Synergistic Effects of Co 3 Se 4 and Ti 2 C 3 T x for Performance Enhancement on Lithium-Sulfur Batteries
As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a lithium-sulfur (Li-S) battery since it has an impressive energy density of 2600 Wh kg and a high theoretical specific capacity of 1675 mAh g . Pitifu...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 22; pp. 26882 - 26892 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
07.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a lithium-sulfur (Li-S) battery since it has an impressive energy density of 2600 Wh kg
and a high theoretical specific capacity of 1675 mAh g
. Pitifully, the sluggish redox reaction kinetics and the shuttle effect of polysulfide seriously limit its applications. Separator modification has been proven to be an effective strategy for improving the performance of Li-S batteries. Herein, we have designed a competent three-dimensional separator. It is obtained by embedding Co
Se
nanoparticles on nitrogen-doped porous carbon (Co
Se
@N-C) by high-temperature selenization of ZIF-67, which are compounded with Ti
C
T
by electrostatic dispersion self-assembly, and the compound is used to adjust the surface properties of a polypropylene (PP) separator. Due to the synergistic effect of the superior catalytic performance of Co
Se
@N-C and the enhancement of adsorption and conductivity bestowed by Ti
C
T
, lithium-sulfur batteries perform excellently with the modified PP separator. Specifically, the battery with a Co
Se
@N-C/Ti
C
T
-modified PP separator exhibits an outstanding rate performance of 787 mAh g
at 4C, and stable performance is maintained after 300 cycles at 2C. The density functional theory (DFT) calculations are also performed to confirm the synergistic effect of Co
Se
@N-C and Ti
C
T
. This design integrates the merits of catalysis and adsorption and provides a new method for constructing high-performance lithium-sulfur batteries. |
---|---|
AbstractList | As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a lithium-sulfur (Li-S) battery since it has an impressive energy density of 2600 Wh kg
and a high theoretical specific capacity of 1675 mAh g
. Pitifully, the sluggish redox reaction kinetics and the shuttle effect of polysulfide seriously limit its applications. Separator modification has been proven to be an effective strategy for improving the performance of Li-S batteries. Herein, we have designed a competent three-dimensional separator. It is obtained by embedding Co
Se
nanoparticles on nitrogen-doped porous carbon (Co
Se
@N-C) by high-temperature selenization of ZIF-67, which are compounded with Ti
C
T
by electrostatic dispersion self-assembly, and the compound is used to adjust the surface properties of a polypropylene (PP) separator. Due to the synergistic effect of the superior catalytic performance of Co
Se
@N-C and the enhancement of adsorption and conductivity bestowed by Ti
C
T
, lithium-sulfur batteries perform excellently with the modified PP separator. Specifically, the battery with a Co
Se
@N-C/Ti
C
T
-modified PP separator exhibits an outstanding rate performance of 787 mAh g
at 4C, and stable performance is maintained after 300 cycles at 2C. The density functional theory (DFT) calculations are also performed to confirm the synergistic effect of Co
Se
@N-C and Ti
C
T
. This design integrates the merits of catalysis and adsorption and provides a new method for constructing high-performance lithium-sulfur batteries. |
Author | Wang, Xuejie Zhu, Bicheng Zhang, Liuyang Yao, Yu Xu, Difa Yu, Jiaguo Liu, Tao Gao, Zicheng |
Author_xml | – sequence: 1 givenname: Xuejie surname: Wang fullname: Wang, Xuejie organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China – sequence: 2 givenname: Bicheng surname: Zhu fullname: Zhu, Bicheng organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China – sequence: 3 givenname: Difa surname: Xu fullname: Xu, Difa organization: Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China – sequence: 4 givenname: Zicheng surname: Gao fullname: Gao, Zicheng organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China – sequence: 5 givenname: Yu surname: Yao fullname: Yao, Yu organization: Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China – sequence: 6 givenname: Tao surname: Liu fullname: Liu, Tao organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China – sequence: 7 givenname: Jiaguo orcidid: 0000-0002-0612-8633 surname: Yu fullname: Yu, Jiaguo organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China – sequence: 8 givenname: Liuyang surname: Zhang fullname: Zhang, Liuyang organization: Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37246565$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtLAzEUhYNU7EO3LuX-gal5TjpLHeoDCgqt6yHN5NpIJ1OSGbD_3pbWrr7L4Z6z-MZkENrgCLlndMooZ4_GJtP4qbBU6lxfkRErpMxmXPHB5ZZySMYp_VCaC07VDRkKzWWucjUifrkPLn771HkLc0RnuwQtQtmCgKUDCSbUsPLAoTwkK_gFbCN8unhAY4J1MA-bIxsXOmgDLHy38X2TLfst9hGeTde56F26JddotsndnTkhXy_zVfmWLT5e38unRWYZ1SqbWbQ5R6oMLRhHbnCteU2VKGZIKRohkFqbO8lqXlvhCs2LgnNdSI1KaiMmZHratbFNKTqsdtE3Ju4rRqujs-rkrDo7OxQeToVdv25cfXn_lyT-AOo7aK0 |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_05_220 crossref_primary_10_1007_s10854_024_12444_4 crossref_primary_10_1016_j_jallcom_2023_171389 crossref_primary_10_1021_acssuschemeng_3c07336 crossref_primary_10_1016_j_jmst_2024_02_014 crossref_primary_10_1016_j_seppur_2024_127598 crossref_primary_10_20517_energymater_2023_99 crossref_primary_10_1016_j_est_2024_111976 crossref_primary_10_1021_acsami_4c05943 crossref_primary_10_1002_ejic_202400002 crossref_primary_10_1016_j_jiec_2024_03_013 |
Cites_doi | 10.1038/ncomms6682 10.1039/C9TA00212J 10.1002/smtd.202101269 10.1038/nchem.2085 10.1002/smll.202103673 10.1002/aenm.202101250 10.1002/smll.202101360 10.1021/acsami.1c17881 10.1007/s12598-021-01821-1 10.1002/adma.202200479 10.1021/acsnano.1c00270 10.1021/acsaem.9b02385 10.1002/eem2.12201 10.1016/j.nanoen.2020.104555 10.1016/j.joule.2018.08.010 10.1002/adma.201905658 10.1002/adma.201603040 10.1016/j.jechem.2019.06.014 10.1021/acsami.9b23006 10.1007/s12598-020-01686-w 10.1002/adma.202007803 10.1039/C4CS00470A 10.1016/j.cej.2022.140610 10.1016/j.apsusc.2021.149717 10.1038/nature11475 10.1016/j.est.2022.104522 10.3866/pku.whxb202005012 10.1016/j.jcis.2023.02.152 10.1002/aenm.201801868 10.1016/j.cej.2019.05.119 10.1016/j.xcrp.2020.100215 10.1002/adma.202204214 10.1002/smll.202007442 10.1002/adma.202207752 10.1002/aenm.201904273 10.1002/adfm.201903842 10.1002/aenm.201900219 10.1002/anie.201506972 10.1002/smll.201702407 10.1002/adfm.202001201 10.1002/aenm.201901896 10.1016/j.jcis.2020.11.084 10.1016/j.nanoen.2020.105621 10.1002/smll.201802516 10.1002/inf2.12097 10.1021/acsnano.0c01452 10.1021/acsami.2c03461 10.1002/adma.202101204 10.1002/anie.202109291 10.1016/j.jmst.2019.12.027 10.1016/j.cej.2018.10.026 10.1007/s12274-019-2508-3 10.1002/adma.202103846 10.1002/aenm.202103820 10.1021/acsami.2c02212 10.1007/s12274-023-5535-z 10.3866/pku.whxb202007048 10.1021/acsami.1c14813 10.1038/nmat3191 10.1039/D0EE02797A 10.1016/j.cej.2017.09.186 10.1039/C9TA11680J 10.1002/aenm.201803900 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION |
DOI | 10.1021/acsami.3c04767 |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 26892 |
ExternalDocumentID | 10_1021_acsami_3c04767 37246565 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX CITATION |
ID | FETCH-LOGICAL-c1075-8cfc62f05a0912f2afb72d05398f00fa33f0cc6e41d2dc3e97299227947f547a3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri Aug 23 02:32:45 EDT 2024 Sat Sep 28 08:12:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | lithium−sulfur battery Co3Se4 adsorption separators catalysts Ti3C2Tx |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1075-8cfc62f05a0912f2afb72d05398f00fa33f0cc6e41d2dc3e97299227947f547a3 |
ORCID | 0000-0002-0612-8633 |
PMID | 37246565 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_acsami_3c04767 pubmed_primary_37246565 |
PublicationCentury | 2000 |
PublicationDate | 2023-Jun-07 2023-06-07 |
PublicationDateYYYYMMDD | 2023-06-07 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-Jun-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl Mater Interfaces |
PublicationYear | 2023 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref55/cit55 doi: 10.1038/ncomms6682 – ident: ref53/cit53 doi: 10.1039/C9TA00212J – ident: ref45/cit45 doi: 10.1002/smtd.202101269 – ident: ref1/cit1 doi: 10.1038/nchem.2085 – ident: ref17/cit17 doi: 10.1002/smll.202103673 – ident: ref60/cit60 doi: 10.1002/aenm.202101250 – ident: ref37/cit37 doi: 10.1002/smll.202101360 – ident: ref39/cit39 doi: 10.1021/acsami.1c17881 – ident: ref15/cit15 doi: 10.1007/s12598-021-01821-1 – ident: ref16/cit16 doi: 10.1002/adma.202200479 – ident: ref26/cit26 doi: 10.1021/acsnano.1c00270 – ident: ref33/cit33 doi: 10.1021/acsaem.9b02385 – ident: ref10/cit10 doi: 10.1002/eem2.12201 – ident: ref51/cit51 doi: 10.1016/j.nanoen.2020.104555 – ident: ref25/cit25 doi: 10.1016/j.joule.2018.08.010 – ident: ref7/cit7 doi: 10.1002/adma.201905658 – ident: ref54/cit54 doi: 10.1002/adma.201603040 – ident: ref46/cit46 doi: 10.1016/j.jechem.2019.06.014 – ident: ref42/cit42 doi: 10.1021/acsami.9b23006 – ident: ref14/cit14 doi: 10.1007/s12598-020-01686-w – ident: ref34/cit34 doi: 10.1002/adma.202007803 – ident: ref3/cit3 doi: 10.1039/C4CS00470A – ident: ref58/cit58 doi: 10.1016/j.cej.2022.140610 – ident: ref63/cit63 doi: 10.1016/j.apsusc.2021.149717 – ident: ref2/cit2 doi: 10.1038/nature11475 – ident: ref44/cit44 doi: 10.1016/j.est.2022.104522 – ident: ref50/cit50 doi: 10.3866/pku.whxb202005012 – ident: ref6/cit6 doi: 10.1016/j.jcis.2023.02.152 – ident: ref59/cit59 doi: 10.1002/aenm.201801868 – ident: ref47/cit47 doi: 10.1016/j.cej.2019.05.119 – ident: ref35/cit35 doi: 10.1016/j.xcrp.2020.100215 – ident: ref20/cit20 doi: 10.1002/adma.202204214 – ident: ref49/cit49 doi: 10.1002/smll.202007442 – ident: ref48/cit48 doi: 10.1002/adma.202207752 – ident: ref12/cit12 doi: 10.1002/aenm.201904273 – ident: ref57/cit57 doi: 10.1002/adfm.201903842 – ident: ref40/cit40 doi: 10.1002/aenm.201900219 – ident: ref18/cit18 doi: 10.1002/anie.201506972 – ident: ref4/cit4 doi: 10.1002/smll.201702407 – ident: ref27/cit27 doi: 10.1002/adfm.202001201 – ident: ref43/cit43 doi: 10.1002/aenm.201901896 – ident: ref31/cit31 doi: 10.1016/j.jcis.2020.11.084 – ident: ref32/cit32 doi: 10.1016/j.nanoen.2020.105621 – ident: ref9/cit9 doi: 10.1002/smll.201802516 – ident: ref30/cit30 doi: 10.1002/inf2.12097 – ident: ref61/cit61 doi: 10.1021/acsnano.0c01452 – ident: ref36/cit36 doi: 10.1021/acsami.2c03461 – ident: ref22/cit22 doi: 10.1002/adma.202101204 – ident: ref52/cit52 doi: 10.1002/anie.202109291 – ident: ref5/cit5 doi: 10.1016/j.jmst.2019.12.027 – ident: ref41/cit41 doi: 10.1016/j.cej.2018.10.026 – ident: ref23/cit23 doi: 10.1007/s12274-019-2508-3 – ident: ref24/cit24 doi: 10.1002/adma.202103846 – ident: ref56/cit56 doi: 10.1002/aenm.202103820 – ident: ref29/cit29 doi: 10.1021/acsami.2c02212 – ident: ref62/cit62 doi: 10.1007/s12274-023-5535-z – ident: ref28/cit28 doi: 10.3866/pku.whxb202007048 – ident: ref38/cit38 doi: 10.1021/acsami.1c14813 – ident: ref8/cit8 doi: 10.1038/nmat3191 – ident: ref11/cit11 doi: 10.1039/D0EE02797A – ident: ref19/cit19 doi: 10.1016/j.cej.2017.09.186 – ident: ref21/cit21 doi: 10.1039/C9TA11680J – ident: ref13/cit13 doi: 10.1002/aenm.201803900 |
SSID | ssj0063205 |
Score | 2.4441965 |
Snippet | As electronic equipment develops rapidly, higher requirements are placed on electrochemical energy-storage devices. These requirements can be met by a... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 26882 |
Title | Synergistic Effects of Co 3 Se 4 and Ti 2 C 3 T x for Performance Enhancement on Lithium-Sulfur Batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37246565 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcX6UkPvh_1xRwET6npPpOjlJYiKkJa6K0k-6ClmkqbgHryO_gN_STuJq219qCnQEhC2J1k_rM78xuELgzjAa4b4fkJYZ4j0nkhZcwz1qK5rylV2u3o3t3zdpfe9Fhvsd7xewcf169iOXWtcIj0qeBF2bgVhE4DNaL5L5cTXOQq2oCceoF1WHM648rtS95nSUcW_qS1VcKNpgWG0KWRjGp5ltTk2yqk8c9X3UabM1EJ16UV7KA1ne6ijR-owT00il5dlV-BZYYSWTyFsYHGGAhEGijEqYLOEDA07JkOvICVs_CwqCuAZjpwR7ecCOMUbofZYJg_fb5_RPmjySdQojpt5L2Puq1mp9H2Zo0WPGmjP-YF0kiOjc9iqx6wwbFJBFb28wwD4_smJsT4UnJN6worSXRoFXno0INUGEZFTA5QJR2n-giBK-wNTMAThQ3VMUuUUDTkkojQV1SFVXQ5n4D-c8nT6Bf74LjeL4evPxu-Kjos5-f7OiKwo7ux438_4wStu_bwRWqXOEWVbJLrMysisuS8MKAvU2nAsA |
link.rule.ids | 315,783,787,2772,27936,27937 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Effects+of+Co+3+Se+4+and+Ti+2+C+3+T+x+for+Performance+Enhancement+on+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Xuejie&rft.au=Zhu%2C+Bicheng&rft.au=Xu%2C+Difa&rft.au=Gao%2C+Zicheng&rft.date=2023-06-07&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=15&rft.issue=22&rft.spage=26882&rft.epage=26892&rft_id=info:doi/10.1021%2Facsami.3c04767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_3c04767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |