G-T55Y_ty9s2otMx2W22fPDVd7e6DCAReHsUHN27jObmzRuwLsgcGkC-BmjbzVxoLfwBT_4-f
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%90Tailored+Surface+Oxide+on+Cu%E2%80%93Ga+Intermetallics+Enhances+CO+2+Reduction+Selectivity+to+Methanol+at+Ultralow+Potential&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Bagchi%2C+Debabrata&rft.au=Raj%2C+Jithu&rft.au=Singh%2C+Ashutosh+Kumar&rft.au=Cherevotan%2C+Arjun&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=19&rft_id=info:doi/10.1002%2Fadma.202109426&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202109426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon