Exceptional Photocatalytic Activities of rGO Modified (B,N) Co‐Doped WO 3 , Coupled with CdSe QDs for One Photon Z‐Scheme System: A Joint Experimental and DFT Study

Artificial Z‐scheme, a tandem structure with two‐step excitation process, has gained significant attention in energy production and environmental remediation. By effectively connecting and matching the band‐gaps of two different photosystems, it is significant to utilize more photons for excellent p...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 2; p. e2102530
Main Authors Raziq, Fazal, Aligayev, Amil, Shen, Huahai, Ali, Sharafat, Shah, Rahim, Ali, Sajjad, Bakhtiar, Syedul H., Ali, Asad, Zarshad, Naghat, Zada, Amir, Xia, Xiang, Zu, Xiaotao, Khan, Muslim, Wu, Xiaoqiang, Kong, Qingquan, Liu, Chunming, Qiao, Liang
Format Journal Article
LanguageEnglish
Published Germany 01.01.2022
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202102530

Cover

Loading…
Abstract Artificial Z‐scheme, a tandem structure with two‐step excitation process, has gained significant attention in energy production and environmental remediation. By effectively connecting and matching the band‐gaps of two different photosystems, it is significant to utilize more photons for excellent photoactivity. Herein, a novel one‐photon (same energy‐two‐photon) Z‐scheme system is constructed between rGO modified boron‐nitrogen co‐doped‐WO 3 , and coupled CdSe quantum dots‐(QDs). The coctalyst‐0.5%Rh x Cr 2 O 3 (0.5RCr) modified amount‐optimized sample 6%CdSe/1%rGO3%BN‐WO 3 revealed an unprecedented visible‐light driven overall‐water‐splitting to produce ≈51 µmol h −1 g −1 H 2 and 25.5 µmol h −1 g −1 O 2 , and it remained unchanged for 5 runs in 30 h. This superior performance is ascribed to the one‐photon Z‐scheme, which simultaneously stimulates a two photocatalysts system, and enhanced charge separation as revealed by various spectroscopy techniques. The density‐functional theory is further utilized to understand the origin of this performance enhancement. This work provides a feasible strategy for constructing an efficient one‐photon Z‐scheme for practical applications.
AbstractList Artificial Z‐scheme, a tandem structure with two‐step excitation process, has gained significant attention in energy production and environmental remediation. By effectively connecting and matching the band‐gaps of two different photosystems, it is significant to utilize more photons for excellent photoactivity. Herein, a novel one‐photon (same energy‐two‐photon) Z‐scheme system is constructed between rGO modified boron‐nitrogen co‐doped‐WO 3 , and coupled CdSe quantum dots‐(QDs). The coctalyst‐0.5%Rh x Cr 2 O 3 (0.5RCr) modified amount‐optimized sample 6%CdSe/1%rGO3%BN‐WO 3 revealed an unprecedented visible‐light driven overall‐water‐splitting to produce ≈51 µmol h −1 g −1 H 2 and 25.5 µmol h −1 g −1 O 2 , and it remained unchanged for 5 runs in 30 h. This superior performance is ascribed to the one‐photon Z‐scheme, which simultaneously stimulates a two photocatalysts system, and enhanced charge separation as revealed by various spectroscopy techniques. The density‐functional theory is further utilized to understand the origin of this performance enhancement. This work provides a feasible strategy for constructing an efficient one‐photon Z‐scheme for practical applications.
Artificial Z-scheme, a tandem structure with two-step excitation process, has gained significant attention in energy production and environmental remediation. By effectively connecting and matching the band-gaps of two different photosystems, it is significant to utilize more photons for excellent photoactivity. Herein, a novel one-photon (same energy-two-photon) Z-scheme system is constructed between rGO modified boron-nitrogen co-doped-WO , and coupled CdSe quantum dots-(QDs). The coctalyst-0.5%Rh Cr O (0.5RCr) modified amount-optimized sample 6%CdSe/1%rGO3%BN-WO revealed an unprecedented visible-light driven overall-water-splitting to produce ≈51 µmol h g H and 25.5 µmol h g O , and it remained unchanged for 5 runs in 30 h. This superior performance is ascribed to the one-photon Z-scheme, which simultaneously stimulates a two photocatalysts system, and enhanced charge separation as revealed by various spectroscopy techniques. The density-functional theory is further utilized to understand the origin of this performance enhancement. This work provides a feasible strategy for constructing an efficient one-photon Z-scheme for practical applications.
Author Kong, Qingquan
Ali, Asad
Aligayev, Amil
Ali, Sharafat
Zada, Amir
Bakhtiar, Syedul H.
Ali, Sajjad
Zu, Xiaotao
Liu, Chunming
Shah, Rahim
Khan, Muslim
Shen, Huahai
Wu, Xiaoqiang
Raziq, Fazal
Zarshad, Naghat
Qiao, Liang
Xia, Xiang
Author_xml – sequence: 1
  givenname: Fazal
  orcidid: 0000-0002-9709-9363
  surname: Raziq
  fullname: Raziq, Fazal
  organization: Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P. R. China, School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 2
  givenname: Amil
  surname: Aligayev
  fullname: Aligayev, Amil
  organization: School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 3
  givenname: Huahai
  surname: Shen
  fullname: Shen, Huahai
  organization: Institute of Nuclear Physics and Chemistry Chinese Academy of Engineering Physics Mianyang 621900 P. R. China
– sequence: 4
  givenname: Sharafat
  orcidid: 0000-0003-4463-0488
  surname: Ali
  fullname: Ali, Sharafat
  organization: Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P. R. China, School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 5
  givenname: Rahim
  surname: Shah
  fullname: Shah, Rahim
  organization: School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 6
  givenname: Sajjad
  surname: Ali
  fullname: Ali, Sajjad
  organization: Department of Physics Southern University of Science and Technology Shenzhen 518055 P. R. China
– sequence: 7
  givenname: Syedul H.
  surname: Bakhtiar
  fullname: Bakhtiar, Syedul H.
  organization: The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
– sequence: 8
  givenname: Asad
  surname: Ali
  fullname: Ali, Asad
  organization: Department of Chemistry Abdul Wali Khan University Mardan KPK 23200 Pakistan
– sequence: 9
  givenname: Naghat
  surname: Zarshad
  fullname: Zarshad, Naghat
  organization: Department of Chemistry Abdul Wali Khan University Mardan KPK 23200 Pakistan
– sequence: 10
  givenname: Amir
  surname: Zada
  fullname: Zada, Amir
  organization: Department of Chemistry Abdul Wali Khan University Mardan KPK 23200 Pakistan
– sequence: 11
  givenname: Xiang
  surname: Xia
  fullname: Xia, Xiang
  organization: School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 12
  givenname: Xiaotao
  surname: Zu
  fullname: Zu, Xiaotao
  organization: School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 13
  givenname: Muslim
  surname: Khan
  fullname: Khan, Muslim
  organization: Department of Chemistry Kohat University of Science and Technology Kohat KPK 26000 Pakistan
– sequence: 14
  givenname: Xiaoqiang
  surname: Wu
  fullname: Wu, Xiaoqiang
  organization: School of Mechanical Engineering Chengdu University Chengdu 610106 P. R. China
– sequence: 15
  givenname: Qingquan
  surname: Kong
  fullname: Kong, Qingquan
  organization: School of Mechanical Engineering Chengdu University Chengdu 610106 P. R. China
– sequence: 16
  givenname: Chunming
  surname: Liu
  fullname: Liu, Chunming
  organization: School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– sequence: 17
  givenname: Liang
  orcidid: 0000-0003-2400-2986
  surname: Qiao
  fullname: Qiao, Liang
  organization: Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P. R. China, School of Physics University of Electronic Science and Technology of China Chengdu 610054 P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34859614$$D View this record in MEDLINE/PubMed
BookMark eNp1UctOG0EQHCEiIIRrjqiPiYTNvHZ3NjfHNiSIYJBBkbisxjO98qD1zmpnTPAtn5DPyHflS7KWASEkTt1dqmqVqt6T7drXSMhHRvuMUn6s7X3oc8oZ5YmgW2SPs1z1hJJy-8W-Sw5CuKOUskRkkqkdsiukSvKUyT3yd_xgsInO17qCy7mP3uioq1V0BgYmunsXHQbwJbSnE_jhrSsdWvj09ejiMwz9v99_Rr7pgJ8TEHDUIcum6s5fLs5haKcIV6MApW9hUuPmfw23nWpq5rhAmK5CxMUXGMCZd3WE8UODrVtg3XkAXVsYnVzDNC7t6gN5V-oq4MHj3Cc3J-Pr4bfe-eT0-3Bw3jOMZrKnlGRJpo0ujZCpzDCjfFbmIuc8UQkKI3KcJVoKVKm0IjOJZUJks5SnVpUpFfvkcPO3Wc4WaIums6PbVfEUWUfobwim9SG0WD5TGC3WtRTrWornWjqBfCUwLup15LHVrnpL9h87oJDp
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215466
crossref_primary_10_1016_j_ccr_2024_216237
crossref_primary_10_1007_s12274_022_4529_6
crossref_primary_10_1016_j_cej_2022_137161
crossref_primary_10_1039_D3NR04534J
crossref_primary_10_1039_D3MA00844D
crossref_primary_10_3390_cryst12121719
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1016_j_seppur_2024_127299
crossref_primary_10_1016_j_fuproc_2022_107427
crossref_primary_10_1002_adma_202303047
crossref_primary_10_1016_j_ijhydene_2023_03_158
crossref_primary_10_1016_j_mcat_2022_112285
crossref_primary_10_1002_smll_202207234
crossref_primary_10_1016_j_cej_2023_147712
crossref_primary_10_1016_j_inoche_2024_113157
crossref_primary_10_1002_tcr_202300285
crossref_primary_10_1016_j_renene_2023_05_124
crossref_primary_10_1016_j_ijhydene_2024_11_397
crossref_primary_10_1039_D2EW00342B
crossref_primary_10_2139_ssrn_4102865
crossref_primary_10_1002_adma_202200563
crossref_primary_10_1016_j_jcis_2024_02_081
crossref_primary_10_1016_j_ijhydene_2022_04_247
crossref_primary_10_3390_cryst12111604
crossref_primary_10_1016_j_jallcom_2025_179915
crossref_primary_10_1016_j_ijhydene_2023_01_152
crossref_primary_10_1021_acs_langmuir_2c02208
crossref_primary_10_1140_epjp_s13360_023_04407_1
crossref_primary_10_1016_j_fuproc_2024_108049
crossref_primary_10_1016_j_mtcomm_2024_109990
crossref_primary_10_1016_j_ccr_2025_216617
crossref_primary_10_1016_j_surfin_2024_105206
crossref_primary_10_1016_j_compscitech_2023_110137
crossref_primary_10_1515_zpch_2021_3152
crossref_primary_10_1016_j_cej_2024_153275
crossref_primary_10_1515_zpch_2022_0051
crossref_primary_10_1016_j_apsusc_2024_162022
crossref_primary_10_1016_j_scitotenv_2025_178629
crossref_primary_10_1515_polyeng_2022_0012
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1016_j_mcat_2023_113012
crossref_primary_10_1016_j_apcatb_2022_121616
crossref_primary_10_1016_j_mcat_2023_113335
crossref_primary_10_1088_2516_1083_ac9eff
crossref_primary_10_1155_2023_2948342
crossref_primary_10_1515_revic_2024_0107
crossref_primary_10_1016_j_apsusc_2023_157073
crossref_primary_10_1016_j_jcis_2024_02_187
crossref_primary_10_1002_solr_202301009
crossref_primary_10_1007_s10854_025_14522_7
crossref_primary_10_1016_j_rser_2024_114615
crossref_primary_10_1016_j_colsurfa_2022_128818
crossref_primary_10_1016_j_ijhydene_2023_07_075
crossref_primary_10_3389_fceng_2022_1087435
crossref_primary_10_1016_j_chemphys_2025_112708
crossref_primary_10_1007_s10854_023_09815_8
crossref_primary_10_1126_sciadv_adn6211
crossref_primary_10_1039_D2CY00713D
crossref_primary_10_3390_cryst12111509
crossref_primary_10_1016_j_fuproc_2022_107451
crossref_primary_10_1016_j_seppur_2024_126578
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_14295_bjs_v3i12_663
crossref_primary_10_1007_s10854_022_08616_9
crossref_primary_10_1016_j_ijhydene_2024_08_163
crossref_primary_10_1016_j_apcatb_2023_123023
Cites_doi 10.1016/j.apcatb.2020.118867
10.1016/j.solener.2020.03.009
10.1016/j.apcatb.2019.04.091
10.1002/adfm.202008244
10.1002/adfm.201903490
10.1002/aenm.201701580
10.1021/acsenergylett.9b00634
10.1016/j.jechem.2021.01.021
10.1039/c3sc52810c
10.1016/j.apcatb.2021.120030
10.1063/1.4960762
10.1016/j.cplett.2016.03.017
10.1002/smtd.201700080
10.1039/C7TC04160H
10.1103/PhysRevLett.100.136406
10.1039/D0CC05854H
10.1103/PhysRevB.50.17953
10.1016/j.jhazmat.2014.12.022
10.1039/c2cp40976c
10.1016/j.apcatb.2016.08.057
10.1016/j.apcatb.2018.06.009
10.1016/j.nanoen.2019.104247
10.1246/cl.2004.1348
10.1016/j.cej.2014.01.070
10.1016/j.cej.2020.124518
10.1016/j.apcatb.2020.119410
10.1039/D0EE03300F
10.1016/j.snb.2018.03.054
10.1016/j.jhazmat.2019.120972
10.1103/PhysRevLett.126.176401
10.1038/s41586-020-2278-9
10.1063/1.3382344
10.1016/j.apcatb.2018.02.060
10.1103/PhysRevB.59.1758
10.1039/c3tc30861h
10.1016/j.apsusc.2018.08.182
10.1039/D0TA09759D
10.1016/j.cattod.2018.11.013
10.1038/s41467-020-20613-2
10.1016/j.apcatb.2020.118870
10.1016/j.solidstatesciences.2019.06.015
10.1021/acsami.0c07004
10.1016/j.cej.2019.05.098
10.1063/1.4963168
10.1021/acsenergylett.9b00460
10.1103/PhysRevB.54.11169
10.1038/238037a0
10.1002/adfm.201909849
10.1039/C9CP05944J
10.1016/j.mssp.2019.104732
10.1021/acs.chemrev.9b00840
10.1002/aenm.201601190
10.1103/PhysRevB.47.558
10.1016/j.mssp.2020.105157
10.1016/j.apcatb.2007.09.005
10.1016/j.apcatb.2014.11.020
10.1016/j.apcatb.2020.119038
10.1016/j.apcatb.2017.08.018
10.1016/j.ceja.2020.100070
10.1016/0927-0256(96)00008-0
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
DOI 10.1002/advs.202102530
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID 34859614
10_1002_advs_202102530
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11774044
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M640906†
– fundername: National Natural Science Foundation of China
  grantid: 52072059
– fundername: Chinese Government 1000-Young Talent Program
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  grantid: 20133514110003
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M622404
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAYXX
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
NPM
WIN
ID FETCH-LOGICAL-c1074-884157acafc34647e702bf93922585e3c39eb5a43e864d37c5d1337b626d8f603
ISSN 2198-3844
IngestDate Wed Feb 19 02:27:46 EST 2025
Thu Apr 24 23:10:16 EDT 2025
Tue Jul 01 03:59:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords surface modifications
WO3
expending visible-light response
one-photon Z-scheme
overall-water splitting
CdSe quantum dots
Language English
License 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1074-884157acafc34647e702bf93922585e3c39eb5a43e864d37c5d1337b626d8f603
ORCID 0000-0003-4463-0488
0000-0003-2400-2986
0000-0002-9709-9363
PMID 34859614
ParticipantIDs pubmed_primary_34859614
crossref_primary_10_1002_advs_202102530
crossref_citationtrail_10_1002_advs_202102530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-00
2022-Jan
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-00
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_7_1
  doi: 10.1016/j.apcatb.2020.118867
– ident: e_1_2_9_9_1
  doi: 10.1016/j.solener.2020.03.009
– ident: e_1_2_9_54_1
  doi: 10.1016/j.apcatb.2019.04.091
– ident: e_1_2_9_2_1
  doi: 10.1002/adfm.202008244
– ident: e_1_2_9_42_1
  doi: 10.1002/adfm.201903490
– ident: e_1_2_9_11_1
  doi: 10.1002/aenm.201701580
– ident: e_1_2_9_4_1
  doi: 10.1021/acsenergylett.9b00634
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jechem.2021.01.021
– ident: e_1_2_9_21_1
  doi: 10.1039/c3sc52810c
– ident: e_1_2_9_5_1
  doi: 10.1016/j.apcatb.2021.120030
– ident: e_1_2_9_60_1
  doi: 10.1063/1.4960762
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cplett.2016.03.017
– ident: e_1_2_9_19_1
  doi: 10.1002/smtd.201700080
– ident: e_1_2_9_32_1
  doi: 10.1039/C7TC04160H
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevLett.100.136406
– ident: e_1_2_9_43_1
  doi: 10.1039/D0CC05854H
– ident: e_1_2_9_51_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jhazmat.2014.12.022
– ident: e_1_2_9_22_1
  doi: 10.1039/c2cp40976c
– ident: e_1_2_9_56_1
  doi: 10.1016/j.apcatb.2016.08.057
– ident: e_1_2_9_58_1
  doi: 10.1016/j.apcatb.2018.06.009
– ident: e_1_2_9_20_1
  doi: 10.1016/j.nanoen.2019.104247
– ident: e_1_2_9_23_1
  doi: 10.1246/cl.2004.1348
– ident: e_1_2_9_30_1
  doi: 10.1016/j.cej.2014.01.070
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cej.2020.124518
– ident: e_1_2_9_12_1
  doi: 10.1016/j.apcatb.2020.119410
– ident: e_1_2_9_3_1
  doi: 10.1039/D0EE03300F
– ident: e_1_2_9_40_1
  doi: 10.1016/j.snb.2018.03.054
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jhazmat.2019.120972
– ident: e_1_2_9_13_1
  doi: 10.1103/PhysRevLett.126.176401
– ident: e_1_2_9_17_1
  doi: 10.1038/s41586-020-2278-9
– ident: e_1_2_9_52_1
  doi: 10.1063/1.3382344
– ident: e_1_2_9_57_1
  doi: 10.1016/j.apcatb.2018.02.060
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_9_33_1
  doi: 10.1039/c3tc30861h
– ident: e_1_2_9_27_1
  doi: 10.1016/j.apsusc.2018.08.182
– ident: e_1_2_9_35_1
  doi: 10.1039/D0TA09759D
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cattod.2018.11.013
– ident: e_1_2_9_1_1
  doi: 10.1038/s41467-020-20613-2
– ident: e_1_2_9_8_1
  doi: 10.1016/j.apcatb.2020.118870
– ident: e_1_2_9_53_1
  doi: 10.1016/j.solidstatesciences.2019.06.015
– ident: e_1_2_9_34_1
  doi: 10.1021/acsami.0c07004
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cej.2019.05.098
– ident: e_1_2_9_24_1
  doi: 10.1063/1.4963168
– ident: e_1_2_9_18_1
  doi: 10.1021/acsenergylett.9b00460
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_9_14_1
  doi: 10.1038/238037a0
– ident: e_1_2_9_16_1
  doi: 10.1002/adfm.201909849
– ident: e_1_2_9_45_1
  doi: 10.1039/C9CP05944J
– ident: e_1_2_9_39_1
  doi: 10.1016/j.mssp.2019.104732
– ident: e_1_2_9_15_1
  doi: 10.1021/acs.chemrev.9b00840
– ident: e_1_2_9_10_1
  doi: 10.1002/aenm.201601190
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_9_38_1
  doi: 10.1016/j.mssp.2020.105157
– ident: e_1_2_9_55_1
  doi: 10.1016/j.apcatb.2007.09.005
– ident: e_1_2_9_37_1
  doi: 10.1016/j.apcatb.2014.11.020
– ident: e_1_2_9_26_1
  doi: 10.1016/j.apcatb.2020.119038
– ident: e_1_2_9_29_1
  doi: 10.1016/j.apcatb.2017.08.018
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ceja.2020.100070
– ident: e_1_2_9_47_1
  doi: 10.1016/0927-0256(96)00008-0
SSID ssj0001537418
Score 2.2010872
Snippet Artificial Z‐scheme, a tandem structure with two‐step excitation process, has gained significant attention in energy production and environmental remediation....
Artificial Z-scheme, a tandem structure with two-step excitation process, has gained significant attention in energy production and environmental remediation....
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage e2102530
Title Exceptional Photocatalytic Activities of rGO Modified (B,N) Co‐Doped WO 3 , Coupled with CdSe QDs for One Photon Z‐Scheme System: A Joint Experimental and DFT Study
URI https://www.ncbi.nlm.nih.gov/pubmed/34859614
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMet0kloL4hxHZfpPCCxqQtkca68de1GNbEW1E2b9lI5jsMitUkZKWL9PDzxKTm-pE1hk4CXKHJcR_L51Tk-Pv6bkFdumDC2h38k248dy01YbDFhM4vRJIlDzoJIpfwf9_3eqXt07p03Gj9rWUuzMn7D5zfuK_kfq2IZ2lXukv0Hyy4axQK8R_viFS2M17-y8cF3k5SC_fzxsigLFYy5lhqsba6Ohci0puzV-4E89SxLpcOJPuU-9mxfBgQ6hdUtplh4NmjRloqaFrPpuMpJ7yRD0frUVZoNrQH6o-oteevCGqKxJ8IInuvt7UdFlpdGO9kcGaDynA9PVLbiyvpxu0o9MF_g5XLTPPuiHGo2Z4vkj_Y4-8yusXfkQDZZJoUMzdaS3oxdsqxWW8V0pRR1ysp6XMNxanENocY_HEtDi4ZaHrIarKMak05t4BVy6urpJZ4_vgpaZZYl36Q--w0VsZemE8UIdUMv8vW21t90uKtHd8iag1MSu0nW2t3jD8NlRM-jUgqoUga1nberb1wnd6s2VpyglemMcmtO7pN7Zj4CbQ3XBmmI_AHZMCP-V9g2suQ7D8mPGm2wShssaYMiBaQNKtpge3-3vwMVZ3A2AAq7YCgDSRlIygApA6QMkDLdeg4VZaApewdtUIxBnTFAxgAZA8XYI3J6eHDS6VnmjA-Lq1TgMEQPMmCcpZy6vhuIwHbiNEKv3cGJrKCcRiL2mEtF6LsJDbiX7FEaxDgPT8LUt-lj0syLXDwlwHwheOShR41V01T-XMon-k4guMP9dJNYVaePuBHAl-ewjEdautsZSXuNFvbaJK8X9ada-uXWmk-0DRf1KkM_u_XJc7K-pP4FaZZXM_ES_dsy3jJgban40C8GbKGk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exceptional+Photocatalytic+Activities+of+rGO+Modified+%28B%2CN%29+Co-Doped+WO+3+%2C+Coupled+with+CdSe+QDs+for+One+Photon+Z-Scheme+System%3A+A+Joint+Experimental+and+DFT+Study&rft.jtitle=Advanced+science&rft.au=Raziq%2C+Fazal&rft.au=Aligayev%2C+Amil&rft.au=Shen%2C+Huahai&rft.au=Ali%2C+Sharafat&rft.date=2022-01-01&rft.eissn=2198-3844&rft.volume=9&rft.issue=2&rft.spage=e2102530&rft_id=info:doi/10.1002%2Fadvs.202102530&rft_id=info%3Apmid%2F34859614&rft.externalDocID=34859614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon