Ordering‐Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High‐Entropy Intermetallic Pt 4 FeCoCuNi

Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a seri...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 28; p. e2302067
Main Authors Wang, Yong, Gong, Na, Liu, Hongfei, Ma, Wei, Hippalgaonkar, Kedar, Liu, Zheng, Huang, Yizhong
Format Journal Article
LanguageEnglish
Published Germany 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt 4 FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single‐particle level, and it agrees with macroscopic analysis by selected‐area electron diffraction and X‐ray diffraction. The electrocatalytic performance of Pt 4 FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt 4 FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9‐fold and 5.6‐fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long‐term stability than both partially ordered and disordered Pt 4 FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering‐dependent structure–property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys.
AbstractList Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt 4 FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single‐particle level, and it agrees with macroscopic analysis by selected‐area electron diffraction and X‐ray diffraction. The electrocatalytic performance of Pt 4 FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt 4 FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9‐fold and 5.6‐fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long‐term stability than both partially ordered and disordered Pt 4 FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering‐dependent structure–property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys.
Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single-particle level, and it agrees with macroscopic analysis by selected-area electron diffraction and X-ray diffraction. The electrocatalytic performance of Pt FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9-fold and 5.6-fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long-term stability than both partially ordered and disordered Pt FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering-dependent structure-property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys.
Author Hippalgaonkar, Kedar
Liu, Hongfei
Ma, Wei
Huang, Yizhong
Gong, Na
Wang, Yong
Liu, Zheng
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-9422-021X
  surname: Wang
  fullname: Wang, Yong
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
– sequence: 2
  givenname: Na
  surname: Gong
  fullname: Gong, Na
  organization: Institute of Materials Research and Engineering (IMRE) ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore
– sequence: 3
  givenname: Hongfei
  surname: Liu
  fullname: Liu, Hongfei
  organization: Institute of Materials Research and Engineering (IMRE) ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore
– sequence: 4
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
– sequence: 5
  givenname: Kedar
  orcidid: 0000-0002-1270-9047
  surname: Hippalgaonkar
  fullname: Hippalgaonkar, Kedar
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore, Institute of Materials Research and Engineering (IMRE) ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore
– sequence: 6
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
– sequence: 7
  givenname: Yizhong
  surname: Huang
  fullname: Huang, Yizhong
  organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37165532$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1OwzAQhS1URH9gyxL5AiljJ07iJSotrVRRhGAdufG4GKVO5aSIiA1H4IychJRCF0isRnrzvbf4-qTjSoeEnDMYMgB-qfRaDTnwEDjEyRHpMcFZEIEUHdIDGYpAxlHaJf2qegYAGUN8QrphwmIhQt4jbwuv0Vu3-nz_uMYNOo2uptNG-3KFjo5fymJb29JR5TRdvDa78B71Nv8OxwXmtS9zVauiqWxFS0OndvXUjo1d-9g0dOZq9GtsgcLm9K6mEZ3gqBxtb-0pOTaqqPDs5w7I42T8MJoG88XNbHQ1D3IGCQ9YLlLODGopDJdKRShjIw0ylsQIYSq0YWCW6TJCobhMUWvgsdCp0WGYCBUOyMV-d7NdrlFnG2_XyjfZr4UWGO6B3JdV5dEcEAbZTnO205wdNLeF6E8ht7XaKam9ssV_tS8PmoTO
CitedBy_id crossref_primary_10_1007_s12598_024_02912_5
crossref_primary_10_1016_j_mtcomm_2025_112242
crossref_primary_10_1039_D4EE04116J
crossref_primary_10_1002_sstr_202300537
crossref_primary_10_1002_adma_202404772
crossref_primary_10_1002_anie_202410442
crossref_primary_10_1016_j_jechem_2023_07_019
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1002_smll_202400662
crossref_primary_10_1002_ange_202403260
crossref_primary_10_1002_sus2_261
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1021_jacs_4c01985
crossref_primary_10_1002_advs_202309813
crossref_primary_10_1002_celc_202400084
crossref_primary_10_1002_cmt2_26
crossref_primary_10_1002_anie_202407589
crossref_primary_10_1002_adfm_202413115
crossref_primary_10_1002_adma_202413560
crossref_primary_10_1002_adma_202412670
crossref_primary_10_1016_j_jcis_2024_02_044
crossref_primary_10_1002_anie_202403260
crossref_primary_10_1002_aenm_202404684
crossref_primary_10_1007_s40820_024_01504_3
crossref_primary_10_1002_ange_202407589
crossref_primary_10_1016_j_jallcom_2023_171039
crossref_primary_10_1039_D4SC07905A
crossref_primary_10_3390_molecules29174130
crossref_primary_10_1021_acs_nanolett_3c04962
crossref_primary_10_1126_sciadv_adn2877
crossref_primary_10_1002_smll_202309773
crossref_primary_10_1002_adfm_202503066
crossref_primary_10_1021_acsaem_3c01497
crossref_primary_10_1039_D3CC05611B
crossref_primary_10_1002_adfm_202414790
crossref_primary_10_1002_smll_202310006
crossref_primary_10_1016_j_jechem_2023_10_014
crossref_primary_10_1002_cctc_202400554
crossref_primary_10_1039_D3SC03897A
crossref_primary_10_1021_acscatal_3c06291
crossref_primary_10_1021_jacs_4c07185
crossref_primary_10_1039_D4TA07338J
crossref_primary_10_1016_j_mtener_2023_101480
crossref_primary_10_1002_smll_202309819
crossref_primary_10_1002_ange_202410442
crossref_primary_10_3390_catal14010057
crossref_primary_10_1021_acsnano_4c16468
crossref_primary_10_1039_D4EE01825G
crossref_primary_10_3390_catal14090569
crossref_primary_10_1021_acs_energyfuels_3c02349
crossref_primary_10_1021_acs_chemmater_4c02151
crossref_primary_10_1021_acs_chemmater_4c02470
crossref_primary_10_1039_D3SC04962K
crossref_primary_10_1039_D4CC04075A
crossref_primary_10_1002_smll_202403162
crossref_primary_10_1007_s10853_023_08731_w
crossref_primary_10_1021_acsmaterialslett_4c00248
crossref_primary_10_1016_j_cej_2025_160016
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1002_adfm_202408267
crossref_primary_10_1002_aenm_202303233
crossref_primary_10_1021_jacs_3c06398
crossref_primary_10_1002_adma_202414283
Cites_doi 10.1038/s41467-022-31660-2
10.1002/anie.201204842
10.1002/adma.201806296
10.1126/science.1172083
10.1038/s41560-021-00948-w
10.1126/science.abj9980
10.1038/s41467-018-03858-w
10.1038/s41563-020-00816-0
10.1038/nchem.367
10.1038/nmat3313
10.1002/adma.201705515
10.1126/science.1211934
10.1021/acsnano.2c05776
10.1038/nchem.623
10.1038/376238a0
10.1002/smll.202203340
10.1126/science.abe1292
10.1038/s41467-022-33007-3
10.1038/s41586-018-0685-y
10.1002/anie.201706610
10.1038/ncomms7430
10.1016/j.cej.2021.130768
10.1126/science.aan5412
10.1002/adma.200602966
10.1038/s41467-022-33216-w
10.1038/nmat3458
10.1021/jacs.9b12005
10.1126/science.abo4940
10.1039/C8TA12250D
10.1126/science.abn3103
10.1021/acs.inorgchem.8b02379
10.1038/s41929-022-00810-6
10.1126/science.abm6304
10.1021/acs.nanolett.5b00320
10.1002/anie.200504386
10.1021/acscatal.2c05624
10.1038/s41586-021-03870-z
10.1038/s41467-022-28947-9
10.1002/advs.202104768
10.1038/s41560-018-0296-8
10.1038/s41563-022-01380-5
10.1038/s41586-019-1603-7
10.1016/j.cej.2023.142748
10.1126/sciadv.abm4322
10.1038/s41563-019-0487-0
10.1038/s41586-022-05115-z
10.1038/s41467-020-19277-9
10.1038/s41929-022-00862-8
10.1126/science.aaz1487
10.1021/jp021182h
10.1021/jacs.5b09653
10.1038/s41929-022-00851-x
10.1021/acs.nanolett.0c02812
10.1103/PhysRevLett.81.2819
10.1016/j.cej.2021.133047
10.1038/s41586-021-04309-1
10.1073/pnas.1815643116
10.1126/science.aad4998
10.1126/science.aaf9050
10.1021/jp047349j
10.1021/acsenergylett.8b00186
10.1002/smll.201702753
10.1002/anie.201912751
10.1038/s41563-022-01376-1
10.1002/adma.202206368
10.1126/science.1170377
10.1126/science.abq1346
10.1021/acs.inorgchem.2c02706
10.1126/science.aaw7493
10.1038/s41467-022-31561-4
10.1038/s41565-022-01170-9
10.1016/0039-6028(96)80007-0
10.1126/science.1135941
10.1016/j.electacta.2007.02.041
10.1038/s41929-019-0246-2
10.1038/s41929-020-00554-1
10.1021/acscatal.5b01037
10.1021/jacs.1c13616
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
DOI 10.1002/adma.202302067
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 37165532
10_1002_adma_202302067
Genre Journal Article
GrantInformation_xml – fundername: Agency for Science, Technology, and Research
  grantid: A1898b0043
– fundername: NRF Fellowship
  grantid: NRF-NRFF13-2021-0011
– fundername: Ministry of Education
  grantid: Tier-1-FG79/20
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
ABTAH
AEUQT
AFPWT
NPM
RWI
RWM
WRC
ID FETCH-LOGICAL-c1072-1c5821fed95f29aa4e96f9fe1176e0385df10fb8b4e5a298edd0265d8fd3375a3
ISSN 0935-9648
IngestDate Wed Feb 19 02:06:58 EST 2025
Tue Jul 01 02:33:34 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords high-entropy intermetallics
oxygen reduction reaction
electrocatalysis
tunable crystal and electronic structures
hydrogen evolution reaction
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1072-1c5821fed95f29aa4e96f9fe1176e0385df10fb8b4e5a298edd0265d8fd3375a3
ORCID 0000-0002-9422-021X
0000-0002-1270-9047
PMID 37165532
ParticipantIDs pubmed_primary_37165532
crossref_primary_10_1002_adma_202302067
crossref_citationtrail_10_1002_adma_202302067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-00
2023-Jul
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-00
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
References e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_16_1
  doi: 10.1038/s41467-022-31660-2
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.201204842
– ident: e_1_2_9_64_1
  doi: 10.1002/adma.201806296
– ident: e_1_2_9_8_1
  doi: 10.1126/science.1172083
– ident: e_1_2_9_4_1
  doi: 10.1038/s41560-021-00948-w
– ident: e_1_2_9_32_1
  doi: 10.1126/science.abj9980
– ident: e_1_2_9_52_1
  doi: 10.1038/s41467-018-03858-w
– ident: e_1_2_9_40_1
  doi: 10.1038/s41563-020-00816-0
– ident: e_1_2_9_50_1
  doi: 10.1038/nchem.367
– ident: e_1_2_9_56_1
  doi: 10.1038/nmat3313
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.201705515
– ident: e_1_2_9_18_1
  doi: 10.1126/science.1211934
– ident: e_1_2_9_26_1
  doi: 10.1021/acsnano.2c05776
– ident: e_1_2_9_57_1
  doi: 10.1038/nchem.623
– ident: e_1_2_9_68_1
  doi: 10.1038/376238a0
– ident: e_1_2_9_54_1
  doi: 10.1002/smll.202203340
– ident: e_1_2_9_43_1
  doi: 10.1126/science.abe1292
– ident: e_1_2_9_11_1
  doi: 10.1038/s41467-022-33007-3
– ident: e_1_2_9_46_1
  doi: 10.1038/s41586-018-0685-y
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201706610
– ident: e_1_2_9_55_1
  doi: 10.1038/ncomms7430
– ident: e_1_2_9_74_1
  doi: 10.1016/j.cej.2021.130768
– ident: e_1_2_9_38_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_9_61_1
  doi: 10.1002/adma.200602966
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-022-33216-w
– ident: e_1_2_9_33_1
  doi: 10.1038/nmat3458
– ident: e_1_2_9_51_1
  doi: 10.1021/jacs.9b12005
– ident: e_1_2_9_47_1
  doi: 10.1126/science.abo4940
– ident: e_1_2_9_30_1
  doi: 10.1039/C8TA12250D
– ident: e_1_2_9_31_1
  doi: 10.1126/science.abn3103
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.inorgchem.8b02379
– ident: e_1_2_9_7_1
  doi: 10.1038/s41929-022-00810-6
– ident: e_1_2_9_75_1
  doi: 10.1126/science.abm6304
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.nanolett.5b00320
– ident: e_1_2_9_58_1
  doi: 10.1002/anie.200504386
– ident: e_1_2_9_71_1
  doi: 10.1021/acscatal.2c05624
– ident: e_1_2_9_59_1
  doi: 10.1038/s41586-021-03870-z
– ident: e_1_2_9_13_1
  doi: 10.1038/s41467-022-28947-9
– ident: e_1_2_9_66_1
  doi: 10.1002/advs.202104768
– ident: e_1_2_9_12_1
  doi: 10.1038/s41560-018-0296-8
– ident: e_1_2_9_5_1
  doi: 10.1038/s41563-022-01380-5
– ident: e_1_2_9_22_1
  doi: 10.1038/s41586-019-1603-7
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cej.2023.142748
– ident: e_1_2_9_65_1
  doi: 10.1126/sciadv.abm4322
– ident: e_1_2_9_76_1
  doi: 10.1038/s41563-019-0487-0
– ident: e_1_2_9_41_1
  doi: 10.1038/s41586-022-05115-z
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-020-19277-9
– ident: e_1_2_9_10_1
  doi: 10.1038/s41929-022-00862-8
– ident: e_1_2_9_20_1
  doi: 10.1126/science.aaz1487
– ident: e_1_2_9_78_1
  doi: 10.1021/jp021182h
– ident: e_1_2_9_37_1
  doi: 10.1021/jacs.5b09653
– ident: e_1_2_9_3_1
  doi: 10.1038/s41929-022-00851-x
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.nanolett.0c02812
– ident: e_1_2_9_69_1
  doi: 10.1103/PhysRevLett.81.2819
– ident: e_1_2_9_72_1
  doi: 10.1016/j.cej.2021.133047
– ident: e_1_2_9_45_1
  doi: 10.1038/s41586-021-04309-1
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.1815643116
– ident: e_1_2_9_1_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_9_24_1
  doi: 10.1126/science.aaf9050
– ident: e_1_2_9_60_1
  doi: 10.1021/jp047349j
– ident: e_1_2_9_77_1
  doi: 10.1021/acsenergylett.8b00186
– ident: e_1_2_9_63_1
  doi: 10.1002/smll.201702753
– ident: e_1_2_9_62_1
  doi: 10.1002/anie.201912751
– ident: e_1_2_9_25_1
  doi: 10.1038/s41563-022-01376-1
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.202206368
– ident: e_1_2_9_28_1
  doi: 10.1126/science.1170377
– ident: e_1_2_9_42_1
  doi: 10.1126/science.abq1346
– ident: e_1_2_9_73_1
  doi: 10.1021/acs.inorgchem.2c02706
– ident: e_1_2_9_23_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-022-31561-4
– ident: e_1_2_9_9_1
  doi: 10.1038/s41565-022-01170-9
– ident: e_1_2_9_67_1
  doi: 10.1016/0039-6028(96)80007-0
– ident: e_1_2_9_17_1
  doi: 10.1126/science.1135941
– ident: e_1_2_9_70_1
  doi: 10.1016/j.electacta.2007.02.041
– ident: e_1_2_9_2_1
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_9_39_1
  doi: 10.1038/s41929-020-00554-1
– ident: e_1_2_9_27_1
  doi: 10.1021/acscatal.5b01037
– ident: e_1_2_9_48_1
  doi: 10.1021/jacs.1c13616
SSID ssj0009606
Score 2.424834
Snippet Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy...
Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage e2302067
Title Ordering‐Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High‐Entropy Intermetallic Pt 4 FeCoCuNi
URI https://www.ncbi.nlm.nih.gov/pubmed/37165532
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB6N9GN1nu61DD4M9BG2xbMfWY8lSwtjSUlraPQXriwXaOBSna_bX7_SZeEth24sxJ9nGuh_S3en0O4TelRWnVVIIkvNEkIxlKak4lySRhRR9KVKmzY7u13F_dJ59vswvO527taylRcM_iJ8bz5X8j1ZBBno1p2T_QbPxpSCAe9AvXEHDcP0rHR8b3kxYe8gnX8q26Y6W8qaGB7rDW_9puz1wfLc0wlND1GqFQ1f-xkZvAimJyfkgQ5O6Pl-6UOG1gmZDg33SdLPukRrUg8V4um7QHoYcArB83S8bm_VCTWfflSnUHOMMFz4w_a32a6Ul5XeycVwbvkwXdjGEBq2mq3C5TQX0Ah-joGnMZ4Ulxs-r1Liqrp5mmHgdT4kHmD8i7qZRBY6R4ZXfOMc7zthKWtqoDR1BR_Nrq_EUnME89_HTNqt2aHqAHlJwMKwzfroiHjN-XaD47NGP7Y9to0fh8ZY10_JLrH1ytosee8cCHzqUPEEdNXuKdtboJp-hH3_iBQe84IgXDHjBDi844gX_jhdca7yOF9zCCz5pcIYDXp6j86Ph2WBEfOENIpJeQUkizPFprSTLNWVVlSnW10yrJCn6ymwlS530NC95pvKKslJJCa58Lkst07TIq_QF2prVM7WHsM5lj0slGK2KTGWUl7pMNMwAghXmEPg-ImEAJ8Kz0pviKFcTx6dNJ2bsJ3Hs99H72H_u-Fju7fnS6SP2C0p7dW_La7S9gu8btNXcLNQBGJ0Nf2vx8QvD-4LS
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordering-Dependent+Hydrogen+Evolution+and+Oxygen+Reduction+Electrocatalysis+of+High-Entropy+Intermetallic+Pt+4+FeCoCuNi&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yong&rft.au=Gong%2C+Na&rft.au=Liu%2C+Hongfei&rft.au=Ma%2C+Wei&rft.date=2023-07-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=28&rft.spage=e2302067&rft_id=info:doi/10.1002%2Fadma.202302067&rft_id=info%3Apmid%2F37165532&rft.externalDocID=37165532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon