Ordering‐Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High‐Entropy Intermetallic Pt 4 FeCoCuNi
Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a seri...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 28; p. e2302067 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt
4
FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single‐particle level, and it agrees with macroscopic analysis by selected‐area electron diffraction and X‐ray diffraction. The electrocatalytic performance of Pt
4
FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt
4
FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9‐fold and 5.6‐fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long‐term stability than both partially ordered and disordered Pt
4
FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering‐dependent structure–property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys. |
---|---|
AbstractList | Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt
4
FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single‐particle level, and it agrees with macroscopic analysis by selected‐area electron diffraction and X‐ray diffraction. The electrocatalytic performance of Pt
4
FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt
4
FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9‐fold and 5.6‐fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long‐term stability than both partially ordered and disordered Pt
4
FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering‐dependent structure–property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys. Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single-particle level, and it agrees with macroscopic analysis by selected-area electron diffraction and X-ray diffraction. The electrocatalytic performance of Pt FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9-fold and 5.6-fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long-term stability than both partially ordered and disordered Pt FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering-dependent structure-property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys. |
Author | Hippalgaonkar, Kedar Liu, Hongfei Ma, Wei Huang, Yizhong Gong, Na Wang, Yong Liu, Zheng |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-9422-021X surname: Wang fullname: Wang, Yong organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore – sequence: 2 givenname: Na surname: Gong fullname: Gong, Na organization: Institute of Materials Research and Engineering (IMRE) ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore – sequence: 3 givenname: Hongfei surname: Liu fullname: Liu, Hongfei organization: Institute of Materials Research and Engineering (IMRE) ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore – sequence: 4 givenname: Wei surname: Ma fullname: Ma, Wei organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore – sequence: 5 givenname: Kedar orcidid: 0000-0002-1270-9047 surname: Hippalgaonkar fullname: Hippalgaonkar, Kedar organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore, Institute of Materials Research and Engineering (IMRE) ASTAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore – sequence: 6 givenname: Zheng surname: Liu fullname: Liu, Zheng organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore – sequence: 7 givenname: Yizhong surname: Huang fullname: Huang, Yizhong organization: School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37165532$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1OwzAQhS1URH9gyxL5AiljJ07iJSotrVRRhGAdufG4GKVO5aSIiA1H4IychJRCF0isRnrzvbf4-qTjSoeEnDMYMgB-qfRaDTnwEDjEyRHpMcFZEIEUHdIDGYpAxlHaJf2qegYAGUN8QrphwmIhQt4jbwuv0Vu3-nz_uMYNOo2uptNG-3KFjo5fymJb29JR5TRdvDa78B71Nv8OxwXmtS9zVauiqWxFS0OndvXUjo1d-9g0dOZq9GtsgcLm9K6mEZ3gqBxtb-0pOTaqqPDs5w7I42T8MJoG88XNbHQ1D3IGCQ9YLlLODGopDJdKRShjIw0ylsQIYSq0YWCW6TJCobhMUWvgsdCp0WGYCBUOyMV-d7NdrlFnG2_XyjfZr4UWGO6B3JdV5dEcEAbZTnO205wdNLeF6E8ht7XaKam9ssV_tS8PmoTO |
CitedBy_id | crossref_primary_10_1007_s12598_024_02912_5 crossref_primary_10_1016_j_mtcomm_2025_112242 crossref_primary_10_1039_D4EE04116J crossref_primary_10_1002_sstr_202300537 crossref_primary_10_1002_adma_202404772 crossref_primary_10_1002_anie_202410442 crossref_primary_10_1016_j_jechem_2023_07_019 crossref_primary_10_1002_advs_202403197 crossref_primary_10_1002_smll_202400662 crossref_primary_10_1002_ange_202403260 crossref_primary_10_1002_sus2_261 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1021_jacs_4c01985 crossref_primary_10_1002_advs_202309813 crossref_primary_10_1002_celc_202400084 crossref_primary_10_1002_cmt2_26 crossref_primary_10_1002_anie_202407589 crossref_primary_10_1002_adfm_202413115 crossref_primary_10_1002_adma_202413560 crossref_primary_10_1002_adma_202412670 crossref_primary_10_1016_j_jcis_2024_02_044 crossref_primary_10_1002_anie_202403260 crossref_primary_10_1002_aenm_202404684 crossref_primary_10_1007_s40820_024_01504_3 crossref_primary_10_1002_ange_202407589 crossref_primary_10_1016_j_jallcom_2023_171039 crossref_primary_10_1039_D4SC07905A crossref_primary_10_3390_molecules29174130 crossref_primary_10_1021_acs_nanolett_3c04962 crossref_primary_10_1126_sciadv_adn2877 crossref_primary_10_1002_smll_202309773 crossref_primary_10_1002_adfm_202503066 crossref_primary_10_1021_acsaem_3c01497 crossref_primary_10_1039_D3CC05611B crossref_primary_10_1002_adfm_202414790 crossref_primary_10_1002_smll_202310006 crossref_primary_10_1016_j_jechem_2023_10_014 crossref_primary_10_1002_cctc_202400554 crossref_primary_10_1039_D3SC03897A crossref_primary_10_1021_acscatal_3c06291 crossref_primary_10_1021_jacs_4c07185 crossref_primary_10_1039_D4TA07338J crossref_primary_10_1016_j_mtener_2023_101480 crossref_primary_10_1002_smll_202309819 crossref_primary_10_1002_ange_202410442 crossref_primary_10_3390_catal14010057 crossref_primary_10_1021_acsnano_4c16468 crossref_primary_10_1039_D4EE01825G crossref_primary_10_3390_catal14090569 crossref_primary_10_1021_acs_energyfuels_3c02349 crossref_primary_10_1021_acs_chemmater_4c02151 crossref_primary_10_1021_acs_chemmater_4c02470 crossref_primary_10_1039_D3SC04962K crossref_primary_10_1039_D4CC04075A crossref_primary_10_1002_smll_202403162 crossref_primary_10_1007_s10853_023_08731_w crossref_primary_10_1021_acsmaterialslett_4c00248 crossref_primary_10_1016_j_cej_2025_160016 crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1002_adfm_202408267 crossref_primary_10_1002_aenm_202303233 crossref_primary_10_1021_jacs_3c06398 crossref_primary_10_1002_adma_202414283 |
Cites_doi | 10.1038/s41467-022-31660-2 10.1002/anie.201204842 10.1002/adma.201806296 10.1126/science.1172083 10.1038/s41560-021-00948-w 10.1126/science.abj9980 10.1038/s41467-018-03858-w 10.1038/s41563-020-00816-0 10.1038/nchem.367 10.1038/nmat3313 10.1002/adma.201705515 10.1126/science.1211934 10.1021/acsnano.2c05776 10.1038/nchem.623 10.1038/376238a0 10.1002/smll.202203340 10.1126/science.abe1292 10.1038/s41467-022-33007-3 10.1038/s41586-018-0685-y 10.1002/anie.201706610 10.1038/ncomms7430 10.1016/j.cej.2021.130768 10.1126/science.aan5412 10.1002/adma.200602966 10.1038/s41467-022-33216-w 10.1038/nmat3458 10.1021/jacs.9b12005 10.1126/science.abo4940 10.1039/C8TA12250D 10.1126/science.abn3103 10.1021/acs.inorgchem.8b02379 10.1038/s41929-022-00810-6 10.1126/science.abm6304 10.1021/acs.nanolett.5b00320 10.1002/anie.200504386 10.1021/acscatal.2c05624 10.1038/s41586-021-03870-z 10.1038/s41467-022-28947-9 10.1002/advs.202104768 10.1038/s41560-018-0296-8 10.1038/s41563-022-01380-5 10.1038/s41586-019-1603-7 10.1016/j.cej.2023.142748 10.1126/sciadv.abm4322 10.1038/s41563-019-0487-0 10.1038/s41586-022-05115-z 10.1038/s41467-020-19277-9 10.1038/s41929-022-00862-8 10.1126/science.aaz1487 10.1021/jp021182h 10.1021/jacs.5b09653 10.1038/s41929-022-00851-x 10.1021/acs.nanolett.0c02812 10.1103/PhysRevLett.81.2819 10.1016/j.cej.2021.133047 10.1038/s41586-021-04309-1 10.1073/pnas.1815643116 10.1126/science.aad4998 10.1126/science.aaf9050 10.1021/jp047349j 10.1021/acsenergylett.8b00186 10.1002/smll.201702753 10.1002/anie.201912751 10.1038/s41563-022-01376-1 10.1002/adma.202206368 10.1126/science.1170377 10.1126/science.abq1346 10.1021/acs.inorgchem.2c02706 10.1126/science.aaw7493 10.1038/s41467-022-31561-4 10.1038/s41565-022-01170-9 10.1016/0039-6028(96)80007-0 10.1126/science.1135941 10.1016/j.electacta.2007.02.041 10.1038/s41929-019-0246-2 10.1038/s41929-020-00554-1 10.1021/acscatal.5b01037 10.1021/jacs.1c13616 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/adma.202302067 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
ExternalDocumentID | 37165532 10_1002_adma_202302067 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Agency for Science, Technology, and Research grantid: A1898b0043 – fundername: NRF Fellowship grantid: NRF-NRFF13-2021-0011 – fundername: Ministry of Education grantid: Tier-1-FG79/20 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT ABTAH AEUQT AFPWT NPM RWI RWM WRC |
ID | FETCH-LOGICAL-c1072-1c5821fed95f29aa4e96f9fe1176e0385df10fb8b4e5a298edd0265d8fd3375a3 |
ISSN | 0935-9648 |
IngestDate | Wed Feb 19 02:06:58 EST 2025 Tue Jul 01 02:33:34 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | high-entropy intermetallics oxygen reduction reaction electrocatalysis tunable crystal and electronic structures hydrogen evolution reaction |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1072-1c5821fed95f29aa4e96f9fe1176e0385df10fb8b4e5a298edd0265d8fd3375a3 |
ORCID | 0000-0002-9422-021X 0000-0002-1270-9047 |
PMID | 37165532 |
ParticipantIDs | pubmed_primary_37165532 crossref_primary_10_1002_adma_202302067 crossref_citationtrail_10_1002_adma_202302067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-00 2023-Jul |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-00 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
References | e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_16_1 doi: 10.1038/s41467-022-31660-2 – ident: e_1_2_9_19_1 doi: 10.1002/anie.201204842 – ident: e_1_2_9_64_1 doi: 10.1002/adma.201806296 – ident: e_1_2_9_8_1 doi: 10.1126/science.1172083 – ident: e_1_2_9_4_1 doi: 10.1038/s41560-021-00948-w – ident: e_1_2_9_32_1 doi: 10.1126/science.abj9980 – ident: e_1_2_9_52_1 doi: 10.1038/s41467-018-03858-w – ident: e_1_2_9_40_1 doi: 10.1038/s41563-020-00816-0 – ident: e_1_2_9_50_1 doi: 10.1038/nchem.367 – ident: e_1_2_9_56_1 doi: 10.1038/nmat3313 – ident: e_1_2_9_21_1 doi: 10.1002/adma.201705515 – ident: e_1_2_9_18_1 doi: 10.1126/science.1211934 – ident: e_1_2_9_26_1 doi: 10.1021/acsnano.2c05776 – ident: e_1_2_9_57_1 doi: 10.1038/nchem.623 – ident: e_1_2_9_68_1 doi: 10.1038/376238a0 – ident: e_1_2_9_54_1 doi: 10.1002/smll.202203340 – ident: e_1_2_9_43_1 doi: 10.1126/science.abe1292 – ident: e_1_2_9_11_1 doi: 10.1038/s41467-022-33007-3 – ident: e_1_2_9_46_1 doi: 10.1038/s41586-018-0685-y – ident: e_1_2_9_53_1 doi: 10.1002/anie.201706610 – ident: e_1_2_9_55_1 doi: 10.1038/ncomms7430 – ident: e_1_2_9_74_1 doi: 10.1016/j.cej.2021.130768 – ident: e_1_2_9_38_1 doi: 10.1126/science.aan5412 – ident: e_1_2_9_61_1 doi: 10.1002/adma.200602966 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-022-33216-w – ident: e_1_2_9_33_1 doi: 10.1038/nmat3458 – ident: e_1_2_9_51_1 doi: 10.1021/jacs.9b12005 – ident: e_1_2_9_47_1 doi: 10.1126/science.abo4940 – ident: e_1_2_9_30_1 doi: 10.1039/C8TA12250D – ident: e_1_2_9_31_1 doi: 10.1126/science.abn3103 – ident: e_1_2_9_44_1 doi: 10.1021/acs.inorgchem.8b02379 – ident: e_1_2_9_7_1 doi: 10.1038/s41929-022-00810-6 – ident: e_1_2_9_75_1 doi: 10.1126/science.abm6304 – ident: e_1_2_9_36_1 doi: 10.1021/acs.nanolett.5b00320 – ident: e_1_2_9_58_1 doi: 10.1002/anie.200504386 – ident: e_1_2_9_71_1 doi: 10.1021/acscatal.2c05624 – ident: e_1_2_9_59_1 doi: 10.1038/s41586-021-03870-z – ident: e_1_2_9_13_1 doi: 10.1038/s41467-022-28947-9 – ident: e_1_2_9_66_1 doi: 10.1002/advs.202104768 – ident: e_1_2_9_12_1 doi: 10.1038/s41560-018-0296-8 – ident: e_1_2_9_5_1 doi: 10.1038/s41563-022-01380-5 – ident: e_1_2_9_22_1 doi: 10.1038/s41586-019-1603-7 – ident: e_1_2_9_35_1 doi: 10.1016/j.cej.2023.142748 – ident: e_1_2_9_65_1 doi: 10.1126/sciadv.abm4322 – ident: e_1_2_9_76_1 doi: 10.1038/s41563-019-0487-0 – ident: e_1_2_9_41_1 doi: 10.1038/s41586-022-05115-z – ident: e_1_2_9_29_1 doi: 10.1038/s41467-020-19277-9 – ident: e_1_2_9_10_1 doi: 10.1038/s41929-022-00862-8 – ident: e_1_2_9_20_1 doi: 10.1126/science.aaz1487 – ident: e_1_2_9_78_1 doi: 10.1021/jp021182h – ident: e_1_2_9_37_1 doi: 10.1021/jacs.5b09653 – ident: e_1_2_9_3_1 doi: 10.1038/s41929-022-00851-x – ident: e_1_2_9_49_1 doi: 10.1021/acs.nanolett.0c02812 – ident: e_1_2_9_69_1 doi: 10.1103/PhysRevLett.81.2819 – ident: e_1_2_9_72_1 doi: 10.1016/j.cej.2021.133047 – ident: e_1_2_9_45_1 doi: 10.1038/s41586-021-04309-1 – ident: e_1_2_9_34_1 doi: 10.1073/pnas.1815643116 – ident: e_1_2_9_1_1 doi: 10.1126/science.aad4998 – ident: e_1_2_9_24_1 doi: 10.1126/science.aaf9050 – ident: e_1_2_9_60_1 doi: 10.1021/jp047349j – ident: e_1_2_9_77_1 doi: 10.1021/acsenergylett.8b00186 – ident: e_1_2_9_63_1 doi: 10.1002/smll.201702753 – ident: e_1_2_9_62_1 doi: 10.1002/anie.201912751 – ident: e_1_2_9_25_1 doi: 10.1038/s41563-022-01376-1 – ident: e_1_2_9_14_1 doi: 10.1002/adma.202206368 – ident: e_1_2_9_28_1 doi: 10.1126/science.1170377 – ident: e_1_2_9_42_1 doi: 10.1126/science.abq1346 – ident: e_1_2_9_73_1 doi: 10.1021/acs.inorgchem.2c02706 – ident: e_1_2_9_23_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_9_6_1 doi: 10.1038/s41467-022-31561-4 – ident: e_1_2_9_9_1 doi: 10.1038/s41565-022-01170-9 – ident: e_1_2_9_67_1 doi: 10.1016/0039-6028(96)80007-0 – ident: e_1_2_9_17_1 doi: 10.1126/science.1135941 – ident: e_1_2_9_70_1 doi: 10.1016/j.electacta.2007.02.041 – ident: e_1_2_9_2_1 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_9_39_1 doi: 10.1038/s41929-020-00554-1 – ident: e_1_2_9_27_1 doi: 10.1021/acscatal.5b01037 – ident: e_1_2_9_48_1 doi: 10.1021/jacs.1c13616 |
SSID | ssj0009606 |
Score | 2.424834 |
Snippet | Disordered solid‐solution high‐entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high‐entropy... Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | e2302067 |
Title | Ordering‐Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High‐Entropy Intermetallic Pt 4 FeCoCuNi |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37165532 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB6N9GN1nu61DD4M9BG2xbMfWY8lSwtjSUlraPQXriwXaOBSna_bX7_SZeEth24sxJ9nGuh_S3en0O4TelRWnVVIIkvNEkIxlKak4lySRhRR9KVKmzY7u13F_dJ59vswvO527taylRcM_iJ8bz5X8j1ZBBno1p2T_QbPxpSCAe9AvXEHDcP0rHR8b3kxYe8gnX8q26Y6W8qaGB7rDW_9puz1wfLc0wlND1GqFQ1f-xkZvAimJyfkgQ5O6Pl-6UOG1gmZDg33SdLPukRrUg8V4um7QHoYcArB83S8bm_VCTWfflSnUHOMMFz4w_a32a6Ul5XeycVwbvkwXdjGEBq2mq3C5TQX0Ah-joGnMZ4Ulxs-r1Liqrp5mmHgdT4kHmD8i7qZRBY6R4ZXfOMc7zthKWtqoDR1BR_Nrq_EUnME89_HTNqt2aHqAHlJwMKwzfroiHjN-XaD47NGP7Y9to0fh8ZY10_JLrH1ytosee8cCHzqUPEEdNXuKdtboJp-hH3_iBQe84IgXDHjBDi844gX_jhdca7yOF9zCCz5pcIYDXp6j86Ph2WBEfOENIpJeQUkizPFprSTLNWVVlSnW10yrJCn6ymwlS530NC95pvKKslJJCa58Lkst07TIq_QF2prVM7WHsM5lj0slGK2KTGWUl7pMNMwAghXmEPg-ImEAJ8Kz0pviKFcTx6dNJ2bsJ3Hs99H72H_u-Fju7fnS6SP2C0p7dW_La7S9gu8btNXcLNQBGJ0Nf2vx8QvD-4LS |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordering-Dependent+Hydrogen+Evolution+and+Oxygen+Reduction+Electrocatalysis+of+High-Entropy+Intermetallic+Pt+4+FeCoCuNi&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yong&rft.au=Gong%2C+Na&rft.au=Liu%2C+Hongfei&rft.au=Ma%2C+Wei&rft.date=2023-07-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=28&rft.spage=e2302067&rft_id=info:doi/10.1002%2Fadma.202302067&rft_id=info%3Apmid%2F37165532&rft.externalDocID=37165532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |