Synergistic Effects of Co 3 Se 4 and Ti 2 C 3 T x for Performance Enhancement on Lithium-Sulfur Batteries

As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a lithium-sulfur (Li-S) battery since it has an impressive energy density of 2600 Wh kg and a high theoretical specific capacity of 1675 mAh g . Pitifu...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 22; pp. 26882 - 26892
Main Authors Wang, Xuejie, Zhu, Bicheng, Xu, Difa, Gao, Zicheng, Yao, Yu, Liu, Tao, Yu, Jiaguo, Zhang, Liuyang
Format Journal Article
LanguageEnglish
Published United States 07.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a lithium-sulfur (Li-S) battery since it has an impressive energy density of 2600 Wh kg and a high theoretical specific capacity of 1675 mAh g . Pitifully, the sluggish redox reaction kinetics and the shuttle effect of polysulfide seriously limit its applications. Separator modification has been proven to be an effective strategy for improving the performance of Li-S batteries. Herein, we have designed a competent three-dimensional separator. It is obtained by embedding Co Se nanoparticles on nitrogen-doped porous carbon (Co Se @N-C) by high-temperature selenization of ZIF-67, which are compounded with Ti C T by electrostatic dispersion self-assembly, and the compound is used to adjust the surface properties of a polypropylene (PP) separator. Due to the synergistic effect of the superior catalytic performance of Co Se @N-C and the enhancement of adsorption and conductivity bestowed by Ti C T , lithium-sulfur batteries perform excellently with the modified PP separator. Specifically, the battery with a Co Se @N-C/Ti C T -modified PP separator exhibits an outstanding rate performance of 787 mAh g at 4C, and stable performance is maintained after 300 cycles at 2C. The density functional theory (DFT) calculations are also performed to confirm the synergistic effect of Co Se @N-C and Ti C T . This design integrates the merits of catalysis and adsorption and provides a new method for constructing high-performance lithium-sulfur batteries.
AbstractList As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a lithium-sulfur (Li-S) battery since it has an impressive energy density of 2600 Wh kg and a high theoretical specific capacity of 1675 mAh g . Pitifully, the sluggish redox reaction kinetics and the shuttle effect of polysulfide seriously limit its applications. Separator modification has been proven to be an effective strategy for improving the performance of Li-S batteries. Herein, we have designed a competent three-dimensional separator. It is obtained by embedding Co Se nanoparticles on nitrogen-doped porous carbon (Co Se @N-C) by high-temperature selenization of ZIF-67, which are compounded with Ti C T by electrostatic dispersion self-assembly, and the compound is used to adjust the surface properties of a polypropylene (PP) separator. Due to the synergistic effect of the superior catalytic performance of Co Se @N-C and the enhancement of adsorption and conductivity bestowed by Ti C T , lithium-sulfur batteries perform excellently with the modified PP separator. Specifically, the battery with a Co Se @N-C/Ti C T -modified PP separator exhibits an outstanding rate performance of 787 mAh g at 4C, and stable performance is maintained after 300 cycles at 2C. The density functional theory (DFT) calculations are also performed to confirm the synergistic effect of Co Se @N-C and Ti C T . This design integrates the merits of catalysis and adsorption and provides a new method for constructing high-performance lithium-sulfur batteries.
Author Wang, Xuejie
Zhu, Bicheng
Zhang, Liuyang
Yao, Yu
Xu, Difa
Yu, Jiaguo
Liu, Tao
Gao, Zicheng
Author_xml – sequence: 1
  givenname: Xuejie
  surname: Wang
  fullname: Wang, Xuejie
  organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
– sequence: 2
  givenname: Bicheng
  surname: Zhu
  fullname: Zhu, Bicheng
  organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
– sequence: 3
  givenname: Difa
  surname: Xu
  fullname: Xu, Difa
  organization: Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China
– sequence: 4
  givenname: Zicheng
  surname: Gao
  fullname: Gao, Zicheng
  organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
– sequence: 5
  givenname: Yu
  surname: Yao
  fullname: Yao, Yu
  organization: Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
– sequence: 6
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
– sequence: 7
  givenname: Jiaguo
  orcidid: 0000-0002-0612-8633
  surname: Yu
  fullname: Yu, Jiaguo
  organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
– sequence: 8
  givenname: Liuyang
  surname: Zhang
  fullname: Zhang, Liuyang
  organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37246565$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLAzEUhYNU7EO3LuX-gal5TjpLHeoDCgqt6yHN5NpIJ1OSGbD_3pbWrr7L4Z6z-MZkENrgCLlndMooZ4_GJtP4qbBU6lxfkRErpMxmXPHB5ZZySMYp_VCaC07VDRkKzWWucjUifrkPLn771HkLc0RnuwQtQtmCgKUDCSbUsPLAoTwkK_gFbCN8unhAY4J1MA-bIxsXOmgDLHy38X2TLfst9hGeTde56F26JddotsndnTkhXy_zVfmWLT5e38unRWYZ1SqbWbQ5R6oMLRhHbnCteU2VKGZIKRohkFqbO8lqXlvhCs2LgnNdSI1KaiMmZHratbFNKTqsdtE3Ju4rRqujs-rkrDo7OxQeToVdv25cfXn_lyT-AOo7aK0
CitedBy_id crossref_primary_10_1016_j_jcis_2024_05_220
crossref_primary_10_1007_s10854_024_12444_4
crossref_primary_10_1016_j_jallcom_2023_171389
crossref_primary_10_1021_acssuschemeng_3c07336
crossref_primary_10_1016_j_jmst_2024_02_014
crossref_primary_10_1016_j_seppur_2024_127598
crossref_primary_10_20517_energymater_2023_99
crossref_primary_10_1016_j_est_2024_111976
crossref_primary_10_1021_acsami_4c05943
crossref_primary_10_1002_ejic_202400002
crossref_primary_10_1016_j_jiec_2024_03_013
Cites_doi 10.1038/ncomms6682
10.1039/C9TA00212J
10.1002/smtd.202101269
10.1038/nchem.2085
10.1002/smll.202103673
10.1002/aenm.202101250
10.1002/smll.202101360
10.1021/acsami.1c17881
10.1007/s12598-021-01821-1
10.1002/adma.202200479
10.1021/acsnano.1c00270
10.1021/acsaem.9b02385
10.1002/eem2.12201
10.1016/j.nanoen.2020.104555
10.1016/j.joule.2018.08.010
10.1002/adma.201905658
10.1002/adma.201603040
10.1016/j.jechem.2019.06.014
10.1021/acsami.9b23006
10.1007/s12598-020-01686-w
10.1002/adma.202007803
10.1039/C4CS00470A
10.1016/j.cej.2022.140610
10.1016/j.apsusc.2021.149717
10.1038/nature11475
10.1016/j.est.2022.104522
10.3866/pku.whxb202005012
10.1016/j.jcis.2023.02.152
10.1002/aenm.201801868
10.1016/j.cej.2019.05.119
10.1016/j.xcrp.2020.100215
10.1002/adma.202204214
10.1002/smll.202007442
10.1002/adma.202207752
10.1002/aenm.201904273
10.1002/adfm.201903842
10.1002/aenm.201900219
10.1002/anie.201506972
10.1002/smll.201702407
10.1002/adfm.202001201
10.1002/aenm.201901896
10.1016/j.jcis.2020.11.084
10.1016/j.nanoen.2020.105621
10.1002/smll.201802516
10.1002/inf2.12097
10.1021/acsnano.0c01452
10.1021/acsami.2c03461
10.1002/adma.202101204
10.1002/anie.202109291
10.1016/j.jmst.2019.12.027
10.1016/j.cej.2018.10.026
10.1007/s12274-019-2508-3
10.1002/adma.202103846
10.1002/aenm.202103820
10.1021/acsami.2c02212
10.1007/s12274-023-5535-z
10.3866/pku.whxb202007048
10.1021/acsami.1c14813
10.1038/nmat3191
10.1039/D0EE02797A
10.1016/j.cej.2017.09.186
10.1039/C9TA11680J
10.1002/aenm.201803900
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acsami.3c04767
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 26892
ExternalDocumentID 10_1021_acsami_3c04767
37246565
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
CITATION
ID FETCH-LOGICAL-c1075-8cfc62f05a0912f2afb72d05398f00fa33f0cc6e41d2dc3e97299227947f547a3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 23 02:32:45 EDT 2024
Sat Sep 28 08:12:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords lithium−sulfur battery
Co3Se4
adsorption
separators
catalysts
Ti3C2Tx
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1075-8cfc62f05a0912f2afb72d05398f00fa33f0cc6e41d2dc3e97299227947f547a3
ORCID 0000-0002-0612-8633
PMID 37246565
PageCount 11
ParticipantIDs crossref_primary_10_1021_acsami_3c04767
pubmed_primary_37246565
PublicationCentury 2000
PublicationDate 2023-Jun-07
2023-06-07
PublicationDateYYYYMMDD 2023-06-07
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-Jun-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2023
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref55/cit55
  doi: 10.1038/ncomms6682
– ident: ref53/cit53
  doi: 10.1039/C9TA00212J
– ident: ref45/cit45
  doi: 10.1002/smtd.202101269
– ident: ref1/cit1
  doi: 10.1038/nchem.2085
– ident: ref17/cit17
  doi: 10.1002/smll.202103673
– ident: ref60/cit60
  doi: 10.1002/aenm.202101250
– ident: ref37/cit37
  doi: 10.1002/smll.202101360
– ident: ref39/cit39
  doi: 10.1021/acsami.1c17881
– ident: ref15/cit15
  doi: 10.1007/s12598-021-01821-1
– ident: ref16/cit16
  doi: 10.1002/adma.202200479
– ident: ref26/cit26
  doi: 10.1021/acsnano.1c00270
– ident: ref33/cit33
  doi: 10.1021/acsaem.9b02385
– ident: ref10/cit10
  doi: 10.1002/eem2.12201
– ident: ref51/cit51
  doi: 10.1016/j.nanoen.2020.104555
– ident: ref25/cit25
  doi: 10.1016/j.joule.2018.08.010
– ident: ref7/cit7
  doi: 10.1002/adma.201905658
– ident: ref54/cit54
  doi: 10.1002/adma.201603040
– ident: ref46/cit46
  doi: 10.1016/j.jechem.2019.06.014
– ident: ref42/cit42
  doi: 10.1021/acsami.9b23006
– ident: ref14/cit14
  doi: 10.1007/s12598-020-01686-w
– ident: ref34/cit34
  doi: 10.1002/adma.202007803
– ident: ref3/cit3
  doi: 10.1039/C4CS00470A
– ident: ref58/cit58
  doi: 10.1016/j.cej.2022.140610
– ident: ref63/cit63
  doi: 10.1016/j.apsusc.2021.149717
– ident: ref2/cit2
  doi: 10.1038/nature11475
– ident: ref44/cit44
  doi: 10.1016/j.est.2022.104522
– ident: ref50/cit50
  doi: 10.3866/pku.whxb202005012
– ident: ref6/cit6
  doi: 10.1016/j.jcis.2023.02.152
– ident: ref59/cit59
  doi: 10.1002/aenm.201801868
– ident: ref47/cit47
  doi: 10.1016/j.cej.2019.05.119
– ident: ref35/cit35
  doi: 10.1016/j.xcrp.2020.100215
– ident: ref20/cit20
  doi: 10.1002/adma.202204214
– ident: ref49/cit49
  doi: 10.1002/smll.202007442
– ident: ref48/cit48
  doi: 10.1002/adma.202207752
– ident: ref12/cit12
  doi: 10.1002/aenm.201904273
– ident: ref57/cit57
  doi: 10.1002/adfm.201903842
– ident: ref40/cit40
  doi: 10.1002/aenm.201900219
– ident: ref18/cit18
  doi: 10.1002/anie.201506972
– ident: ref4/cit4
  doi: 10.1002/smll.201702407
– ident: ref27/cit27
  doi: 10.1002/adfm.202001201
– ident: ref43/cit43
  doi: 10.1002/aenm.201901896
– ident: ref31/cit31
  doi: 10.1016/j.jcis.2020.11.084
– ident: ref32/cit32
  doi: 10.1016/j.nanoen.2020.105621
– ident: ref9/cit9
  doi: 10.1002/smll.201802516
– ident: ref30/cit30
  doi: 10.1002/inf2.12097
– ident: ref61/cit61
  doi: 10.1021/acsnano.0c01452
– ident: ref36/cit36
  doi: 10.1021/acsami.2c03461
– ident: ref22/cit22
  doi: 10.1002/adma.202101204
– ident: ref52/cit52
  doi: 10.1002/anie.202109291
– ident: ref5/cit5
  doi: 10.1016/j.jmst.2019.12.027
– ident: ref41/cit41
  doi: 10.1016/j.cej.2018.10.026
– ident: ref23/cit23
  doi: 10.1007/s12274-019-2508-3
– ident: ref24/cit24
  doi: 10.1002/adma.202103846
– ident: ref56/cit56
  doi: 10.1002/aenm.202103820
– ident: ref29/cit29
  doi: 10.1021/acsami.2c02212
– ident: ref62/cit62
  doi: 10.1007/s12274-023-5535-z
– ident: ref28/cit28
  doi: 10.3866/pku.whxb202007048
– ident: ref38/cit38
  doi: 10.1021/acsami.1c14813
– ident: ref8/cit8
  doi: 10.1038/nmat3191
– ident: ref11/cit11
  doi: 10.1039/D0EE02797A
– ident: ref19/cit19
  doi: 10.1016/j.cej.2017.09.186
– ident: ref21/cit21
  doi: 10.1039/C9TA11680J
– ident: ref13/cit13
  doi: 10.1002/aenm.201803900
SSID ssj0063205
Score 2.4441965
Snippet As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 26882
Title Synergistic Effects of Co 3 Se 4 and Ti 2 C 3 T x for Performance Enhancement on Lithium-Sulfur Batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/37246565
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcX6UkPvh_1xRwET6npPpOjlJYiKkJa6K0k-6ClmkqbgHryO_gN_STuJq219qCnQEhC2J1k_rM78xuELgzjAa4b4fkJYZ4j0nkhZcwz1qK5rylV2u3o3t3zdpfe9Fhvsd7xewcf169iOXWtcIj0qeBF2bgVhE4DNaL5L5cTXOQq2oCceoF1WHM648rtS95nSUcW_qS1VcKNpgWG0KWRjGp5ltTk2yqk8c9X3UabM1EJ16UV7KA1ne6ijR-owT00il5dlV-BZYYSWTyFsYHGGAhEGijEqYLOEDA07JkOvICVs_CwqCuAZjpwR7ecCOMUbofZYJg_fb5_RPmjySdQojpt5L2Puq1mp9H2Zo0WPGmjP-YF0kiOjc9iqx6wwbFJBFb28wwD4_smJsT4UnJN6worSXRoFXno0INUGEZFTA5QJR2n-giBK-wNTMAThQ3VMUuUUDTkkojQV1SFVXQ5n4D-c8nT6Bf74LjeL4evPxu-Kjos5-f7OiKwo7ux438_4wStu_bwRWqXOEWVbJLrMysisuS8MKAvU2nAsA
link.rule.ids 315,783,787,2772,27936,27937
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Effects+of+Co+3+Se+4+and+Ti+2+C+3+T+x+for+Performance+Enhancement+on+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Xuejie&rft.au=Zhu%2C+Bicheng&rft.au=Xu%2C+Difa&rft.au=Gao%2C+Zicheng&rft.date=2023-06-07&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=15&rft.issue=22&rft.spage=26882&rft.epage=26892&rft_id=info:doi/10.1021%2Facsami.3c04767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_3c04767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon